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Abstract

In this paper we construct a connection r on the trivial G-bundle on P1 for any
simple complex algebraic group G, which is regular outside of the points 0 and1,
has a regular singularity at the point 0, with principal unipotent monodromy, and
has an irregular singularity at the point1, with slope 1=h, the reciprocal of the
Coxeter number of G. The connection r, which admits the structure of an oper in
the sense of Beilinson and Drinfeld, appears to be the characteristic 0 counterpart of
a hypothetical family of `-adic representations, which should parametrize a specific
automorphic representation under the global Langlands correspondence. These
`-adic representations, and their characteristic 0 counterparts, have been constructed
in some cases by Deligne and Katz. Our connection is constructed uniformly for any
simple algebraic group, and characterized using the formalism of opers. It provides
an example of the geometric Langlands correspondence with wild ramification. We
compute the de Rham cohomology of our connection with values in a representation
V of G, and describe the differential Galois group of r as a subgroup of G.

1. Introduction

The Langlands correspondence relates automorphic representations of a split
reductive group G over the ring of adèles of a global field F and `-adic represen-
tations of the Galois group of F with values in a (slightly modified) dual group
of G (see �2). On the other hand, the trace formula gives us an effective tool
to find the multiplicities of automorphic representations satisfying certain local
conditions. In some cases one finds that there is a unique irreducible automorphic
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representation with prescribed local behavior at finitely many places. A special
case of this, analyzed in [Gro], occurs when F is the function field of the projective
line P1 over a finite field k, and G is a simple group over k. We specify that the
local factor at one rational point of P1 is the Steinberg representation, the local
factor at another rational point is a simple supercuspidal representation constructed
in [GR], and that the local representations are unramified at all other places of F .
In this case the trace formula shows that there is an essentially unique automorphic
representation with these properties. Hence the corresponding family of `-adic
representations of the Galois group of F to the dual group {G should also be unique.
An interesting open problem is to find it.

Due to the compatibility of the local and global Langlands conjectures, these `-
adic representations should be unramified at all points of P1 except for two rational
points 0 and 1. At 0 it should be tamely ramified, and the tame inertia group
should map to a subgroup of {G topologically generated by a principal unipotent
element. At1 it should be wildly ramified, but in the mildest possible way.

Given a representation V of the dual group {G, we would obtain an `-adic
sheaf on P1 (of rank dimV ) satisfying the same properties. The desired lisse
`-adic sheaves on Gm have been constructed by P. Deligne [Del77] and N. Katz
[Kat90] in the cases when {G is SLn;Sp2n;SO2nC1 or G2 and V is the irreducible
representation of dimension n; 2n; 2nC 1, and 7, respectively. However, there are
no candidates for these `-adic representations known for other groups {G.

In order to gain a better understanding of the general case, we consider an
analogous problem in the framework of the geometric Langlands correspondence.
Here we switch from the function field F of a curve defined over a finite field to
an algebraic curve X over the complex field. In the geometric correspondence
(see, e.g., [Fre07b]) the role of an `-adic representation of the Galois group of F is
played by a flat {G-bundle on X (that is, a pair consisting of a principal {G-bundle
on X and a connection r, which is automatically flat since dimX D 1). Hence
we look for a flat {G-bundle on P1 having regular singularity at a point 0 2 P1

with regular unipotent monodromy and an irregular singularity at another point
12 P1 with the smallest possible slope 1=h, where h is the Coxeter number of
{G (see [Del70] and Section 5 for the definition of slope). By analogy with the
characteristic p case discussed above, we expect that a flat bundle satisfying these
properties is unique (up to the action of the group Gm of automorphisms of P1

preserving the points 0;1).
In this paper we construct this flat {G-bundle for any simple algebraic group {G.

A key point of our construction is that this flat bundle is equipped with an oper
structure. The notion of oper was introduced by A. Beilinson and V. Drinfeld
[BD05] (following the earlier work [DS85]), and it plays an important role in the
geometric Langlands correspondence. An oper is a flat bundle with an additional
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structure; namely, a reduction of the principal {G-bundle to a Borel subgroup {B
which is in some sense transverse to the connection r. In our case, the principal
{G-bundle on P1 is actually trivial, and the oper {B-reduction is trivial as well. If N
is a principal nilpotent element in the Lie algebra of a Borel subgroup opposite to
{B and E is a basis vector of the highest root space for {B on LgD Lie. {G/, then our

connection takes the form

(1) r D d CN
dt

t
CEdt;

where t is a parameter on P1 with a simple zero at 0 and a simple pole at 1.
We also give in Section 5.1 a twisted analogue of this formula, associated to an
automorphism of {G of finite order preserving {B (answering a question raised by
P. Deligne).

For any representation V of {G our connection gives rise to a flat connection
on the trivial vector bundle of rank dimV on P1. We examine this connection
more closely in the special cases analyzed by Katz in [Kat90]. In these cases Katz
constructs not only the `-adic sheaves, but also their counterparts in characteristic
0, so we can compare with his results. These special cases share the remarkable
property that a regular unipotent element of {G has a single Jordan block in the
representation V . For this reason our oper connection can be converted into a scalar
differential operator of order equal to dimV (this differential operator has the same
differential Galois group as the original connection). We compute this operator in
all of the above cases and find perfect agreement with the differential operators
constructed by Katz [Kat90]. This strongly suggests that our connections are indeed
the characteristic 0 analogues of the special `-adic representations whose existence
is predicted by the Langlands correspondence and the trace formula.

Another piece of evidence is the vanishing of the de Rham cohomology of the
intermediate extension to P1 of the D-module on Gm defined by our connection
with values in the adjoint representation of {G. This matches the expectation that the
corresponding cohomology of the `-adic representations also vanish, or equivalently,
that the their global L-function with respect to the adjoint representation of {G is
equal to 1. We give two proofs of the vanishing of this de Rham cohomology.
The first uses nontrivial results about the principal Heisenberg subalgebras of the
affine Kac-Moody algebras due to V. Kac [Kac78], [Kac90]. The second uses an
explicit description of the differential Galois group of our connection and its inertia
subgroups [Kat87].

Since the first de Rham cohomology is the space of infinitesimal deformations
of our local system (preserving its formal types at the singular points 0 and 1)
([Kat96], [BE04], [Ari08]), its vanishing means that our local system on P1 is rigid.
We also prove the vanishing of the de Rham cohomology for small representations
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considered in [Kat90]. This is again in agreement with the vanishing of the co-
homology of the corresponding `-adic representations shown by Katz. Using our
description of the differential Galois group of our connection and a formula of
Deligne [Del70] for the Euler characteristic, we give a formula for the dimensions
of the de Rham cohomology groups for an arbitrary representation V of {G.

Finally, we describe some connections which are closely related to r, and
others which are analogous to r coming from subregular nilpotent elements. We
also use r to give an example of the geometric Langlands correspondence with
wild ramification.

The paper is organized as follows. In Section 2 we introduce the concepts and
notation relevant to our discussion of automorphic representations. In Section 3
we give the formula for the multiplicity of automorphic representations from [Gro].
This formula implies the existence of a particular automorphic representation. In
Section 4 we summarize what is known about the corresponding family of `-adic
representations. We then switch to characteristic 0. In Section 5 we give an explicit
formula for our connection for an arbitrary complex simple algebraic group, as well
as its twisted version. In Section 6 we consider the special cases of representations
on which a regular unipotent element has a single Jordan block. In these cases our
connection can be represented by a scalar differential operator. These operators
agree with those found earlier by Katz [Kat90].

We then take up the question of computation of the de Rham cohomology of
our connection. After some preparatory material presented in Sections 7–9 we prove
vanishing of the de Rham cohomology on the adjoint and small representations
in Sections 10 and 11, respectively. We also show that the de Rham cohomology
can be nontrivial for other representations using the case of SL2 as an example
in Section 12. In Section 13 we determine the differential Galois group of our
connection. We then use it in Section 14 to give a formula for the dimensions of
the de Rham cohomology for an arbitrary finite-dimensional representation of {G.
In particular, we give an alternative proof of the vanishing of de Rham cohomology
for the adjoint and small representations. In Section 15 we discuss some closely
related connections.

Finally, in Section 16 we describe what the geometric Langlands correspon-
dence should look like for our connection.
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2. Simple algebraic groups over global function fields

Let k be a finite field, of order q. Let G be an absolutely almost simple
algebraic group over k (which we will refer to as a simple group for brevity). The
group G is quasi-split over k, and we fix a maximal torus A�B �G contained in a
Borel subgroup of G over k. Let k0 be the splitting field of G, which is the splitting
field of the torus A, and put � D Gal.k0=k/. Then � is a finite cyclic group, of
order 1, 2, or 3. Let Z denote the center of G, which is a finite, commutative group
scheme over k.

Let {G denote the complex dual group of G. This comes with a pinning
LT � {B � {G, as well as an action of � which permutes basis vectors X�˛ of the

simple negative root spaces. The principal element N D
P
X�˛ in LgD Lie. {G/ is

invariant under � ([Gro97b]). Let LZ denote the finite center of {G, which also has
an action of � .

There is an element " in Z. {G/� which satisfies "2 D 1 and is defined as
follows. Let 2� be the co-character of {T which is the sum of positive co-roots, and
define

"D .2�/.�1/:

Since the value of � on any root is integral, " lies in Z. {G/. It is also fixed by � .
We have

"D 1  ! � is a co-character of {T :

In order to avoid choosing a square root of q in the construction of Galois repre-
sentations, we will use the following modification {G1 of {G, which was suggested by
Deligne. Let {G1D {G�Gm=."��1/. We have homomorphisms Gm! {G1!Gm

with composite z 7! z2, The group � acts on {G1, trivially on Gm. The co-character
groupX�. {T1/ contains the direct sumX�. {T /�X�.Gm/with index 2. The advantage
of passing to {G1 is that we can choose a co-character

�WGm! {T1

fixed by � which satisfies
h�; ˛i D 1

for all simple roots ˛ of {G. (This is impossible to do for {G when "¤ 1.) Having
chosen �, we letw.�/2Z be defined by composite map Gm

�
! {G1!Gm, z 7!zw.�/.

Then w.�/ is odd precisely when "¤ 1.
Let X be a smooth, geometrically connected, complete algebraic curve over k,

of genus g. Let F D k.X/ be the global function field of X . We fix two disjoint,
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nonempty sets S; T of places v of F , and define the degrees

deg.S/D
X
v2S

deg v � 1; deg.T /D
X
v2T

deg v � 1:

A place v of F corresponds to a Gal.k=k/-orbit on the set of points X.k/. The
degree deg v of v is the cardinality of the orbit. Let

MG D

M
d�2

Vd .1� d/

be the motive of the simple group G over F D k.X/ ([Gro97a]). The spaces Vd ,
of invariant polynomials of degree d , are all rational representations of the finite,
unramified quotient � of Gal.F s=F /. The Artin L-function of V D Vd , relative to
the sets S and T , is defined by

LS;T .V; s/D
Y
v 62S

det.1�Frv q�sv jV /
�1
Y
v2T

det.1�Frv q1�sv jV /:

Here FrvDFrdegv , where Fr is the Frobenius generator of� , x 7!xq , and qvDqdegv .
This is known to be a polynomial of degree dimV � .2g� 2C degS C degT / in
q�s with integral coefficients and constant coefficient 1 ([Wei71]). We define

LS;T .MG/D
Y
d�2

LS;T .Vd ; 1� d/;

which is a nonzero integer. In the next section, we will use the integer LS;T .MG/

to study spaces of automorphic forms on G over F . We end this section with some
examples.

Let 2D d1; d2; : : : ; drk.G/ D h be the degrees of generators of the algebra of
invariant polynomials of the Weyl group, where rk.G/D dimA is the rank of G
over the splitting field k0 and h is the Coxeter number. If G is split,

LS;T .MG/D

rk.G/Y
iD1

�S;T .1� di /;

where �S;T is the zeta-function of the curve X �S relative to T . Now assume that
G is not split, but that G is not of type D2n. Then each Vd has dimension 1, � has
order 2, and � acts nontrivially on Vd if and only if d is odd. Hence

LS;T .MG/D
Y
di even

�S;T .1� di /
Y
di odd

LS;T ."; 1� di /;

where " is the nontrivial quadratic character of � .
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3. Automorphic representations

Let A be the ring of adèles of the function field F D k.X/. ThenG.F / is a dis-
crete subgroup, with finite co-volume, in G.A/. Let L denote the discrete spectrum,
which is a G.A/-submodule of L2.G.F /nG.A//. Any irreducible representation
� of G.A/ has finite multiplicity m.�/ in L.

We will count the sum of multiplicities over irreducible representations � Db̋�v with specified local behavior. Specifically, for v 62 S [T , we insist that �v
be an unramified irreducible representation of G.Fv/, in the sense that the open
compact subgroup G.Ov/ fixes a nonzero vector in �v. At places v 2 S , we insist
that �v is the Steinberg representation of G.Fv/. Finally, at places v 2 T , we insist
that �v is a simple supercuspidal representation of G.Fv/, of the following type (cf.
[GR]). We let �vWPv! �p be a given affine generic character of a pro-p-Sylow
subgroup Pv � G.Ov/. We recall that �v is nontrivial on the simple affine root
spaces of the Frattini quotient of Pv. (This is the affine analogue of a generic
character of the unipotent radical of a Borel subgroup.) Extend �v to a character of
Z.qv/�Pv which is trivial on Z.qv/; then the compactly induced representation
IndG.Fv/

Pv�Z.qv/
.�v/ ofG.Fv/ is multiplicity-free, with #Z. {G/� irreducible summands.

We insist that �v be a summand of this induced representation.
The condition imposed on �v only depends on the Iv-orbit of the generic

character �v, where Iv is the Iwahori subgroup of G.Fv/ which normalizes Pv.
The quotient group Iv=Pv is isomorphic to A.qv/, where A is the torus in the Borel
subgroup, and there are .qv�1/ �#Z.qv/ different orbits. We note that affine generic
characters form a principal homogeneous space for the group Aad.qv/�F�qv , where
the latter group maps a local parameter t to �t .

Using the simple trace formula, and assuming that some results of Kottwitz
[Kot88] on the vanishing of the local orbital integrals of the Euler-Poincaré function
on nonelliptic classes extend from characteristic zero to characteristic p, we obtain
the following formula for multiplicities [Gro]:

Assume that p does not divide #Z. {G/. ThenX
� as above

m.�/DLS;T .MG/�
#Z. {G/�Q

v2S #Z. {G/�v.�1/rk.G/v
�

#Z.q/Q
v2T #Z.qv/.�1/rk.G/v

;

where rk.G/v is the rank of G over Fv.

In the special case where X D P1 has genus 0, S D f0g and T D f1g, we
have

LS;T .Vd ; s/D 1; for all d; s:

Hence
LS;T .MG/D 1:



1476 EDWARD FRENKEL and BENEDICT GROSS

Since �v D � and qv D q in this case, we find thatX
m.�/D 1:

Hence there is a unique automorphic representation in the discrete spectrum which
is Steinberg at 0, simple supercuspidal for a fixed orbit of generic characters at1,
and unramified elsewhere. This global representation is defined over the field of
definition of �1, which is a subfield of Q.�p/. We will consider its Langlands
parameter in the next section.

4. `-adic sheaves on Gm

Consider the automorphic representation � of the simple group G over F D
k.t/, described at the end of Section 3. This representation is defined over the
field Q.�p/. Its local components �v are unramified irreducible representations
of G.Fv/, for all v ¤ 0;1. The representation �0 is the Steinberg representation,
and �1 is a simple supercuspidal representation.

Associated to� and the choice of a co-character �WGm! {T1� {G1, as described
in Section 2, we should (conjecturally) have a global Langlands parameter. This
will be a continuous homomorphism

'�WGal.F s=F /! {G1.Q.�p/�/Ì�

for every finite place � of Q`.�p/ dividing a rational prime `¤ p. Here we view
{G1 as a pinned, split group over Q. The homomorphism '� should be unramified
outside of 0 and 1, and map Frv to the �-normalized Satake parameter for �v
[Gro99], which is a semi-simple conjugacy class in {G1.Q.�p//Ì�v . If this is true,
the projection of '� to Gm.Q.�p/�/ will be the w.�/-power of the `th cyclotomic
character.

At 0, '` should be tamely ramified. The tame inertia group should map to
a Z`-subgroup of {G.Q`.�p//, topologically generated by a principal unipotent
element. At1, '` should be wildly ramified, but trivial on the subgroup I 1=hC1 in
the upper numbering filtration, where h is the Coxeter number of G. If p does not
divide h, the image of inertia should lie in the normalizer N. LT / of a maximal torus,
and should have the form E � hni. Here E � {T Œp� is a regular subgroup isomorphic
to the additive group of the finite field Fp.�h/ and n maps to a Coxeter element
w of order h in the quotient group N. LT /= LT . The element n is both regular and
semi-simple in {G, and satisfies nh D " 2Z. {G/, with "2 D 1.

If
�W {G1 Ì�! GL.V /

is a representation over Q, we would obtain from � ı'� a lisse �-adic sheaf F on
Gm over k, with rank.F/D dim.V /. Katz has constructed and studied these lisse
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sheaves in the cases when the Coxeter element in the Weyl group has a single orbit
on the set of nonzero weights for LT on V (cf. Theorem 11.1 in [Kat90]). In all of
these cases, the principal nilpotent element N D

P
X�˛ has a single Jordan block

on V . They are as follows:

{G W SLn Sp2n SO2nC1 G2
dimV W n 2n 2nC 1 7

In all of these cases, there are no I1-invariants on F, the Swan conductor at
1, and sw1.F/ D 1. If j WGm ,! P1 is the inclusion, Katz has shown that
H i .P1; j�F/D 0 for all i . Hence L.�; V; s/D 1.

More generally, consider the adjoint representation Lg. Then the sheaf F has
rank equal to the dimension of {G. In this case, we predict that

1) I0 has rk. {G/ Jordan blocks on F;

2) I1 has no invariants on F, and sw1.F/D rk. {G/;

3) H i .P1; j�F/D 0 for all i ;

4) L.�; Lg; s/D 1.

Katz has verified this in the cases tabulated above, using the fact that the
adjoint representation Lg of {G appears in the tensor product of the representation V
and its dual.

It is an open problem to construct the �-adic sheaf F on Gm over the finite
field k for general groups {G. We consider an analogous problem, for local systems
on Gm.C/D C�, in the next section.

5. The connection

Let {G be a simple algebraic group over C and Lg its Lie algebra. Fix a Borel
subgroup {B � {G and a torus {T � {B . For each simple root ˛i , we denote by X�˛i
a basis vector in the root subspace of LgD Lie. {G/ corresponding to �˛i . Let E be
a basis vector in the root subspace of Lg corresponding to the maximal root � . Set

N D

rk.Lg/X
iD1

X�˛i :

We define a connection r on the trivial {G-bundle on P1 by the formula

(1) r D d CN
dt

t
CEdt;

where t is a parameter on P1 with a simple zero at 0 and a simple pole at1.
The connection r is clearly regular outside of the points t D 0 and1, where

the differential forms dt
t

and dt have no poles. We now discuss the behavior of (1)
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near the points t D 0 and1. It has regular singularity at t D 0, with the monodromy
being a regular unipotent element of {G. It also has a double pole at t D1, so
is irregular, and its slope there is 1=h, where h is the Coxeter number. Here we
adapt the definition of slope from [Del70, Th. 1.12]: a connection on a principal
{G-bundle with irregular singularity at a point x on a curve X has slope a=b > 0 at
this point if the following holds. Let s be a uniformizing parameter at x, and pass
to the extension given by adjoining the bth root of s: ub D s. Then the connection,
written using the parameter u in the extension and a particular trivialization of the
bundle on the punctured disc at x should have a pole of order aC 1 at x, and its
polar part at x should not be nilpotent.

To see that our connection has slope 1=h at the point1, suppose first that
{G has adjoint type. In terms of the uniformizing parameter s D t�1 at 1, our
connection has the form

d �N
ds

s
�E

ds

s2
:

Now take the covering given by uh D s. Then the connection becomes

d � hN
du

u
� hE

du

uhC1
:

If we now make a gauge transformation with g D �.u/ in the torus {T , where � is
the co-character of {T which is given by half the sum of the positive co-roots for {B ,
this becomes

(2) d � h.N CE/
du

u2
� �

du

u
:

The element N CE is regular and semi-simple, by Kostant’s theorem [Kos63].
Since the pole has order .aC 1/D 2 with aD 1, the slope is indeed 1=h. If {G is
not of adjoint type, then g D �.u/ might not be in {T , but it will be after we pass to
the covering obtained by extracting a square root of u. The resulting slope will be
the same.

Note that exp.�=h/ is a Coxeter element in {G, which normalizes the maximal
torus centralizing the regular element N CE. We therefore have a close analogy
between the local behavior of our connection r and the desired local parameters in
the �-adic representation '� at both zero and infinity.

The connection we have defined looks deceptively simple. We now describe
how we used the theory of opers to find it. We recall from [BD05] that a (regular)
oper on a curve U is a {G-bundle with a connection r and a reduction to the Borel
subgroup {B such that, with respect to any local trivialization of this {B-reduction,
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the connection has the form

(3) r D d C

rk.Lg/X
iD1

 iX�˛i C v;

where the  i are nowhere vanishing one-forms on U and v is a regular one-form
taking values in the Borel subalgebra LbD Lie. {B/. Here X�˛i are nonzero vectors
in the root subspaces corresponding to the negative simple roots �˛i with respect
to any maximal torus {T � {B . Since the group {B acts transitively on the set of such
tori, this definition is independent of the choice of {T .

Any {B-bundle on the curve U D Gm may be trivialized. Therefore the space
of {G-opers on Gm may be described very concretely as the quotient of the space of
connections (3), where

 i 2 CŒt; t�1��dt D C� � tZdt;

and v 2 LbŒt; t�1�dt , modulo the gauge action of {BŒt; t�1�.
We now impose the following conditions at the points 0 and 1. First we

insist that at t D 0 the connection has a pole of order 1, with principal unipotent
monodromy. The corresponding {BŒt; t�1�-gauge equivalence class contains a repre-
sentative (3) with  i 2C�t�1dt for all i D 1; : : : ; rk.Lg/ and v2 LbŒt �dt . By making
a gauge transformation by a suitable element in {T , we can make  i D dt

t
for all i .

Second, we insist that the one-form v has a pole of order 2 at t D1, with
leading term in the highest root space Lg� of Lb, which is the minimal nonzero orbit for
{B on its Lie algebra. Then v.t/DEdt , with E a nonzero vector of Lg� . These basis

vectors are permuted simply-transitively by the group Gm of automorphisms of P1

preserving 0 and1 (that is, rescalings of the coordinate t). Our oper connection
therefore takes the form

(4) r D d CN
dt

t
CEdt:

This shows that the oper satisfying the above conditions is unique up to the auto-
morphisms of P1 preserving 0 and1.

We note that opers of this form (and possible additional regular singularities
at other points of P1) have been considered in [FF07], where they were used to
parametrize the spectra of quantum KdV Hamiltonians. Opers of the form (4),
where E is a regular element of Lg (rather than nilpotent element generating the
maximal root subspace Lg� , as discussed here), have been considered in [FFTL06],
[FFR07]. Finally, irregular connections (not necessarily in oper form) with double
poles and regular semi-simple leading terms have been studied in [Boa01].

5.1. Twisted version. In this paper we focus on the case of a “constant” group
scheme over Gm corresponding to {G. More generally, we may consider group



1480 EDWARD FRENKEL and BENEDICT GROSS

schemes over Gm twisted by automorphisms of {G. The connection r has analogues
for these group schemes which we now describe. It is natural to view them as
complex counterparts of the �-adic representation '� for nonsplit groups. This
answers a question raised by Deligne.

Let � be an automorphism of {G of order n. It defines an automorphism of the
Lie algebra Lg, which we also denote by � . Define a group scheme {G� on X D Gm

as follows. Let eX D Gm be the n-sheeted cyclic cover of X with a coordinate z
such that znD t . Then {G� is the quotient of eX � {G, viewed as a group scheme over
X , by the automorphisme� which acts by the formula .z; g/ 7! .ze2�i=n; �.g//. It
is endowed with a (flat) connection. Hence we have a natural notion of a {G� -bundle
on X with a (flat) connection. We now give an example of such an object which is
a twisted analogue of the flat bundles described above.

Take the trivial {G� -bundle on X . Then a connection on it may be described
concretely as an operator

r D d CA.z/dz;

where A.z/dz is ae� -invariant Lg-valued one-form on eX .
Note that {G� and {G� 0 are isomorphic if � and � 0 differ by an inner automor-

phism of {G. Hence, without loss of generality, we may, and will, assume that
� is an automorphism of {G preserving the pinning we have chosen (thus, � has
order 1; 2 or 3). In particular, it permutes the elements X�˛i 2 Lg. Then, for A.z/
as above, zA.z/ defines an element of the twisted affine Kac-Moody algebrabLg� ;
see [Kac90]. The lower nilpotent subalgebra of this Lie algebra has generatorsbX�˛i ; i D 0; : : : ; `� , where `� is the rank of the �-invariant Lie subalgebra of Lg,
and bX�˛i ; i D 1; : : : ; `� , are � -invariant linear combinations of the elements X� j̨

of Lg (viewed as elements of the constant Lie subalgebra ofbLg� /. Explicit expressions
for bX�˛i in terms of Lg may be found in [Kac90].

In the untwisted case the corresponding generators of the affine Kac-Moody
algebra (which is a central extension of LgŒt; t�1�; see �10) are bX�˛i ; i D i; : : : ; `D
rk.Lg/, and bX�˛0 DEt . Hence our connection (4) may be written as

r D d C
X̀
iD0

bX�˛i dtt :
We now adapt the same formula in the twisted case and define the following

connection on the trivial {G� -bundle on Gm:

(5) r D d C

`�X
iD0

bX�˛i dzz :
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We propose (5) as a complex counterpart of the �-adic representation '� discussed
above in the case when the group G is quasi-split and � D h�i.

The notion of oper may be generalized to the twisted case as well. Namely,
for any smooth complex curve X equipped with an unramified n-sheeted coveringeX we define the group scheme {G� in the same way as above. Since � preserves
a Borel subgroup {B of {G, the group scheme {G� contains a group subscheme {B� .
The {G� -opers on X (relative to eX ) are then {G� -bundles on X with a connection r
and a reduction to {B� satisfying the condition that locally the connection has the
form

(6) r D d C

`�X
iD1

 ibX�˛i C v;

where  i are nowhere vanishing one-forms and v takes values in the Lie algebra of
{B� . (As above, if � acts by permutation of elements X� j̨

of Lg, then the bX�˛i are
� -invariant linear combinations of the X� j̨

.)
It is clear that (5) is a {G� -oper connection on Gm.

6. Special cases

If V is any finite-dimensional complex representation of the group {G, a
connection r on the principal {G-bundle gives a connection r.V / on the vector
bundle F associated to V . In our case, this connection is

(1) r.V /D d CN.V /
dt

t
CE.V /dt;

where N.V / and E.V / are the corresponding nilpotent endomorphisms of V .
In this section, we will provide formulas for the first order matrix differential

operator r.V /td=dt , for some simple representations V of {G. We will be able to
convert these matrix differential operator into scalar differential operators, because
in these cases N.V / will be represented by a principal nilpotent matrix in End.V /.
This will allow us to compare our connection with the scalar differential operators
studied by Katz in [Kat90].

6.1. Case I. {G D SLn and V is the standard n-dimensional representation
with a basis of vectors vi ; i D 1; : : : ; n, on which the torus acts according to the
weights ei . Since ˛i D ei�eiC1; i D 1; : : : ; n�1 and � D e1�en, we can normalize
the X�˛i and E in such a way that
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(2) N.V /D

0BBBBBBB@

0 0 0 ::: 0 0

1 0 0 ::: 0 0

0 1 0 ::: 0 0

0 0 1 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 1 0

1CCCCCCCA
; E.V /D

0BBBBBBB@

0 0 0 ::: 0 1

0 0 0 ::: 0 0

0 0 0 ::: 0 0

0 0 0 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 0 0

1CCCCCCCA
:

Therefore the operator rtd=dt of the connection (1) has the form

(3) rtd=dt D t
d

dt
C

0BBBBBBB@

0 0 0 ::: 0 t

1 0 0 ::: 0 0

0 1 0 ::: 0 0

0 0 1 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 1 0

1CCCCCCCA
and hence corresponds to the scalar differential operator

(4) .td=dt/nC .�1/nC1t:

Now let V be the dual of the standard representation. Then, choosing as a
basis the dual basis to the basis fvnC1�igiD1;:::;n (in the reverse order), we obtain
the same matrix differential operator (3). Hence the flat vector bundles associated
to the standard representation of SLn and its dual are isomorphic.

6.2. Case II. {GD Sp2m and V is the standard 2m-dimensional representation.
We choose the basis vi ; i D 1; : : : ; 2m, in which the symplectic form is given by
the formula

hvi ; vj i D �hvj ; vi i D ıi;2mC1�j ; i < j:

The weights of these vectors are e1; e2; : : : ; em;�em; : : : ;�e2;�e1. Since
˛i D ei �eiC1; i D 1; : : : ; m�1, ˛mD 2em and � D 2e1, we can normalize N.V /
and E.V / in such a way that they are given by formulas (2).

Hence rtd=dt is also given by formula (3) in this case. It corresponds to the
operator (4) with nD 2m.

6.3. Case III. {G D SO2mC1 and V is the standard .2mC 1/-dimensional
representation of SO2mC1 with the basis vi ; i D 1; : : : ; 2mC 1, in which the inner
product has the form

hvi ; vj i D .�1/
iıi;2mC2�j :

The weights of these vectors are e1; e2; : : : ; em; 0;�em; : : : ;�e2;�e1. Since ˛i D
ei �eiC1; i D 1; : : : ; m�1, ˛mD em and � D e1Ce2, we can normalize the X�˛i
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and E in such a way that

(5) N.V /D

0BBBBBBB@

0 0 0 ::: 0 0

1 0 0 ::: 0 0

0 1 0 ::: 0 0

0 0 1 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 1 0

1CCCCCCCA
; E.V /D

0BBBBBBB@

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

0 0 0 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 0 0

1CCCCCCCA
:

Therefore

(6) rtd=dt D t
d

dt
C

0BBBBBBB@

0 0 0 ::: t 0

1 0 0 ::: 0 t

0 1 0 ::: 0 0

0 0 1 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 1 0

1CCCCCCCA
:

We can convert this first order matrix differential operator into a scalar dif-
ferential operator. In order to do this, we need to find a gauge transformation by
an upper-triangular matrix which brings it to a canonical form, in which we have
1’s below the diagonal and other nonzero entries occur only in the first row. This
matrix is uniquely determined by this property and is given by0BBBB@

1 0 0 ::: t

0 1 0 ::: 0

0 0 1 ::: 0

::: ::: ::: ::: :::

0 0 0 ::: 1

1CCCCA :
The resulting matrix operator is

t
d

dt
C

0BBBBBBB@

0 0 0 ::: 2t �t

1 0 0 ::: 0 0

0 1 0 ::: 0 0

0 0 1 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: 1 0

1CCCCCCCA
which corresponds to the scalar operator

.td=dt/2mC1� 2t2d=dt � t:

6.4. CaseIV. {G DG2 and V is the 7-dimensional representation.
The Lie algebra g2 of G2 is a subalgebra of so7. Both the nilpotent elements

N and E in so7 may be simultaneously chosen to lie in this subalgebra, where
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they are equal to the corresponding elements for g2. Hence rtd=dt is equal to the
operator (6) with mD 3, which corresponds to the scalar differential operator

.td=dt/7� 2t2d=dt � t:

There is one more case when N is a regular nilpotent element in End.V /;
namely, when {G D SL2 and V D Symn.C2/ is the irreducible representation of
dimension nC 1. We have already considered the cases nD 1 and nD 2 (the latter
corresponds to the standard representation of {G D SO3). These representations,
and the cases considered above, are the only cases when an oper may be written as
a scalar differential operator.

The scalar differential operators we obtain agree with those constructed by
Katz in [Kat90]. More precisely, to obtain his operators in the case of SO2mC1 and
G2 we need to rescale t by the formula t 7! �1

2
t .

In the above examples, the connection matrix was the same for Sp2n as it
was for SL2n, and was the same for G2 as it was for SO7. The same phenomenon
will occur for the pairs SO2nC1 < SO2nC2; G2 <D4, and F4 <E6, for the reason
explained in Section 13.

7. De Rham cohomology

In the next sections of this paper, we will calculate the cohomology of the
intermediate extension of our local system to P1, with values in a representation
V of {G. In particular, we will show that this cohomology vanishes for the adjoint
representation Lg, as well as for the small representations tabulated in Section 6.
This is further evidence that our connection is the characteristic 0 analogue of the
`-adic Langlands parameter. It also implies that our connection is rigid, in the sense
that it has no infinitesimal deformations preserving the formal types at 0 and1, as
such deformations form an affine space over the first de Rham cohomology group
[Kat96], [BE04], [Ari08].

We begin with some general remarks on algebraic de Rham cohomology for a
principal {G-bundle with connection r on the affine curve U D Gm. Any complex
representation V of {G then gives rise to a flat vector bundle F.V / on U , where the
connection is r.V /.

Since U is affine, with the ring of functions CŒt; t�1�, the connection r.V /
gives a C-linear map

(1) r.V /W V Œt; t�1�! V Œt; t�1�
dt

t
:

Any {G-bundle on U may be trivialized. Once we pick a trivialization of our bundle
F, we represent the connection as r D d CA, where A is a one-form on U with
values in the Lie algebra Lg. Let A.V / be the corresponding one-form on U with
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values in End.V /. We may write

A.V /D
X
n

An.V /
dt

t

with An.V / 2 End.V /. If
f .t/D

X
n

vnt
n;

we find that

r.V /.f /D
X
n

wnt
ndt

t

has coefficients wn given by the formula

wn D nvnC
X

aCbDn

Aa.V /.vb/:

For our specific connection

r D d CN.V /
dt

t
CEdt

we find
wn D nvnCN.V /.vn/CE.V /.vn�1/:

The ordinary de Rham cohomology groups H i .U;F.V // are defined as the
cohomology of the complex (1):

H 0.U;F.V //D Kerr.V /;

H 1.U;F.V //D Cokerr.V /:

Thus elements of H 0.U;F.V // are solutions of the differential equation r.V /.f /
D0. For our particular connection, a solution f D

P
vnt

n corresponds to a solution
to the system of linear equations

(2) nvnCN.V /.vn/CE.V /.vn�1/D 0

for all n. For example, if v is in the kernel of both N.V / and E.V /, then f D v is
a constant solution, with vn D 0 for all n¤ 0 and v0 D v.

We can also study the complex (1) with functions and one-forms on various
subschemes of U . For example, the kernel and cokernel of

(3) r.V /W V..t//! V..t//
dt

t

define the cohomology groups H 0.D�0 ;F.V // and H 1.D�0 ;F.V //, where D�0 is
the punctured disc at t D 0. Likewise, the kernel and cokernel of

(4) r.V /W V..t�1//! V..t�1//
dt

t
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define the cohomology groups H 0.D�1;F.V // and H 1.D�1;F.V //, where D�1
is the punctured disc at t D1. We will also identify the kernel and cokernel of

(5) r.V /W V ŒŒt; t�1��! V ŒŒt; t�1��
dt

t

as cohomology groups with compact support in Section 9.
The flat bundle F.V / on U defines an algebraic, holonomic, left D-module

on U (which has the additional property of being coherent as an O-module). In the
next section we will recall the definition of the intermediate extension jŠ�F.V /

in the category of algebraic, holonomic, left D-modules, where j WU ,! P1 is the
inclusion. The de Rham cohomology of jŠ�F.V / may be calculated in terms of
some Ext groups in this category. We will establish the following result, which is in
agreement with the results of N. Katz on the `-adic cohomology with coefficients
in the adjoint representation and small representations for the analogous `-adic
representations (in those cases in which they have been constructed).

THEOREM 1. Assume thatrDdCN dt
t
CEdt and that V is either the adjoint

representation Lg of {G or one of the small representations tabulated in Section 6.
Then

H i .P1; jŠ�F.V //D 0

for all i .

We will provide two proofs of this result. The first, given in Sections 10 and
11, uses the theory of affine Kac-Moody algebras and the relation between the
cohomology of the intermediate extension of F.V / and solutions of the equation
r.V /.f /D 0 in various spaces. The second, given in Section 14, uses Deligne’s
Euler characteristic formula and a calculation of the differential Galois group of r.
The latter proof gives a formula for the dimensions of H i .P1; jŠ�F.V // for any
representation V of {G.

8. The intermediate extension and its cohomology

Here we follow [Kat90, �2.9] and [BE04] (see also [Ari08]). Let j WU ,! P1

be the inclusion. We consider the two functors

j� D direct image;(1)

jŠ D� ı j� ı�

from the category of left holonomic D-modules on U to the category of left holo-
nomic D-modules on P1. The functor j� is right adjoint to the inverse image
functor, and jŠ is defined using the duality functors � on these categories (see, e.g.
[GM94, �5]).
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We have

H i .P1; j�F/DH i .U;F/; H i .P1; jŠF/DH
i
c .U;F/:

The cohomology groups on P1 are the Ext groups in the category of holonomic
D-modules. The first equality follows from the adjointness property of j�, and the
second can be taken as the definition of the cohomology with compact support.
Poincaré duality gives a perfect pairing

H i .U;F.V //�H 2�i
c .U;F.V �//! C;

where V � is the representation of {G that is dual to V . Thus, we have H 0
c .U;F.V //

D 0 and

(2) H i
c .U;F.V //'H

2�i .U;F.V �//�; i D 1; 2:

From the adjointness property of j�, we obtain a map of D-modules on P1

jŠF! j�F

whose kernel and cokernels are D-modules supported on f0;1g. Let jŠ�F be the
image of jŠF in j�F. We will now show that

H 0.P1; jŠ�F.V //DH 0.U;F.V //;(3)

H 1.P1; jŠ�F.V //D Im
�
H 1
c .U;F.V //!H 1.U;F.V //

�
;(4)

H 2.P1; jŠ�F.V //DH 2
c .U;F.V //:(5)

We will also describe an exact sequence involving the cohomology groups on D�0
and D�1 which allows us to compute H 1.P1; jŠ�F.V //.

Let t˛ be a uniformizing parameter at ˛ D 0;1 (t and t�1, respectively) and
let

ı˛ D C..t˛//=C ŒŒt˛��

be the left delta D-module supported at ˛. We then have an exact sequence of
D-modules on P1

(6) 0!
M
˛

H 0.D�˛ ;F/˝ ı˛! jŠF! j�F!
M
˛

H 1.D�˛ ;F/˝ ı˛! 0:

By the definition of jŠ�F, this gives two short exact sequences

0!
M
˛

H 0.D�˛ ;F/˝ ı˛! jŠF! jŠ�F! 0;

0! jŠ�F! j�F!
M
˛

H 1.D�˛ ;F/˝ ı˛! 0:



1488 EDWARD FRENKEL and BENEDICT GROSS

We now take long exact sequence in cohomology and use the fact that

H 0.P1; ı˛/D 0;

H 1.P1; ı˛/D C:

This gives a proof of (4)–(5), and patching our two long exact sequences along
H 1.P1; jŠ�F/ gives a six-term exact sequence

0!H 0.U;F/!
M
˛

H 0.D�˛ ;F/!H 1
c .U;F/!(7)

!H 1.U;F/!
M
˛

H 1.D�˛ ;F/!H 2
c .U;F/! 0:

We will compare it later with an exact sequence obtained from the snake lemma.
From the exact sequence (7) we deduce the following condition for the vanish-

ing of cohomology.

PROPOSITION 2. For a flat vector bundle F on U , we haveH i .P1; jŠ�F/D 0

for all i if and only if

(1) H 0.U;F/DH 0.U;F�/D 0;

(2) dimH 0.D�0 /C dimH 0.D�1/D dimH 1
c .U;F/.

9. The dual complex

We have seen that the de Rham cohomology of the flat vector bundle F.V /

on U can be calculated from the de Rham complex (1). Since compactly supported
cohomology of F.V / is dual to the (ordinary) de Rham cohomology of F.V �/, it
can be calculated from the complex dual to

(1) r.V �/W V �Œt; t�1�! V �Œt; t�1�
dt

t
:

In this section we will identify this dual complex with the complex

(2) �r.V /W V ŒŒt; t�1��! V ŒŒt; t�1��
dt

t

by using the residue pairing at t D 0, which is described in detail below.
Hence H 1

c .U;F.V // is identified with the kernel of (2) and H 2
c .U;F.V //

with its cokernel. Using this identification, we will compare the six-term exact
sequence (7) to the one obtained from the snake lemma.

We can also rewrite Proposition 2 in a form that depends only on solutions to
r.f /D 0.

COROLLARY 3. The cohomology of the intermediate extension jŠ�F on P1

vanishes if and only if
(1) Kerr.V /D 0 on V Œt; t�1� and Kerr.V �/D 0 on V �Œt; t�1�;
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(2) Every solutionf .t/ to r.V /.f /D 0 in V ŒŒt; t�1�� can be written (uniquely)
as a sum f0.t/C f1.t/, with f0 and f1 in Kerr.V / on V..t// and V..t�1//,
respectively.

We now turn to the identification of (2) with the dual of (1). Define a bilinear
pairing on f 2 V ŒŒt; t�1�� and ! 2 V �Œt; t�1�dt

t
by

(3) hf; !i D RestD0 S.f �!/;

where f �! is the product in V ˝V �ŒŒt; t�1��dt
t

and S WV ˝V �! C is the natural
contraction, so S.f �!/ is an element of CŒŒt; t�1��dt

t
. Explicitly, if f D

P
vnt

n

and ! D
P
!mt

mdt
t

, then

hf; !i D
X

nCmD0

S.vn˝!m/:

This pairing identifies the direct product vector space V ŒŒt; t�1�� with the dual of
the direct sum vector space V �Œt; t�1�dt

t
. A similar pairing identifies V �ŒŒt; t�1��

with the dual of the direct sum vector space V Œt; t�1�dt
t

.
To complete the proof that this pairing identifies the dual of (1) with (2), we

must show that the adjoint of r.V �/ is �r.V /. Write

r D d C
X
m

Amt
mdt

t
;

with Am 2 Lg. Then, for g D
P
wnt

n and f as before we have

r.V �/.g/D dgC
X
m;n

Am.V
�/.wn/t

mCndt

t
;

r.V /.f /D df C
X
m;n

Am.V /.vn/t
mCndt

t
:

The desired adjoint identity

hr.V /.f /; giC hf;r.V �/.g/i D 0

then follows from the two identities

RestD0.g˝ df Cf ˝ dg/D 0;

S.A.V /v;w/CS.v; A.V �/w/D 0:

We end this section with a reconstruction of the six-term exact sequence (7).
The maps ˛.f /D .f; f / and ˇ.f; g/D f � g give an exact sequence of vector
spaces

0! V Œt; t�1�
˛
! V..t//˚V..t�1//

ˇ
! V ŒŒt; t�1��! 0:
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Using r.V /, we obtain a commutative diagram with exact rows
(4)

0 �����! V Œt; t�1�
˛

�����! V..t//˚V..t�1//
ˇ

�����! V ŒŒt; t�1�� �����! 0

r

??y .r;r/

??y r

??y
0 �����! V Œt; t�1�dt

t

˛
�����! V..t//dt

t
˚V..t�1//dt

t

ˇ
�����! V ŒŒt; t�1��dt

t
�����! 0:

The three kernels and the three cokernels have been identified with the cohomology
groups in (7). Do the morphisms in (7) come from an application of the snake
lemma to (4)? We note that we have made two sign choices: in the pairing (3) we
took the residue at t D 0, not at t D1 (which would have changed the sign), and
in the map ˇ we took f0�f1, not f1�f0. We expect that with consistent choice
of signs the morphisms in (7) do indeed come from (4) via the snake lemma.

10. The vanishing of adjoint cohomology

We now turn to the proof of Theorem 1, using Corollary 3. Specifically, when
V is the adjoint representation of {G or a small representation we will show that
any solution f .t/D

P
vnt

n of r.V /.f /D 0 in V ŒŒt; t�1�� satisfies

(1) vn D 0 for all n < 0:

Next, we will use the following lemma.

LEMMA 4. Suppose that any solution f D
P
vnt

n 2 V ŒŒt; t�1�� to r.V /.f /
D 0 satisfies property (1) and the same property holds if we replace V by V �. Then
H i .P1; jŠ�F.V //D 0 for all i .

Proof. The equation r.V /.f /D 0 implies that the components vn satisfy

(2) nvnCN.V /.vn/CE.V /.vn�1/D 0:

If (1) is satisfied, then it follows that v0 lies in the kernel of N.V / on V . This also
shows that there is a unique solution

f D
X
n�0

vnt
n

for any v0 in the kernel of N.V /, because N.V / is nilpotent so that the operator
n IdCN.V / is invertible on V for all n¤ 0. Clearly then, if v0 ¤ 0, this solution
has

(3) vn ¤ 0 for all n� 0:

Hence there cannot be a nonzero solution to r.V /.f /D 0 that has finitely many
nonzero components for positive powers of t . We obtain that

H 0.U;F.V //DH 0.D�1;F.V //D 0
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and
H 0.D�0 ;F.V //'H

1
c .U;F.V //' KerN.V /:

Together we the same properties for V replaced by V �, this implies that all of the
criteria of Corollary 3 for the vanishing of cohomology are met. �

We now turn to the proof of the property (1) in the case when V D Lg. We will
drop V in our notation and write r for r.V /, etc. The vector space LgŒt; t�1� is a
Z-graded Lie algebra, with the Lie bracket

Œxtn; ytm�D Œx; y�tnCm:

There is a {G-invariant inner product

�W Lg˝ Lg! C

given by the Killing form (which is a unique such inner product up to scaling). We
define an inner product on LgŒt; t�1� by

(4)
DX

xnt
n;
X

ymt
m
E
D

X
nCmD0

�.xn; ym/:

The Z-grading on LgŒt; t�1� is given by the differential operator td=dt . If we write
a solution f .t/ to r.f /D 0 in terms of its graded pieces: f D

P
vnt

n, then (2)
becomes

(5) nvnC ŒN; vn�C ŒE; vn�1�D 0

for all n.
To find the solutions to (5), it is convenient to switch to a different Z-grading

of LgŒt; t�1� called the principal grading. Let � be again half the sum of positive
coroots for the Borel subgroup {B . Then

Œ�; N �D�N; Œ�;E�D .h� 1/E:

The operator

(6) d D h t
d

dt
� ad �

has integer eigenvalues on LgŒt; t�1�, and defines the principal grading with respect
to which the element

(7) p1 DN CEt

has degree 1. If we write a solution f D
P
yn of r.f /D 0 in its components for

the principal grading, then (5) gives rise to the identities

(8) nynC Œ�; yn�C hŒp1; yn�1�D 0

for all n.
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Since the eigenvalues of ad � on Lg are the integers in the interval Œ1�h; h�1�,
we see that the eigenvalues of d on Lgtn are the integers of the form nhC e, with
1�h� e � h� 1. In particular, as eigenvector ym with eigenvalue m has the form

ym 2 Lt t
n;

if mD nh, where Lt� Lg is the unique Cartan subalgebra containing � (so Lt is the
kernel of ad � on Lg). If nD nhC e with 0 < e < h, then ym has the form

ym D at
n
C btnC1

with a of degree e and b of degree .e�h/ for � ad �. From this one deduces that
the component of LgŒt; t�1� of degree m with respect to the principal grading has
dimension equal to the rank of {G, except when m is congruent to an exponent e
of {G (mod h), when the dimension is the rank of {G plus the multiplicity of that
exponent. Note that the original grading operator td=dt preserves the components
with respect to the principal grading.

V. Kac has studied the decomposition of LgŒt; t�1� under the action of adp1,
where p1 DN CEt . His results are summarized in the following proposition. Set

aD Ker.adp1/; cD Im.adp1/:

PROPOSITION 5 ([Kac78, Prop. 3.8]).
(1) The Lie algebra LgŒt; t�1� has an orthogonal decomposition with respect to

the inner product (4),
LgŒt; t�1�D a˚ c:

(2) a is a commutative Lie subalgebra of LgŒt; t�1�. With respect to the principal
grading, a D

L
i2I ai , where I is the set of all integers equal to the exponents

of Lg modulo the Coxeter number h, and dim ai is equal to the multiplicity of the
exponent i mod h.

(3) With respect to the principal grading, cD
L
j2Z cj ; where dim cj D rk.Lg/,

and the map adp1W cj ! cjC1 is an isomorphism for all j 2 Z.

Let f be a solution to r.f / D 0 and f D
P
yn its decomposition with

respect to the principal grading. Then the components satisfy (8). We now have the
following crucial lemma.

LEMMA 6. Suppose that the yn satisfy the equations (8) and yn 2 an for some
n. Then ym D 0 for all m� n.

Proof. Applying (8), we obtain

(9) t
d

dt
yn D

m

h
ynC

1

h
Œ�; yn� 2 cn;

where cn is the degree n homogeneous component of cD Im.adp1/. Let us show
that this is impossible to satisfy if yn 2 an and yn ¤ 0.
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Consider the affine Kac-Moody algebra bLg, which is the universal central
extensionbLg of LgŒt; t�1� by one-dimensional center spanned by an element 1,

0! C1!bLg! LgŒt; t�1�! 0:

The commutation relations inbLg read

ŒAtn; Btm�D ŒA; B�tnCmCn�.A;B/ın;�m1:

According to [Kac90, Lemma 14.4], the inverse image of a inbLg is a (nondegenerate)
Heisenberg Lie subalgebra a˚C1. Hence there exists z 2 a�n such that

Œyn; z�¤ 0 in C1�bLg:
Write, for nD khC e (where e is an exponent of Lg),

yn D at
k
C btkC1; z D a0t�kC b0t�k�1;

as above, where a; b; b; b0 are homogeneous elements of Lg with respect to the
grading defined by � ad � of degrees e; e�h;�e; h� e, respectively. Then we find
that

Œyn; z�D .k �.a; a
0/C .kC 1/ �.b; b0//1¤ 0:

But

k �.a; a0/C .kC 1/ �.b; b0/D ht
d

dt
�yn; zi;

where in the right-hand side we use the inner product defined by formula (4). This
contradicts the condition that t d

dt
� yn 2 cn, which is orthogonal to a�n. Hence

yn D 0.
Now, (8) shows that if yn D 0, then yn�1 2 an�1. Hence we find by induction

that ym D 0 for all m� n. �

Setting nD 0 in (8), we obtain

Œ�; y0�C Œp1; y�1�D 0:

Since LgŒt; t�1�0 D LtD Ker.ad �/, this shows that

Œp1; y�1�D 0:

Hence y�1 2 a�1. Lemma 7 then implies that yn D 0 for all n < 0. Thus, any
solution f 2 LgŒŒt; t�1�� to r.f /D 0 has the form f D

P
n�0 yn, and in particular

belongs to LgŒŒt ��. Writing this solution as f D
P
vnt

n, we obtain that it satisfies
property (1). Theorem 1 for the adjoint representation now follows from Lemma 4
because Lg� D Lg.
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11. Vanishing for small representations

Let V be one of the small representations considered in Section 6; that is,
n-dimensional representation of SLn, 2n-dimensional representation of Sp2n, .2nC
1/-dimensional representation of SO2nC1, or 7-dimensional representation of G2.
We denote the corresponding flat bundle on U by F.V /. Since our connection
for Sp2n and G2 is the same as for SL2n and SO7, respectively, it is sufficient to
consider only the cases of SLn and SO2nC1.

We will now prove Theorem 1 when V is one of these representations. We will
follow the argument used in the proof of Theorem 1 for the adjoint representation.
Define a Z-grading on V Œt; t�1� compatible with the principal Z-grading on LgŒt; t�1�
defined by the operator d . The representation V has a basis v1; : : : ; vp in which N
appears as a lower Jordan block. We set

deg vi tk D i � 1C kh:

All graded components are one-dimensional in the case of SLn. For SO2nC1 the
components of degrees kh; k 2 Z, are two-dimensional. Components of all other
degrees are one-dimensional. It is easy to see that the operator td=dt preserves the
graded components.

We will use the operators N.V / and E.V / from Section 6. Denote again
N.V /CE.V /t by p1. Let f 2 V ŒŒt; t�1�� be a solution to r.V /.f / D 0. De-
composing f D

P
yr with respect to the above grading, we obtain the following

system:

(1) t
d

dt
yr D�p1 �yr�1; r 2 Z:

The role of Lemma 6 is now played by the following result.

LEMMA 7. Suppose that the yr satisfy the equations (1) and p1 � yr D 0 for
some r . Then ym D 0 for all m� r .

Proof. In the case of SLn we have Kerp1 D 0, so if p1 �yr D 0, then yr D 0.
For SO2nC1, Kerp1 is spanned by the vectors v1tk � v2nC1tk�1; k 2 Z. Hence
yr is one of these vectors. Equation (1) tells us that

t
d

dt
.v1t

k
� v2nC1t

k�1/D kv1t
k
� .k� 1/v2nC1t

k�1

is in the image of p1. But the image of p1 in this graded component is spanned by
the vector v1tkCv2nC1tk�1. Since k 2 Z, it is impossible to satisfy this condition.
Therefore yr D 0.

Now, if yr D 0, then p1 �yr�1 D 0, by (1). Hence we obtain by induction that
ym D 0 for all m� r . �



A RIGID IRREGULAR CONNECTION ON THE PROJECTIVE LINE 1495

Now observe that td=dt annihilates the component of V Œt; t�1� of degree 1
(in fact, all components of degrees 1; : : : ; h�1). Hence we find from (1) with r D 1
that p1 � y0 D 0. Therefore it follows from Lemma 6 that ym D 0 for all m � 0.
Hence any solution f D

P
fnt

n to r.V /.f / D 0 is a formal power series in t ,
that is, fn D 0 for all n < 0. Theorem 1 for small representations now follows
from Lemma 4 and the fact that V � D V in the case of SO2nC1, and in the case of
SLn the flat bundles associated to V and V � are isomorphic as well (see Case I in
Section 6).

12. The case of SL2

In the previous two sections we have shown that the de Rham cohomology
of our connection vanishes in the adjoint representation as well as the small repre-
sentations. This is because solutions to the equation r.V /.f /D 0 enjoy special
properties which do not hold for a general representation V . The key property of Lg
and the small representations that we have used is the fact that the weights of the
torus of a principal SL2 on V are all small (that is, the eigenvalues of ad � on V
have absolute value less than h).

But for most other representations this is not the case and the de Rham coho-
mology does not vanish. As an example, we consider in this section the faithful
irreducible representations V D Sym2k�1 of SL2 of even dimension 2k D n� 2.
We will see that there are k D n=2 solutions in the space of formal power series in
t and t�1 with coefficients in V , but that only the zero solution lies in V..t�1//, and
only one line of solutions lies in V..t//. Hence H 1.P1; jŠ�F.V // has dimension
k� 1D .n=2/� 1.

We will see how to compute the dimensions of the de Rham cohomology of
jŠ�F.V / on P1, for any representation V of {G, in Section 13.

In the case of SL2 our connection looks as follows:

r D d CF
dt

t
CEdt;

where FDX�˛1 and E are the standard generators of sl2. Let J D diagŒ1; 2; : : : ; n�.
Make a change of variables t D z2 and apply gauge transformation by zJ . We then
obtain

r D d �J
dz

z
C 2.ECF /dz:

Let Veven (resp., Vodd) be the subspace of V on which the eigenvalues of J are even
(resp., odd). The de Rham complex on U D Gm,

V Œt; t�1�
r
�! V Œt; t�1�dt;
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is identified with the subcomplex

(1) VevenŒz
2; z�2�˚VoddŒz

2; z�2�z
r
�! VevenŒz

2; z�2�
dz

z
˚VoddŒz

2; z�2�dz

of the de Rham complex

(2) V Œz; z�1�
r
�! V Œz; z�1�dz

on the double cover of U . Introduce a Z-grading on this complex by setting
deg vzk D k.

Note that the operatorECF is conjugate to 2�DdiagŒn�1; n�3; : : : ;�nC1�.
From now on we assume that n is even. Then the operator E C F is invertible.
Suppose that y.z/D

P
ymz

m is in the kernel of (2). Then we obtain the following
system of equations:

(3) .m Id�J / �ym D�2.ECF / �ym�1

on its homogeneous components. Let m be the largest integer such that ym D 0
but ym�1 ¤ 0. Then we should have .E C F / � ym�1 D 0, which is impossi-
ble. This shows that H 0.P1; jŠ�.F.Vn/// D 0. Using duality, we obtain that
H 2.P1; jŠ�.F.Vn///D 0.

In order to compute H 1.P1; jŠ�.F.Vn///D 0, we first compute the kernel of

(4) V ŒŒz; z�1��
r
�! V ŒŒz; z�1��dz:

Note that the operator m Id�J is invertible for all m¤ 1; : : : ; n. Let us choose any
yn 2 Vn. Then we can find ym; m > n, by using (3) and inverting m Id�J , and we
can find ym; m < n, by using (3) and inverting ECF . Thus, the kernel of (4) is
isomorphic to Vn. An element of this kernel belongs to

VevenŒŒz
2; z�2��˚VoddŒŒz

2; z�2��z

if and only if yn 2 Veven. Thus, we obtain that H 1.U;F.Vn//
� is isomorphic to

Veven. Using the exact sequence (7), we obtain that H 1.P1; jŠ�.F.Vn///
� is the

quotient of the above space of solutions of (3) by the subspace of those solutions
for which ym D 0 for m� 0 or m� 0.

Those are precisely the solutions for which there exists mD 1; : : : ; n such that
ym�1D 0, but ym¤ 0. We claim that there are no such solutions form¤ n. Indeed,
denote by vi ; i D 1; : : : ; n, an eigenvector of J with eigenvalue i . If ym�1D 0, but
ym ¤ 0, then ym is a multiple of vm. But �2.E CF /.vm/ contains vmC1 with
nonzero coefficient if m < n. Hence �2.E CF /.vm/ cannot be in the image of
.mC 1/ Id�J , and so (3) cannot be satisfied. If, on the other hand, yn D vn, then
ym D 0 for all m< n.
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Thus, we obtain that there is a unique solution (up to a scalar) for which
ymD 0 for m� 0 or m� 0. Hence dimH 1.P1; jŠ�.F.Vn///D .n=2/�1, which
is nonzero if n� 4.

13. The differential Galois group

In this section, we determine the differential Galois group of our rigid irregular
connection r on Gm, as well as its inertia subgroups (up to conjugacy) at t D 0
and t D1.

We first review some of the general theory, which is due to N. Katz [Kat87].
Fix the point t D 1 on Gm. Then the fiber at this point gives a fiber functor from
the category of flat complex algebraic vector bundles .F;r/ on Gm to the category
of finite-dimensional vector spaces. The automorphism group of this fiber functor
is, by definition, the differential Galois group of Gm. This is a pro-algebraic group
over C, which we denote by DG.Gm/; Katz calls this group �diff

1 .Gm; 1/.
Since the fiber functor preserves tensor products, the fundamental theorem of

[DM82, Ch. 2], gives an equivalence between the category of flat bundles on Gm

with the category of finite-dimensional representations of the differential Galois
group DG.Gm/. If

'WDG.Gm/! GL.V /

corresponds to the flat bundle .F;r/, then

H 0.Gm;F/D Kerr D V DG.Gm/:

Under this equivalence, a principal {G-bundle with connection r on Gm defines
a homomorphism

'r WDG.Gm/! {G

up to conjugacy. The image {Gr is an algebraic subgroup of {G, which we call the
differential Galois group of r.

At the two points t D 0 and t D1 on P1�Gm, we have local inertia groups
I0 and I1 in DG.Gm/, well-defined up to conjugacy. Each inertia group I D I˛
is filtered by normal subgroups

P xC � P x � P � I

for rational x > 0 (called the slopes). The wild inertia subgroup P is a pro-torus
over C. As a pro-algebraic group over C, I=P is isomorphic to the product of
Ga with a pro-group A of multiplicative type, with character group C=Z. The
additive part comes from local systems with regular singularity at ˛ with unipotent
monodromy, and the rest from the one-dimensional local systems d�a dt˛=t˛ with
solutions ta˛ near t˛ D 0, with a 2 C=Z. The tame monodromy is then e2�ia 2 C�.



1498 EDWARD FRENKEL and BENEDICT GROSS

The torsion in the character group of A is Q=Z, so the component group of A is
the dual groupbZ.1/D lim

 �
�n, which is the profinite Galois group of C..t˛//.

The quotient group I=P acts on the pro-torus P by conjugation. Its connected
component centralizes P ; only the component groupbZ.1/ acts nontrivially. On the
character group C of the quotient torus P x=P xC, the element aD 2�im acts by
multiplication by the root of unity e�ax . Hence the component group acts through
its finite quotientbZ.1/=nbZ.1/D �n, where nx � 0 (mod Z).

Now let

r D d CN
dt

t
CEdt

be the connection introduced in Section 5. We will determine the differential Galois
group {Gr of {G by studying the images 'r.I0/ and '.I1/ in {G, and we begin with
a discussion of the two homomorphisms

'r WI0! {G;

'r WI1! {G

up to conjugacy.
Since r has a regular singular point at t D 0, the restriction of 'r to I0 is

trivial on the wild inertia subgroup P0. The resulting homomorphism is given by
the analytic monodromy, which maps a D 2�in in Z.1/ to exp.�aN/ in {G. In
particular, the image 'r.I0/ is an additive subgroup GaDexp.zN / of {G, containing
the principal unipotent element uD exp.�2�iN /.

To determine the image of the inertia group at t D 1, we first make the
assumption that � is a co-character of {G. Let uh D s D t�1. Then by our earlier
results in Section 5, over the extension C..u// of C..s// our connection is equivalent
to

d � h.N CE/
du

u2
� �

du

u
:

By a fundamental result of Kostant [Kos63], the element .N CE/ is regular and
semi-simple. Hence the highest order polar term of our connection over C..u//

is diagonalizable, in any representation V of {G. It follows that the slopes of this
connection over C..u//, as defined by Deligne [Del70, Th. 1.12], are either 0 or 1,
the former occurring at the zero eigenspaces forNCE on V and the latter occurring
at the nonzero eigenspaces. Since Katz has shown [Kat87, ��1 and 2.2.11.2] that the
slopes over the extension C..u// are h times the slopes over the original completion
C..s//, we see that the original slopes are either 0 or 1=h. In particular, I1 is trivial
on the subgroup P 1=hC. A similar argument works when � is not a co-character,
using the extension of degree 2h.

The image {S WD '.P1/ of wild inertia subgroup P1 is the smallest torus
in {G, whose Lie algebra contains the regular, semi-simple element N CE. The
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irregularity Irr˛.V / of a representation V of {G at an irregular singular point ˛ was
defined by Deligne [Del70, p. 110], and shown by Katz [Kat87, ��1, 2.3] to be the
sum of the slopes. From the above analysis, we deduce that

h Irr1.V /D dimV � dimV
{S :

The full image {H D '.I1/ normalizes {S , and the quotient is generated by the
element nD .2�/.e�i=h/. The element n is regular and semi-simple in {G. Further,
" WD nh is a central involution in {G which is equal to identity if and only if � is a
co-character of {G. The element n acts on NCE by multiplication by e�2�i=h. The
irreducibility of the hth cyclotomic polynomial over Z shows that {S has dimension
�.h/ D #.Z=hZ/� and that the eigenvalues of n on Lie. {S/ are the primitive hth

roots of unity.
Since n normalizes {S , it also normalizes the centralizer {T 0 of {S in {G, which

is a maximal torus (note that it is different from the maximal torus {T considered in
�5). The image w of n in N. {T 0/= {T 0 is a Coxeter class in the Weyl group, and has
order h.

The character group X�. {S/ is the free quotient of X�. {T 0/ where w acts by
primitive hth roots of unity. Thus the characters of {T 0 which restrict to the trivial
character of {S are generated by those �W {T 0! Gm where the hwi-orbit of � has
size less than h.

This completes the description of the local inertia groups, and we now turn to
the global differential Galois group {Gr .

PROPOSITION 8. Let {G0� {G be an algebraic subgroup which contains '.I1/
D {H and '.I0/ D exp.zN /. Then {G0 is reductive and contains the image of a
principal SL2 in {G.

Proof. Let R.Lg0/ be the unipotent radical of {G0, and let Z D Lie.Z/ be its
center. We will show that Z D 0.

The group {H D '.I1/ acts on R. {G0/ and Z. Since {S contains regular
elements, every root ˛W {T 0!Gm restricts to a nontrivial character of {S . Hence the
action of {H D h {S; ni on Lg decomposes as

Lie. {T 0/˚
rk.Lg/M
iD1

Wi ;

where the Wi are irreducible representations of dimension h whose restriction to {S
contains an entire w-orbit of roots.

Since Z is nilpotent and Lie. {T 0/ is semi-simple, Z must be the sum of certain
Wi . But each Wi contains a nonzero vector v0 D

Ph
iD1 n

i .v/ fixed by hni (as
nh D " is central and acts trivially on Lg). Since n is regular and semi-simple, v0 is
a semi-simple element and hence cannot be contained in Z. Therefore Z D 0.
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Since {G0 is reductive and contains the principal unipotent element u, it contains
a principal SL2 [Car85]. We note that a principal embedding SL2! {G maps the
central element �1 2 SL2 to the element " 2 {H � {G. �

Proposition 8 is a serious constraint on the global image {Gr , as the reductive
subgroups of {G containing a principal SL2 are severely limited by a result of [SS97]
which goes back to the work of Dynkin [Dyn52]. They are all simple, and their Lie
algebras appear in one of the following maximal chains:

sl2 // sp2n // sl2n

sl2nC1

sl2 // so2nC1

99

%%
so2nC2

sl7

sl2 // g2 // so7

==

""
so8

sl2 // f4 // e6

sl2 // e7

sl2 // e8

In some of these cases, the subgroup {G0 cannot contain {H , as its Coxeter
number is less than the Coxeter number of {G. Looking at the minimal cases
remaining, we obtain

COROLLARY 9. If {G is simple of type A2n; n � 1; Cn; n � 1; Bn; n � 4, G2,
F4, E7, E8, then {Gr D {G.

Indeed, by the above list of embeddings and Proposition 8, any {G0 � {G
containing {H and hni must be equal to {G.
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For the remaining cases, observe that the automorphism group† of the pinning
of {G is known to be isomorphic to the outer automorphism group of {G. This finite
group fixes N and acts on the highest root space. If {G is not of type A2n, it also
fixes E. Hence † fixes the connection r, and its differential Galois group {Gr is
contained in {G†. Thus Corollary 9 gives the differential Galois group in all cases.

COROLLARY 10. If {G is of type A2n�1, then {Gr is of type Cn, with center the
kernel of the center of {G on the second exterior power representation.

If {G is of type D2nC1 with n � 4, then {Gr is of type Bn, with the center the
kernel of the center of {G on the standard representation.

If {G is of type D4 or B3, then {Gr is of type G2.
If {G is of type E6, then {Gr is of type F4.

14. The dimension of cohomology

We now use the calculation of the differential Galois group {Gr of our con-
nection, with its inertia subgroups at 0 and 1, to determine the dimensions of
the cohomology groups of the D-modules j�F.V /, jŠF.V / and jŠ�F.V / on P1

associated to a representation V of {G.
We will assume that we are in one of the cases described in Corollary 9.

Otherwise, the computation of cohomology reduces to one in a smaller group given
by Corollary 9. We will also assume that V is irreducible nontrivial representation
of {G, so

H 0.P1; j�F.V //DH 0.U;F.V //D V
{G
D 0;

H 2.P1; jŠF.V //DH
2
c .U;F.V //D Hom {G.V

�;C/D 0:

We will use Deligne’s formula [Del70, �6.21.1] for the Euler characteristic

�.H �.U;F//D �.H �c .U;F//D �.U / rank.F/�
X
˛

Irr˛.F/:

In our case, �.U /D 0 and r is regular at ˛ D 0. Hence

dimH 1.P1; j�F/D dimH 1.P1; jŠF/D Irr1.F/:

The kernel of the map H 1
c .U;F/!H 1.U;F/ is isomorphic to the direct sum

H 0.D�0 ;F/˚H
0.D�1;F/D V

I0 ˚V I1

by (7). Hence we obtain
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PROPOSITION 11. If {Gr D {G and V is an irreducible, nontrivial representa-
tion of {G with associated flat vector bundle F.V / on Gm, then

H 0.P1; jŠ�F.V //DH 2.P1; jŠ�F.V //D 0;

d.V / WD dimH 1.P1; jŠ�F.V //D Irr1.V /� dimV I0 � dimV I0 :(1)

If we don’t assume that {Gr D {G or that V is an irreducible, nontrivial repre-
sentation of {G, we obtain the formulas

dimH 0.P1; jŠ�F.V //D dimH 2.P1; jŠ�F.V //D dimV
{Gr ;

dimH 1.P1; jŠ�F.V //D Irr1.V /� dimV I0 � dimV I0 C 2 dimV
{Gr :

Since

h Irr1.V /D dimV � dimV
{S ;

as we have seen above, this allows us to compute the dimensions of the cohomology
of the middle extension for any representation V of {G, provided that we know the
restriction of V to the three subgroups {S , {H and {Gr , and the restriction of V to a
principal SL2. We will now make this more explicit.

The irreducible representations of SL2 all have the form Symk; k � 0. Hence
we may write the restriction of V to the principal SL2 as

V D
M
k�0

.Symk/˚m.k/

with multiplicities m.k/� 0. We then have

(2) dimV I0 D
X
k�0

m.k/

as '.I0/D exp.tN / fixes a unique line on each irreducible factor. We note that the
parity of these k is determined by V : if m.k/ > 0 we have

.�1/k D "jV :

The irreducible complex representations of {H have dimensions either h or 1.
The irreducibleW of dimension h restrict to a sum of h distinct nontrivial characters
� of {S , in a single hni-orbit. The irreducible � of dimension 1 are the representations
trivial on {S , and determined by �.n/, which lies in �2h. We may therefore write

(3) V D
M
i

�
˚m.�i /
i ˚

M
j

W
˚m.Wj /

j :

If mi > 0, then

�i .n/
h
D "jV :
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In terms of the decomposition (3), we have

(4) dimV I1 Dm.�0/;

where �0 is the trivial character, �0.n/D 1. Each one-dimensional representation
of {H is tame, and each irreducible h-dimensional representation has irregularity
1D h � .1=h/. Hence

Irr1.V /D
X
j

m.Wj /(5)

D
1

h
� #fnontrivial weight spaces for {S on V g:

If we know the restriction of V to a principal SL2 and to {H , then formulas (1),
(2), (4), and (5) allow us to determine the dimension d.V / of H 1.P1; jŠ�F.V //.
For example, when V D Lg is the adjoint representation, we have "DC1 on V and

V D

rk.Lg/M
iD1

Sym2di�2;

D

rk.Lg/M
iD1

�i ˚

rk.Lg/M
jD1

Wj ;

where the di are the degrees of invariant polynomials and �i ¤ 1 for all i . Hence
Irr1DdimV I0D rk.Lg/, V I1D0, and so d.V /D0. This gives the second proof of
the rigidity of our connection (Theorem 1), for the groups {G in Corollary 9. (When
{Gr is a proper subgroup of {G, we find that LgD Lgr ˚V 0, where the representation
V 0 of {Gr also has d.V 0/D 0.)

For example, the adjoint representation e6 of {G DE6 decomposes as a sum
of two irreducible representations e6 D f4˚ V

0 for the differential Galois group
{Gr D F4, with dimV 0 D 26. The restriction of V 0 to the principal SL2 is the sum
Sym16˚Sym8. The restriction of V 0 to {H is the sum �1˚�2˚W1˚W2, with
the �i nontrivial of order 3. Hence Irr1.V 0/D dimV 0I0 D 2; dimV 0I1 D 0, and
d.V 0/D 0.

Similarly, for the nontrivial irreducible representations V D Symn of {GD SL2,
we find that d.V /D .n�1/=2 when n is odd, d.V /D .n�2/=2 when n is congruent
to 2 (mod 4), and d.V /D .n� 4/=2 when n is divisible by 4, in agreement with
the results of Section 12. In particular, d.V / > 0 whenever n > 4. For the spin
representation V of dimension 2n of {G D Spin2nC1, we find that d.V / > 0 for all
n > 7.
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We now investigate the difference

d.V /D Irr1� dimV I0 � dimV I1

D

X
j

m.Wj /�
X
k�0

m.k/�m.�0/

further, assuming that V is irreducible and nontrivial. This argument, which was
shown to us by Mark Reeder, breaks into two cases, depending on whether "DC1
or �1 on V .

If "DC1 on V , we may assume (by passing to a quotient that acts faithfully
on V ) that "D 1 in {G. Then nh D 1 and {H is a semi-direct product hniË {S . In
this case, the map SL2! {G factors through the quotient PGL2.

We now count the dimension of the span of invariants for hni on V . Since hni
is a subgroup of {H which fixes a line in each Wj , we find that

dimV hni D
X

m.Wj /Cm.�0/

D Irr1Cm.�0/:

Since n is conjugate to the element n0D �.e2�i=h/, which lies in the maximal torus
A of the principal PGL2, we have

dimV hni D
X
k�0

m.k/ � #fweights of A on Symk with a� 0 (mod h)g:

if m.k/ ¤ 0, then k is even and the weight a D 0 occurs once in the irreducible
representation Symk . Since the weights a and �a occur with the same multiplicity
in V , we find that

dimV hni D
X
k�0

m.k/C 2#fweights a > 0 of A on V with a� 0 (mod h)g

D dimV I0 C 2#fweights a > 0 of A on V with a� 0 (mod h)g:

Hence, when "DC1 we find that

d.V /D Irr1� dimV I0 �m.�0/

D 2.#fweights a > 0 of A on V with a� 0 (mod h)g�m.�0//:

The fact that d.V / is even is consistent with the fact that when V is self-dual and
"jV DC1, then V is orthogonal. Hence H 1.P1; jŠ�F.V // is symplectic.

If the highest weight L� of V satisfies

h L�; �i � h� 1;

then there are no weights a > 0 with a� 0 (mod h). Since d.V /� 0, this forces
m.�0/D 0 and d.V /D 0. This is what happens for the adjoint representation.
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A similar analysis when "jV D�1 gives the formula

d.V /D #fweights 2kC 1 for the torus of SL2 on V

with k � 0 (mod h) and k ¤ 0g�m.�1/;

where �1 is the character of {H which is trivial on {S and maps n to e�i=h. if "D nh

lies in {S , then m.�� 1/D 0, as all weights of {S on V are nontrivial.

15. Nearby connections

There are several connections closely related to the rigid irregular connection
r that we have studied in this paper. First, there is the connection

r1 D d CN
dt

t

which has regular singularities at both t D 0 and t D1. The monodromy of r1 is
generated by the principal unipotent element uD exp.2�iN / and the differential
Galois group is the additive group exp.zN / of dimension 1 in {G.

A second related connection is the canonical extension of our local differential
equation at infinity, defined by Katz [Kat87, 2.4] This is the connection

r2 D d C

�
N �

1

h
�

�
dt

t
CEdt:

If we pass to the ramified extension given by uh D s D t�1, and make a gauge
transformation by g D �.u/ (assuming that � is a co-character), the connection r2
becomes equivalent to the connection

d � h.N CE/
du

u2
:

This is regular at the unique point lying above t D 0. The differential Galois group
of r2 and its inertia group at infinity are both isomorphic to {H . The inertia group
at zero is cyclic, of order h or 2h.

Finally, we have the following generalization of r for the exceptional groups
{G of types G2, F4, E6, E7, and E8, which was suggested by the treatment of
nilpotent elements and regular classes in the Weyl group in [Spr74, �9]. We thank
Mark Reeder for bringing this argument to our attention. Let

'0W sl2! Lg

be a subregular sl2 in the Lie algebra. The Dynkin labels of the semi-simple element
'0.h/ are equal to 2 on all of the vertices of the diagram for {G, except the vertex
corresponding to the (unique) root with the highest multiplicity m in the highest
root, where the label is 0.
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Let d D h�m. Then the highest eigenspace LgŒ2d � 2� for '0.h/ on Lg has
dimension equal to 1. Let E 0 be a basis, and let N 0 D '0.f / in LgŒ�2�. Then
Springer shows that the element N 0CE 0 is both regular and semi-simple in Lg. This
element is normalized by the semi-simple element n0 D '0.h.e�i=d //, which has
order either d or 2d in {G.

Let M be the maximal torus which centralizes N 0CE 0. Then the image of n0

in the Weyl group of M is a regular element of order d , in the sense of Springer
[Spr74]. It has r C 2 free orbits on the roots of Lg, where r is the rank of {G. We
tabulate these numerical invariants for our groups below, as well as the characteristic
polynomial F of n0 acting on the character group of M , as a product of cyclotomic
polynomials F.n/.

{G m d rC2 F

G2 3 3 4 F.3/

F4 4 8 6 F.8/

E6 3 9 8 F.9/

E7 4 14 9 F.14/ �F.2/

E8 6 24 10 F.24/

Define the subregular analog of r as follows:

r
0
D d CN 0

dt

t
CE 0dt:

Then r 0 has a regular singularity at t D 0, with monodromy the subregular unipotent
element u0 D exp.�2�iN 0/. It has an irregular singularity at1, with slope 1=d
and local inertia group h {S 0; n0i, where {S 0 is the subtorus of M on which n0 acts by
the primitive d th roots of unity.

The connection r 0 is rigid, with differential Galois group given as follows:

{G W G2 F4 E6 E7 E8
Gr0 W SL3 Spin9 E6 E7 E8

In the first two cases, we note that a subregular SL2 in {G is a regular SL2 in
{Gr0 . Hence the connection r 0 on {G is obtained from the rigid connection r for
the differential Galois group. In the three other cases, the connection r 0 is new; the
third gives us a connection with differential Galois group of type E6. In particular,
the differential Galois group of Gm has any simple exceptional group as a rigid
quotient.

We get two further rigid connections with differential Galois group E8 from
the two nilpotent classes that Springer lists in [Spr74, Table 11]. These have slopes
1=20 and 1=15 at1 respectively. Since there is a misprint in that table, we give
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the Dynkin labeling of these nilpotent classes below.

2 2 0 2 0 2 2

2

2 0 2 0 2 0 2

0

In both cases, the action of the corresponding regular element in the Weyl
group on the character group of the torus is by the primitive 20th and 15th roots of
unity, respectively.

16. Example of the geometric Langlands correspondence with wild
ramification

The Langlands correspondence for function fields has a counterpart for complex
algebraic curves, called the geometric Langlands correspondence. As in the classical
setting, there is a local and a global pictures. For simplicity we will restrict ourselves
to the case when G is a simple connected simply-connected algebraic group, so
that {G is a group of adjoint type.

The local geometric Langlands correspondence has been proposed in [FG06]
(see also [Fre07a] for an exposition). According to this proposal, to each “local Lang-
lands parameter” � , which is a {G-bundle with a connection on D� D Spec C..t//,
there should correspond a category C� equipped with an action of the formal loop
group G..t//. This correspondence should be viewed as a “categorification” of
the local Langlands correspondence for the group G.F /, where F is a local non-
archimedian field, F D Fq..t//. This means that we expect that the Grothendieck
group of the category C� , equipped with an action ofG..t//, attached to a Langlands
parameter � , should “look like” an irreducible smooth representation � of G.F /
attached to an `-adic representation of the Weil group of F with the same properties
as � .

In particular, an object of C� should correspond to a vector in the representation
� . Thus, the analogue of the subspace �.K;‰/ � � of .K;‰/-invariant vectors in
� (that is, vectors that transform via a character ‰ under the action of a subgroup
K of G.F /) should be the category C

.K;‰/
� of .K;‰/-equivariant objects of C� .

Denote by Loc {G.D
�/ the set of isomorphism classes of flat {G-bundles onD�.

In [FG06], a candidate for the category C� has been proposed for any � 2Loc {G.D
�/.
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Namely, consider the categorybgcrit -mod of discrete modules over the affine Kac-
Moody algebrabg of critical level. The center of this category is isomorphic to
the algebra of functions on the space Op {G.D

�/ of {G-opers on D� (see [Fre07a]).
Hence for each point � 2 Op {G.D

�/ we have the category bgcrit -mod� of those
modules on which the center acts according to the character corresponding to �.

Consider the forgetful map pWOp {G.D
�/ ! Loc {G.D

�/. It was proved in
[FZ08] that this map is surjective. Given a local Langlands parameter � 2Loc {G.D

�/,
choose �2p�1.�/. According to the proposal of [FG06], the sought-after category
C� should be equivalent tobgcrit -mod� (these categories should therefore be equiva-
lent to each other for all � 2 p�1.�/). In particular, C

.K;‰/
� should be equivalent

to the categorybgcrit -mod.K;‰/� of .K;‰/-equivariant objects inbgcrit -mod�.
We now consider the global geometric Langlands correspondence (see [FG06],

[Fre07b], [Fre07a] for more details). Let X be a smooth projective curve over C.
The Langlands parameters � are now {G-bundles on X with connections which
are allowed to have poles at some points x1; : : : ; xN . Let BunG;.xi / be the moduli
stack of G-bundles on X with the full level structure at each point xi ; i D 1; : : : ; N
(that is, a trivialization of the G-bundle on the formal disc at xi ). The global
correspondence should assign to � the category Aut�;.xi / of Hecke eigensheaves
on BunG;.xi / with eigenvalue � .

The compatibility between the local and global correspondence should be that
[FG06]

(1) Aut�;.xi / '
NO
iD1

C�xi ;

where �xi is the restriction of � to the punctured disc at xi . This equivalence should
give rise to an equivalence of the equivariant categories. Let Kxi be a subgroup
of G.Oxi /, where Oxi is the completed local ring at xi , and ‰xi be its character.

Then the equivariant category of Aut�;.xi / is the category Aut
.Kxi ;‰xi /

�;.xi /
of Hecke

eigensheaves on BunG;.xi / with eigenvalue � which are .Kxi ; ‰xi /-equivariant.
We should have an equivalence of categories

(2) Aut
.Kxi ;‰xi /

�;.xi /
'

NO
iD1

C
.Kxi ;‰xi /
�xi

:

Now suppose that � comes from an oper � which is regular on Xnfx1; : : :
: : : ; xN g. Let �xi be the restriction of � to D�xi . Then we have the categoriesbgcrit -mod�xi and bgcrit -mod

.Kxi ;‰xi /
�xi

, which we expect to be equivalent to C�xi

and C
.Kxi ;‰xi /
�xi

, respectively. The stack BunG;.xi / may be represented as a double
quotient

G.F /n

NY
iD1

G.Fxi /=

NY
iD1

G.Oxi /;
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where F D C.X/ is the field of rational functions on X and Fxi is its completion
at xi . A loop group version of the localization functor of Beilinson-Bernstein gives
rise to the functors

(3) � W

NO
iD1

bgcrit -mod�xi ! Aut�;.xi /;

(4) �.Kxi ;‰xi / W

NO
iD1

bgcrit -mod
.Kxi ;‰xi /
�xi

! Aut
.Kxi ;‰xi /

�;.xi /
;

and it is expected [FG06] that these functors give rise to the equivalences (1) and (2),
respectively. This is a generalization of the construction of Beilinson and Drinfeld
in the unramified case [BD].

We now apply this to our situation, which may be viewed as the simplest
example of the geometric Langlands correspondence with wild ramification (i.e.,
connections admitting an irregular singularity). We note that wild ramification has
been studied by E. Witten in the context of S -duality of supersymmetric Yang-Mills
theory [Wit08].

Let � be our {G-oper on P1 with poles at the points 0 and1. Let � denote
the corresponding flat {G-bundle. We choose K0 to be the Iwahori subgroup I ,
with ‰0 the trivial character (we will therefore omit it in the formulas below), and
K1 to be its radical I 0. Note that I 0=ŒI 0; I 0� ' .Ga/rank.G/C1. We choose a
nondegenerate additive character ‰ of I 0 as our ‰1. Thus, we have the global
categories Aut�;.0;1/ and AutI;.I

0;‰/

�;.0;1/
on BunG;.0;1/.

According to Section 3, there is a unique automorphic representation of G.A/
corresponding to an `-adic analogue of our oper. Moreover, the only ramified local
factors in this representation are situated at 0 and1. The former is the Steinberg
representation, whose space of Iwahori invariant vectors is one-dimensional. The
latter is the simple supercuspidal representation constructed in [GR]. Its space
of .I 0; ‰/-invariant vectors is also one-dimensional. We recall that the geomet-
ric analogue of the space of invariant vectors is the corresponding equivariant
category. Hence the geometric counterpart of the multiplicity one statement of
Section 3 is the statement (conjecture) that the category AutI;.I

0;‰/

�;.0;1/
has a unique

nonzero irreducible object. (Here and below “unique” means “unique up to an
isomorphism.”)

The compatibility of the local and global correspondences gives us a way
to construct this object. Namely, we have two local categoriesbgcrit -modI�0 andbgcrit -mod.I

0;‰/
�1

attached to the points 0 and1, respectively. The oper �0 on D�0
has regular singularity and regular unipotent monodromy. Using the results of
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[FG06], [Fre07a], one can show that the categorybgcrit -modI�0 has a unique nonzero
irreducible object M��.�0/, which is constructed as follows. It is the quotient of
the Verma module

M�� D Indbgcrit
Lie.I /˚C1.C��/

overbgcrit with highest weight ��, by the image of the maximal ideal in the center
corresponding to the central character �0.

On the other hand, �1 has irregular singularity with the slope 1=h. To
construct an object of the category ofbgcrit -mod.I

0;‰/
�1

, we imitate the construction
of [GR] (see �3). Define the affine Whittaker module

W‰ D Indbgcrit
Lie.I0/˚C1.‰/

overbgcrit (here we denote by the same symbol ‰ the character of the Lie algebra
Lie.I 0/ corresponding to the above character ‰ of the group I 0). Let W‰.�1/ be
the quotient of W‰ by the image of the maximal ideal in the center corresponding to
the central character �1. By construction, it is an .I 0; ‰/-equivariantbgcrit-module
and hence it is indeed an object of our local categorybgcrit -mod.I

0;‰/
�1

. Applying the
localization functor �I;.I;‰/ of (4) to M��.�0/˝W‰.�1/, we obtain an object of

the category AutI;.I
0;‰/

�;.0;1/
. It is natural to conjecture that this is the unique nonzero

irreducible object of this category.
One can show (see [FF07, Lemma 5]) that the image of the center of the

completed enveloping algebra in End W‰ is the algebra of functions on the space
of opers which have representatives of the form

d �N
ds

s
�E

ds

s2
C v

ds

s
;

where v 2 bŒŒs��. Since our oper �1 belongs to this space, we obtain that the
quotient W‰.�1/ is nonzero. This provides supporting evidence for the above
conjecture describing an example of the geometric Langlands correspondence with
wild ramification.
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