Abstract
We prove that the Leech lattice is the unique densest lattice in $\mathbb{R}^{24}$. The proof combines human reasoning with computer verification of the properties of certain explicit polynomials. We furthermore prove that no sphere packing in $\mathbb{R}^{24}$ can exceed the Leech lattice’s density by a factor of more than $1+1.65\cdot 10^{-30}$, and we give a new proof that $E_8$ is the unique densest lattice in $\mathbb{R}^8$.
-
[AAR] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge: Cambridge Univ. Press, 1999.
@book {AAR, MRKEY = {1688958},
AUTHOR = {Andrews, George E. and Askey, Richard and Roy, Ranjan},
TITLE = {Special Functions},
SERIES = {Encyclopedia Math. Appl.},
NUMBER = {71},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {1999},
PAGES = {xvi+664},
ISBN = {0-521-62321-9; 0-521-78988-5},
MRCLASS = {33-01 (33-02)},
MRNUMBER = {2000g:33001},
MRREVIEWER = {Bruce C. Berndt},
ZBLNUMBER = {0920.33001},
} -
[BS] E. Bannai and N. J. A. Sloane, "Uniqueness of certain spherical codes," Canad. J. Math., vol. 33, iss. 2, pp. 437-449, 1981.
@article {BS, MRKEY = {617634},
AUTHOR = {Bannai, Eiichi and Sloane, N. J. A.},
TITLE = {Uniqueness of certain spherical codes},
JOURNAL = {Canad. J. Math.},
FJOURNAL = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
VOLUME = {33},
YEAR = {1981},
NUMBER = {2},
PAGES = {437--449},
ISSN = {0008-414X},
CODEN = {CJMAAB},
MRCLASS = {94B25 (05B30 52A45)},
MRNUMBER = {83a:94020},
MRREVIEWER = {J.-M. Goethals},
ZBLNUMBER = {0457.05017},
} -
[Ba]
E. S. Barnes, "The complete enumeration of extreme senary forms," Philos. Trans. Roy. Soc. London. Ser. A., vol. 249, pp. 461-506, 1957.
@article {Ba, MRKEY = {0086833},
AUTHOR = {Barnes, E. S.},
TITLE = {The complete enumeration of extreme senary forms},
JOURNAL = {Philos. Trans. Roy. Soc. London. Ser. A.},
FJOURNAL = {Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences},
VOLUME = {249},
YEAR = {1957},
PAGES = {461--506},
ISSN = {0080-4614},
MRCLASS = {10.0X},
MRNUMBER = {19,251d},
MRREVIEWER = {D. E. Littlewood},
DOI = {10.1098/rsta.1957.0005},
ZBLNUMBER = {0077.26601},
} -
[Bl]
H. F. Blichfeldt, "The minimum values of positive quadratic forms in six, seven and eight variables," Math. Z., vol. 39, iss. 1, pp. 1-15, 1935.
@article {Bl, MRKEY = {1545485},
AUTHOR = {Blichfeldt, H. F.},
TITLE = {The minimum values of positive quadratic forms in six, seven and eight variables},
JOURNAL = {Math. Z.},
FJOURNAL = {Mathematische Zeitschrift},
VOLUME = {39},
YEAR = {1935},
NUMBER = {1},
PAGES = {1--15},
ISSN = {0025-5874},
CODEN = {MAZEAX},
MRCLASS = {Contributed Item},
MRNUMBER = {1545485},
DOI = {10.1007/BF01201341},
ZBLNUMBER = {0009.24403},
} -
[BH] A. E. Brouwer and W. H. Haemers, "Association schemes," in Handbook of Combinatorics, Vol. 1, Amsterdam: Elsevier, 1995, pp. 747-771.
@incollection {BH, MRKEY = {1373671},
AUTHOR = {Brouwer, Andries E. and Haemers, Willem H.},
TITLE = {Association schemes},
BOOKTITLE = {Handbook of Combinatorics, {V}ol. 1},
PAGES = {747--771},
PUBLISHER = {Elsevier},
ADDRESS = {Amsterdam},
YEAR = {1995},
MRCLASS = {05E30},
MRNUMBER = {97a:05217},
MRREVIEWER = {Andrew Woldar},
ZBLNUMBER = {0849.05072},
} -
[Ch] T. W. Chaundy, "The arithmetic minima of positive quadratic forms, I," Quart. J. Math., Oxford Ser., vol. 17, pp. 166-192, 1946.
@article {Ch, MRKEY = {0017317},
AUTHOR = {Chaundy, T. W.},
TITLE = {The arithmetic minima of positive quadratic forms, {I}},
JOURNAL = {Quart. J. Math., Oxford Ser.},
FJOURNAL = {The Quarterly Journal of Mathematics. Oxford. Second Series},
VOLUME = {17},
YEAR = {1946},
PAGES = {166--192},
ISSN = {0033-5606},
MRCLASS = {10.0X},
MRNUMBER = {8,137g},
MRREVIEWER = {H. S. M. Coxeter},
ZBLNUMBER = {0060.11102},
} -
@article {Co, MRKEY = {1914571},
AUTHOR = {Cohn, Henry},
TITLE = {New upper bounds on sphere packings, {II}},
JOURNAL = {Geom. Topol.},
FJOURNAL = {Geometry and Topology},
VOLUME = {6},
YEAR = {2002},
PAGES = {329--353},
ISSN = {1465-3060},
MRCLASS = {52C17 (33C10 33C45 52C07)},
MRNUMBER = {2004b:52032},
DOI = {10.2140/gt.2002.6.329},
ZBLNUMBER = {1028.52011},
} -
[CE]
H. Cohn and N. Elkies, "New upper bounds on sphere packings, I," Ann. of Math., vol. 157, iss. 2, pp. 689-714, 2003.
@article {CE, MRKEY = {1973059},
AUTHOR = {Cohn, Henry and Elkies, Noam},
TITLE = {New upper bounds on sphere packings, {I}},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {157},
YEAR = {2003},
NUMBER = {2},
PAGES = {689--714},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {11H31 (52C17)},
MRNUMBER = {2004b:11096},
MRREVIEWER = {Matthias Beck},
DOI = {10.4007/annals.2003.157.689},
ZBLNUMBER = {1041.52011},
} -
[lam]
J. H. Conway and N. J. A. Sloane, "Laminated lattices," Ann. of Math., vol. 116, iss. 3, pp. 593-620, 1982.
@article {lam, MRKEY = {678483},
AUTHOR = {Conway, J. H. and Sloane, N. J. A.},
TITLE = {Laminated lattices},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {116},
YEAR = {1982},
NUMBER = {3},
PAGES = {593--620},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {52A43},
MRNUMBER = {84c:52015},
MRREVIEWER = {J. B. Wilker},
DOI = {10.2307/2007025},
ZBLNUMBER = {0502.52016},
} -
[CS] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, third ed., New York: Springer-Verlag, 1999.
@book {CS, MRKEY = {1662447},
AUTHOR = {Conway, J. H. and Sloane, N. J. A.},
TITLE = {Sphere Packings, Lattices and Groups},
SERIES = {Grundl. Math. Wissen.},
NUMBER = {290},
EDITION = {third},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1999},
PAGES = {lxxiv+703},
ISBN = {0-387-98585-9},
MRCLASS = {11H31 (05B40 11H06 20D08 52C07 52C17 94B75 94C30)},
MRNUMBER = {2000b:11077},
MRREVIEWER = {Renaud Coulangeon},
ZBLNUMBER = {0915.52003},
} -
[D] P. Delsarte, "Bounds for unrestricted codes, by linear programming," Philips Res. Rep., vol. 27, pp. 272-289, 1972.
@article {D, MRKEY = {0314545},
AUTHOR = {Delsarte, P.},
TITLE = {Bounds for unrestricted codes, by linear programming},
JOURNAL = {Philips Res. Rep.},
FJOURNAL = {Philips Journal of Research},
VOLUME = {27},
YEAR = {1972},
PAGES = {272--289},
ISSN = {0165-5817},
MRCLASS = {94A10},
MRNUMBER = {47 \#3096},
MRREVIEWER = {R. J. McEliece},
ZBLNUMBER = {0348.94016},
} -
[DGS] P. Delsarte, J. M. Goethals, and J. J. Seidel, "Spherical codes and designs," Geometriae Dedicata, vol. 6, iss. 3, pp. 363-388, 1977.
@article {DGS, MRKEY = {0485471},
AUTHOR = {Delsarte, P. and Goethals, J. M. and Seidel, J. J.},
TITLE = {Spherical codes and designs},
JOURNAL = {Geometriae Dedicata},
FJOURNAL = {Geometriae Dedicata},
VOLUME = {6},
YEAR = {1977},
NUMBER = {3},
PAGES = {363--388},
ISSN = {0046-5755},
MRCLASS = {05B99},
MRNUMBER = {58 \#5302},
MRREVIEWER = {Mikhail Deza},
ZBLNUMBER = {0376.05015},
} -
[E1]
N. D. Elkies, "Mordell-Weil lattices in characteristic 2, II: The Leech lattice as a Mordell-Weil lattice," Invent. Math., vol. 128, iss. 1, pp. 1-8, 1997.
@article {E1, MRKEY = {1437492},
AUTHOR = {Elkies, Noam D.},
TITLE = {Mordell-{W}eil lattices in characteristic 2, {II}: {T}he {L}eech lattice as a {M}ordell-{W}eil lattice},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {128},
YEAR = {1997},
NUMBER = {1},
PAGES = {1--8},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {11H31 (11E12 11G05)},
MRNUMBER = {98c:11063},
DOI = {10.1007/s002220050133},
ZBLNUMBER = {0897.11023},
MRREVIEWER = {Rainer Schulze-Pillot},
} -
[E] N. D. Elkies, "Lattices, linear codes, and invariants, I," Notices Amer. Math. Soc., vol. 47, iss. 10, pp. 1238-1245, 2000.
@article {E,
author = {Elkies, Noam D.},
TITLE = {Lattices, linear codes, and invariants, {I}},
JOURNAL = {Notices Amer. Math. Soc.},
FJOURNAL = {Notices of the American Mathematical Society},
VOLUME = {47},
YEAR = {2000},
NUMBER = {10},
PAGES = {1238--1245},
ISSN = {0002-9920},
CODEN = {AMNOAN},
MRCLASS = {11H71 (11H31 11H56 94B05)},
MRNUMBER = {2001g:11110},
ZBLNUMBER = {0992.11041},
MRREVIEWER = {Renaud Coulangeon},
} -
[Enew] N. D. Elkies, "Lattices, linear codes, and invariants, II," Notices Amer. Math. Soc., vol. 47, iss. 11, pp. 1382-1391, 2000.
@article {Enew,
author = {Elkies, Noam D.},
TITLE = {Lattices, linear codes, and invariants, {II}},
JOURNAL = {Notices Amer. Math. Soc.},
FJOURNAL = {Notices of the American Mathematical Society},
VOLUME = {47},
YEAR = {2000},
NUMBER = {11},
PAGES = {1382--1391},
ISSN = {0002-9920},
CODEN = {AMNOAN},
MRCLASS = {11H71 (11H31 13A50 94B05)},
MRNUMBER = {2001k:11128},
ZBLNUMBER = {1047.11065},
MRREVIEWER = {Renaud Coulangeon},
} -
[G] C. F. Gauss, Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber, Göttingische gelehrte Anzeigen, July 9, 1831.
@misc{G,
author={Gauss, C. F.},
TITLE={Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber, Göttingische gelehrte Anzeigen, July 9},
YEAR={ 1831},
NOTE={ Reprinted in \textit{Werke},
Vol. 2, Königliche Gesellschaft der Wissenschaften, Göttingen, 1863, 188--196; Available at {\tt http://gdz.sub.uni-goettingen.de}},
} -
[GL] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, Second ed., Amsterdam: North-Holland Publ. Co., 1987.
@book {GL, MRKEY = {893813},
AUTHOR = {Gruber, P. M. and Lekkerkerker, C. G.},
TITLE = {Geometry of Numbers},
SERIES = {North-Holland Math. Library},
NUMBER = {37},
EDITION = {Second},
PUBLISHER = {North-Holland Publ. Co.},
ADDRESS = {Amsterdam},
YEAR = {1987},
PAGES = {xvi+732},
ISBN = {0-444-70152-4},
MRCLASS = {11Hxx (52-02)},
MRNUMBER = {88j:11034},
MRREVIEWER = {Thomas W. Cusick},
ZBLNUMBER = {0611.10017},
} -
[H] S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Providence, RI: Amer. Math. Soc., 2000.
@book {H, MRKEY = {1790156},
AUTHOR = {Helgason, Sigurdur},
TITLE = {Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions},
SERIES = {Math. Surveys and Monogr.},
NUMBER = {83},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2000},
PAGES = {xxii+667},
ISBN = {0-8218-2673-5},
MRCLASS = {22-02 (22E30 22E46 43A85 43A90 44A12 53-02 58-02)},
MRNUMBER = {2001h:22001},
ZBLNUMBER = {0965.43007},
} -
[HJ] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985.
@book {HJ, MRKEY = {832183},
AUTHOR = {Horn, Roger A. and Johnson, Charles R.},
TITLE = {Matrix Analysis},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {1985},
PAGES = {xiii+561},
ISBN = {0-521-30586-1},
MRCLASS = {15-01},
MRNUMBER = {87e:15001},
MRREVIEWER = {Shao Kuan Li},
ZBLNUMBER ={0576.15001},
} -
[K] V. P. Khavin, "Methods and structure of commutative harmonic analysis," in Commutative Harmonic Analysis, I, V. P. Khavin and N. K. Nikol’skij, Eds., New York: Springer-Verlag, 1991, pp. 1-111.
@incollection {K, MRKEY = {1134136},
AUTHOR = {Khavin, V. P.},
TITLE = {Methods and structure of commutative harmonic analysis},
BOOKTITLE = {Commutative Harmonic Analysis, {\rm I}},
editor = {V.~P.~Khavin and N.~K.~Nikol'skij},
SERIES = {Encycl. Math. Sci.},
NUMBER = {15},
PAGES = {1--111},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1991},
MRCLASS = {42-02 (43-02)},
MRNUMBER = {1134136},
ZBLNUMBER={0727.43001},
} -
[KZ1]
A. Korkine and G. Zolotareff, "Sur les formes quadratiques," Math. Annalen, vol. 6, iss. 3, pp. 366-389, 1873.
@article {KZ1, MRKEY = {1509828},
AUTHOR = {Korkine, A. and Zolotareff, G.},
TITLE = {Sur les formes quadratiques},
JOURNAL = {Math. Annalen},
FJOURNAL = {Mathematische Annalen},
VOLUME = {6},
YEAR = {1873},
NUMBER = {3},
PAGES = {366--389},
ISSN = {0025-5831},
CODEN = {MAANA},
MRCLASS = {Contributed Item},
MRNUMBER = {1509828},
DOI = {10.1007/BF01442795},
} -
[KZ2]
A. Korkine and G. Zolotareff, "Sur les formes quadratiques positives," Math. Annalen, vol. 11, iss. 2, pp. 242-292, 1877.
@article {KZ2, MRKEY = {1509914},
AUTHOR = {Korkine, A. and Zolotareff, G.},
TITLE = {Sur les formes quadratiques positives},
JOURNAL = {Math. Annalen},
FJOURNAL = {Mathematische Annalen},
VOLUME = {11},
YEAR = {1877},
NUMBER = {2},
PAGES = {242--292},
ISSN = {0025-5831},
CODEN = {MAANA},
MRCLASS = {Contributed Item},
MRNUMBER = {1509914},
DOI = {10.1007/BF01442667},
JFMnumber={09.0139.01},
} -
[Leb] N. N. Lebedev, Special Functions and their Applications, New York: Dover Publ., 1972.
@book {Leb, MRKEY = {0350075},
AUTHOR = {Lebedev, N. N.},
TITLE = {Special Functions and their Applications},
PUBLISHER = {Dover Publ.},
ADDRESS = {New York},
YEAR = {1972},
PAGES = {xii+308},
MRCLASS = {33-XX (69.00)},
MRNUMBER = {50 \#2568},
ZBLNUMBER = {0271.33001},
} -
[L] V. I. Levenvsteuin, "On bounds for packings in $n$-dimensional Euclidean space," Soviet Math. Dokl., vol. 20, iss. 6, pp. 417-421, 1979.
@article {L, MRKEY = {529659},
AUTHOR = {Leven{š}te{\u\i}n, V. I.},
TITLE = {On bounds for packings in $n$-dimensional Euclidean space},
JOURNAL = {Soviet Math. Dokl.},
FJOURNAL = {Doklady Akademii Nauk SSSR},
VOLUME = {20},
YEAR = {1979},
NUMBER = {6},
PAGES = {417--421},
MRnumber={80d:52017},
Zblnumber={0436.52011},
} -
[M] J. Martinet, Perfect Lattices in Euclidean Spaces, New York: Springer-Verlag, 2003.
@book {M, MRKEY = {1957723},
AUTHOR = {Martinet, Jacques},
TITLE = {Perfect Lattices in {E}uclidean Spaces},
SERIES = {Grundl. Math. Wissen.},
NUMBER = {327},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {2003},
PAGES = {xxii+523},
ISBN = {3-540-44236-7},
MRCLASS = {11H31 (11H06 11H55 11H56)},
MRNUMBER = {2003m:11099},
MRREVIEWER = {Detlev W. Hoffmann},
ZBLNUMBER = {1017.11031},
} -
[Mu] T. Muir, A Treatise on the Theory of Determinants, New York: Dover Publ., 1960.
@book {Mu, MRKEY = {0114826},
AUTHOR = {Muir, Thomas},
TITLE = {A Treatise on the Theory of Determinants},
SERIES = {Revised and enlarged by William H. Metzler},
PUBLISHER = {Dover Publ.},
ADDRESS = {New York},
YEAR = {1960},
PAGES = {vii+766},
MRCLASS = {15.00},
MRNUMBER = {22 \#5644},
} -
[OS]
A. M. Odlyzko and N. J. A. Sloane, "New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions," J. Combin. Theory Ser. A, vol. 26, iss. 2, pp. 210-214, 1979.
@article {OS, MRKEY = {530296},
AUTHOR = {Odlyzko, A. M. and Sloane, N. J. A.},
TITLE = {New bounds on the number of unit spheres that can touch a unit sphere in {$n$} dimensions},
JOURNAL = {J. Combin. Theory Ser. {\rm A}},
FJOURNAL = {Journal of Combinatorial Theory. Series A},
VOLUME = {26},
YEAR = {1979},
NUMBER = {2},
PAGES = {210--214},
ISSN = {0097-3165},
CODEN = {JCBTA7},
MRCLASS = {52A45 (05B40 94B30)},
MRNUMBER = {81d:52010},
MRREVIEWER = {Peter Gruber},
DOI = {10.1016/0097-3165(79)90074-8},
ZBLNUMBER = {0408.52007},
} -
[RS] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford: The Clarendon Press, Oxford Univ. Press, 2002.
@book {RS, MRKEY = {1954841},
AUTHOR = {Rahman, Q. I. and Schmeisser, G.},
TITLE = {Analytic Theory of Polynomials},
SERIES = {London Math. Soc. Monogr.},
NUMBER = {26},
PUBLISHER = {The Clarendon Press, Oxford Univ. Press},
ADDRESS = {Oxford},
YEAR = {2002},
PAGES = {xiv+742},
ISBN = {0-19-853493-0},
MRCLASS = {30C10 (00A05 11C08 12D10 30C15 31-02 41A05)},
MRNUMBER = {2004b:30015},
MRREVIEWER = {Bl. Sendov},
ZBLNUMBER = {1072.30006},
} -
[T] T. M. Thompson, From Error-Correcting Codes Through Sphere Packings to Simple Groups, Washington, DC: Mathematical Association of America, 1983.
@book {T, MRKEY = {749038},
AUTHOR = {Thompson, Thomas M.},
TITLE = {From Error-Correcting Codes Through Sphere Packings to Simple Groups},
SERIES = {Carus Math. Monogr.},
NUMBER = {21},
PUBLISHER = {Mathematical Association of America},
ADDRESS = {Washington, DC},
YEAR = {1983},
PAGES = {xiv+228},
ISBN = {0-88385-023-0},
MRCLASS = {94-03 (01A60 11T71 20D08 52A45 94Bxx)},
MRNUMBER = {86j:94002},
MRREVIEWER = {M. R{\u{a}}duic{\u{a}}},
ZBLNUMBER = {0545.94016},
} -
[V] N. M. Vetvcinkin, "Uniqueness of classes of positive quadratic forms on which values of the Hermite constant are attained for $6 \le n \le 8$," Trudy Mat. Inst. Steklov., vol. 152, pp. 34-86, 1980.
@article {V, MRKEY = {603814},
AUTHOR = {Vet{\v{c}}inkin, N. M.},
TITLE = {Uniqueness of classes of positive quadratic forms on which values of the Hermite constant are attained for $6 \le n \le 8$},
JOURNAL = {Trudy Mat. Inst. Steklov.},
FJOURNAL = {Akademiya Nauk Soyuza Sovetskikh Sotsialisticheskikh Respublik. Trudy Matematicheskogo Instituta imeni V. A. Steklova},
VOLUME = {152},
NOTE={English translation in \emph{Proc. Steklov Inst. Math\/}. {\bf 152} (1982), 37--95.},
YEAR = {1980},
PAGES = {34--86},
ISSN = {0371-9685},
MRCLASS = {10E20},
MRNUMBER = {82f:10040},
MRREVIEWER = {S. A. Stepanov},
Zblnumber={0457.10013}
} -
[Vo] G. Voronoi, "Propriétés des formes quadratiques positives parfaites," J. Reine Angew. Math.\/, vol. 133, pp. 97-178, 1908.
@article{ Vo,
author={Voronoi, G.},
TITLE={Propriétés des formes quadratiques positives parfaites},
JOURNAL={J. Reine Angew. Math.\/},
VOLUME={133},
YEAR={1908},
PAGES={97--178},
}