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Abstract

We prove that the Leech lattice is the unique densest lattice in R24. The proof
combines human reasoning with computer verification of the properties of certain
explicit polynomials. We furthermore prove that no sphere packing in R24 can
exceed the Leech lattice’s density by a factor of more than 1C 1:65 � 10�30, and we
give a new proof that E8 is the unique densest lattice in R8.

1. Introduction

It is a long-standing open problem in geometry and number theory to find the
densest lattice in Rn. Recall that a lattice ƒ� Rn is a discrete subgroup of rank n;
a minimal vector in ƒ is a nonzero vector of minimal length. Let jƒj D vol.Rn=ƒ/
denote the covolume of ƒ, i.e., the volume of a fundamental parallelotope or the
absolute value of the determinant of a basis of ƒ. If r is the minimal vector length
of ƒ, then spheres of radius r=2 centered at the points of ƒ do not overlap except
tangentially. This construction yields a sphere packing of density

�n=2

.n=2/Š

�r
2

�n 1

jƒj
;

since the volume of a unit ball in Rn is �n=2=.n=2/Š, where for odd n we define
.n=2/ŠD �.n=2C1/. The densest lattice in Rn is the lattice for which this quantity
is maximized.

There might be several distinct densest lattices in the same dimension. For
example, the greatest density known in R25 is achieved by at least 23 distinct
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lattices, although they are not known to be optimal. (See pages xix and 178 of
[CS99] for the details.) We will speak of “the densest lattice” because it sounds
more natural.

The problem of finding the densest lattice is a special case of the sphere packing
problem, but there is no reason to believe that the densest sphere packing should
come from a lattice. In particular, in R10 the densest packing known is the Best
packing P10c , which is not a lattice packing (see [CS99, p. 140]). It conjectured
that lattices are suboptimal in all sufficiently high dimensions. However, many of
the most interesting packings in low dimensions are lattice packings, and lattices
have strong connections with other fields such as number theory. For example,
the Hermite constant 
n is defined to be the smallest constant such that for every
positive-definite quadratic formQ.x1; : : : ; xn/ of determinantD, there is a nonzero
vector .v1; : : : ; vn/2Zn such thatQ.v1; : : : ; vn/�
nD1=n. Finding the maximum
density of a lattice packing in Rn is equivalent to computing 
n.

The densest lattice in Rn is known for n� 8: the answers are the root lattices
A1, A2, A3, D4, D5, E6, E7, and E8. For n D 3 this is due to Gauss [Gau31],
for 4 � n � 5 to Korkine and Zolotareff [KZ73], [KZ77], and for 6 � n � 8 to
Blichfeldt [Bli35]. However, before the present paper no further cases had been
solved since 1935. In 1946 Chaundy claimed to have dealt with nD 9 and nD 10,
but his paper [Cha46] implicitly assumes that a densest lattice in Rn must contain
one in Rn�1 as a cross section. That is known to be false (see [CS82]), so the paper
appears irreparably flawed.

In each of the solved cases, the optimal lattice is furthermore known to be
unique, up to scaling and isometries. This was proved simultaneously with the
optimality for n� 5, for nD 6 it was proved by Barnes [Bar57], and for 6� n� 8
it was proved by Vetčinkin [Vet80].

In this paper we deal with nD 24 (the theorem numbering is as it will appear
later in the paper):

THEOREM 9.3. The Leech lattice is the unique densest lattice in R24, up to
scaling and isometries of R24.

In terms of the Hermite constant, 
24 D 4. We also give a new proof for E8:

THEOREM 11.7 (Blichfeldt, Vetčinkin). The E8 root lattice is the unique
densest lattice in R8, up to scaling and isometries of R8.

Our work is motivated by the paper [CE03] by Cohn and Elkies (see also
[Coh02]), which proves upper bounds for the sphere packing density. In particular,
the main theorem in [CE03] is an analogue for sphere packing of the linear pro-
gramming bounds for error-correcting codes: given a function satisfying certain
linear inequalities one can deduce a density bound. It is not known how to choose
the function to optimize the bound, but in R8 and R24 one can come exceedingly
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close to the densities of E8 and the Leech lattice, respectively. This observation,
together with analogies with error-correcting codes and spherical codes, led Cohn
and Elkies to conjecture that their bound is sharp in R8 and R24, which would solve
the sphere packing problem in those dimensions. While we cannot yet fully carry
out that program, in this paper we show how to combine the methods of [CE03]
with results on lattices and combinatorics to deal with the special case of lattice
packings. We will deal primarily with the Leech lattice, because that case is new
and more difficult, but in Section 11 we will discuss E8.

One might hope to use a relatively simple method. Section 8 of [CE03] shows
how to prove that the Leech lattice is the unique densest periodic packing (i.e.,
union of finitely many translates of a lattice) in R24, if a function from R24 to R

with certain properties exists. Using a computer, one can find functions that very
nearly have those properties, and the techniques from Section 8 of [CE03] can then
be used straightforwardly to prove an approximate version of the uniqueness result:
every lattice that is at least as dense as the Leech lattice must be close to it. It is
known (see [Mar03, p. 176]) that the Leech lattice is a strict local optimum for
density, among lattices. Thus, if one can show that every denser lattice is sufficiently
close, then it proves that the Leech lattice is the unique densest lattice in R24.

Unfortunately, this approach seems completely infeasible if carried out in the
most straightforward way. When one naively imitates the techniques from Section 8
of [CE03] in an approximate setting, one loses a tremendous factor in the bounds,
and that puts the required computer searches far beyond what we are capable of.
In this paper we salvage the approach by using more sophisticated arguments that
take advantage of special properties of the Leech lattice. In particular, we make
use of three beautiful facts about the Leech lattice: its automorphism group acts
transitively on pairs of minimal vectors with the same inner product, its minimal
vectors form an association scheme when pairs are grouped according to their
inner products, and its minimal vectors form a spherical 11-design. (Note that the
second property follows from the first, but our work uses another proof of it, from
[DGS77].)

Our proof depends on computer calculations in some places, but they can be
carried out relatively quickly, in less than one hour using a personal computer. The
calculations are all done using exact arithmetic and are thus rigorous. We have fully
documented all of our calculations and made available commented code for use
in checking the results or carrying out further investigations. See Appendix A for
details.

Appendix B contains very brief introductions to several topics: the Leech
lattice, linear programming bounds, spherical designs, and association schemes.
For more details, see [CS99]. The expository articles [Elk00a] and [Elk00b] also
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provide useful background and context, although they do not include everything
we need.

2. Outline of proof
We wish to show that the Leech lattice, henceforth denoted by ƒ24, is the

unique densest sphere packing among all lattices in R24. Let ƒ be any lattice in
R24 that is at least as dense as ƒ24. Without loss of generality, we assume that
ƒ has covolume 1. Then the restriction on its density simply means its minimal
vectors have length at least 2.

We first show, using linear programming bounds, that ƒ has exactly 196560
vectors of length approximately 2 (called nearly minimal vectors), and that the next
smallest vector length is approximately

p
6.

We rescale those 196560 nearly minimal vectors to lie on the unit sphere. Then
they form a spherical code with minimal angle at least ', where cos' is very near to
(and greater than or equal to) 1=2. Note that in S23 there is a unique spherical code
of this size with minimal angle �=3D cos�1.1=2/, and it is the kissing arrangement
of ƒ24; the spherical code derived from ƒ should be a small perturbation of this
configuration.

Using linear programming bounds, we show that the inner products of the unit
vectors are approximately 0;˙1=4;˙1=2;˙1. We prove that if pairs of vectors are
grouped according to their inner products, then they form an association scheme
with the same valencies and intersection numbers as in the case of ƒ24, and that
it must therefore be the same association scheme. This isomorphism gives us a
correspondence between minimal vectors of ƒ24 and nearly minimal vectors of ƒ,
such that corresponding inner products are approximately equal.

Using this correspondence, we find a basis of ƒ whose Gram matrix is close
to the Gram matrix of a basis of ƒ24. Finally, from the strict local optimality of
the Leech lattice we conclude that ƒ must in fact be the Leech lattice.

3. Notation
We begin by recording our normalizations of some special functions (which

are always as in [AAR99]), and by defining some notation.
The Laguerre polynomials L˛i .z/ are defined by the initial conditions L˛0.z/D

1 and L˛1.z/D 1C˛� z and the recurrence

iL˛i .z/D .2i � 1C˛� z/L
˛
i�1.z/� .i C˛� 1/L

˛
i�2.z/

for i �2. They are orthogonal polynomials with respect to the measure e�xx˛ dx on
Œ0;1/. If ˛Dn=2�1, then the functions on Rn given by x 7! e��jxj

2

L˛i .2�jxj
2/

form an orthogonal basis of the radial functions in L2.Rn/, and they are also
eigenfunctions of the Fourier transform with eigenvalue .�1/i (see (4.20.3) in
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[Leb72]). Here we normalize the Fourier transform by

yf .t/D

Z
Rn

f .x/e2�ihx;ti dx:

Note also that with this normalization of the Fourier transform, the Poisson summa-
tion formula states that X

x2ƒ

f .x/D
1

jƒj

X
t2ƒ�

yf .t/;

if f WRn! R is a Schwartz function, ƒ� Rn is a lattice, and

ƒ� D fy 2 Rn W hx; yi 2 Z for all x 2ƒg

is its dual lattice. (See (28) in [Kha91, p. 49].)
The ultraspherical (or Gegenbauer) polynomials C�i .z/ are defined by the

initial conditions C�0 .z/D 1 and C�1 .z/D 2�z and the recurrence

iC�i .z/D 2.i C�� 1/zC
�
i�1.z/� .i C 2�� 2/C

�
i�2.z/

for i � 2. They are orthogonal polynomials with respect to the measure

.1� x2/��1=2 dx

on Œ�1; 1�. When �D n=2�1, that measure is proportional to the projection of the
surface measure from Sn�1 onto an axis, and the ultraspherical polynomials play
a fundamental role in the theory of spherical harmonics in Rn. Up to scaling, the
ultraspherical polynomial C�i is the same as the Jacobi polynomial P .˛;˛/i , where
˛ D �� 1=2.

Whenever we use Laguerre or ultraspherical polynomials, we will always set
˛ D � D n=2� 1, where n D 24 in the Leech lattice proof and n D 8 in the E8
proof. The term “ultraspherical coefficient” will mean a coefficient in the expansion
of a polynomial as a linear combination of ultraspherical polynomials.

Throughout this paper, ƒ24 will denote the Leech lattice, and ƒ will denote
any lattice in R24 that is at least as dense and satisfies jƒj D 1 (except in �9, where
ƒ denotes an arbitrary lattice, and in �11, which deals with E8). We think of ƒ as
being an optimal lattice, but we will not use that assumption. We do not even need
to know a priori that a global optimum for density is achieved, although [GL87,
�17.5] shows that it is.

Whenever f WRn! R is a radial function and r 2 Œ0;1/, we will write f .r/
for the common value f .x/ with x 2 Rn satisfying jxj D r .

The surface volume of the unit sphere Sn�1 � Rn will be denoted by

vol.Sn�1/D n
�n=2

.n=2/Š
:
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It is important to keep in mind that vol.Sn�1/ is not the volume of the enclosed
ball.

We will make use of the numerical values

"D 6:733 � 10�27;

�D 3:981 � 10�13;

� D 3:219 � 10�12; and

! D 1:703 � 10�11

throughout the paper. Each will be defined the first time it is used, but we have col-
lected the values here for easy reference. Note that terminating decimal expansions
such as these represent exact rational numbers, not floating point approximations.

4. Nearly minimal vectors

In this section, we show that ƒ must have exactly 196560 vectors of length
near 2 (this will be made more precise below). The first subsection examines which
vector lengths are possible in ƒ, and the second then counts the nearly minimal
vectors.

4.1. Restrictions on the lengths of vectors. Letf WR24!R be a radial Schwartz
function with the following properties: f .0/D yf .0/D 1, f .x/� 0 for jxj � r (for
some number r), and yf .t/� 0 for all t . Proposition 3.2 of [CE03] says that if such
a function exists, then the sphere packing density in R24 is bounded above by

�12

12Š

�r
2

�24
:

If we could find such a function with r D 2, then it would prove that ƒ24 has the
greatest density among all sphere packings in R24, not just lattice packings. Cohn
and Elkies conjecture that such a function exists, but the best they achieve in [CE03]
is r � 2 � 1:00002946.

Our proof begins by constructing an explicit function f with

r � 2
�
1C 6:851 � 10�32

�
:

Note that the existence of such a function proves that no sphere packing in R24 can
have density greater than 1C 1:65 � 10�30 times the density of ƒ24.

Unfortunately, the function we construct is extremely complicated (it would
take far too much space to write it down here). It consists of a polynomial of degree
803 with rational coefficients, evaluated at 2�jxj2 and multiplied by e��jxj

2

. It
was constructed by a lengthy computer calculation to optimize the value of r using
Newton’s method, and even verifying that it has the properties used below requires
a computer, although fortunately that is much easier than finding the function. The
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accompanying computer file verifyf.txt includes code to verify all the assertions
about f in this subsection of the paper. See Appendix A for details.

We can use techniques similar to those in [CE03] to study the size of the short
vectors in ƒ. First, we need two lemmas. Set

"D 6:733 � 10�27;

and call a nonzero vector in ƒ nearly minimal if it has length at most 2.1C"/. The
reason for this choice of " will be apparent from Proposition 4.3 below.

Consider what happens if we rescale the nearly minimal vectors so that they
all lie on the unit sphere. These vectors determine a spherical code

Cƒ D fu=juj W u a nearly minimal vectorg

on the unit sphere S23, and the following lemma bounds its minimal angle. (See
Appendix B for background on spherical codes.)

LEMMA 4.1. If u and v are nearly minimal vectors with u¤ v, then the angle
' between u and v satisfies

cos' � 1�
1

2.1C "/2
:

Proof. We have juj; jvj 2 Œ2; 2.1C "/� and ju� vj � 2. By the law of cosines,

cos' D
juj2Cjvj2� ju� vj2

2jujjvj
�
juj2Cjvj2� 4

2jujjvj
:

The bound .juj2Cjvj2�4/=.2jujjvj/ is convex as a function of juj and jvj individ-
ually, and hence it is maximized at one of the vertices of the square Œ2; 2.1C "/�2.
In fact, the maximum occurs when juj D jvj D 2.1C "/, in which case the bound
becomes

1�
1

2.1C "/2
: �

LEMMA 4.2. There are at most 196560 nearly minimal vectors in ƒ.

Proof. This lemma is a straightforward application of the linear programming
bounds for spherical codes (see Chapter 9 of [CS99], or Appendix B for a brief
summary). Let

f".x/DK".xC 1/

�
xC

1

2

�2�
xC

1

4

�2
x2
�
x�

1

4

�2 �
x�

�
1�

1

2.1C "/2

��
;

where the constant K" is chosen so that f" has zeroth ultraspherical coefficient 1.
(The normalization is irrelevant for this proof, but it will be important later in the
paper, so we use it here for consistency.) If " were 0, this polynomial would be the
one used to solve the kissing problem exactly in R24 (see Chapter 13 of [CS99]).
With the current value of ", the polynomial f" has nonnegative ultraspherical
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coefficients and still proves that there are fewer than 196561 spheres in any spherical
code in R24 with minimal angle as in Lemma 4.1. (We check this assertion in the
computer file verifyrest.txt. In fact, the bound is less than 196560C 10�19.)
Thus, there can be at most 196560 nearly minimal vectors in ƒ. �

In addition to the definition of " above, set

�D 3:981 � 10�13;

� D 3:219 � 10�12; and

! D 1:703 � 10�11:

PROPOSITION 4.3. Every nonzero vector in ƒ has length in�
2; 2.1C"/

�
[
�p
6.1��/;

p
6.1C�/

�
[
�p
8.1��/;

p
8.1C�/

�
[
�p
10.1�!/;1

�
:

Proof. By the Poisson summation formula,X
x2ƒ

f .x/D
X
t2ƒ�

yf .t/:

Because ƒ is at least as dense as ƒ24 (and has covolume 1), all nonzero vectors
x 2ƒ satisfy jxj � 2. Because r � 2.1C "/, by Lemma 4.2 there can be at most
196560 vectors in ƒ with 2� jxj � r . Within that range, f is a decreasing function
of the radius, and we have

196560f .2/ < 1:644104221 � 10�30

(recall from �3 that f .2/ denotes the common value f .x/ with jxj D 2).
The key properties of f are f .0/ D yf .0/ D 1, f .x/ � 0 for jxj � r , and

yf .t/� 0 for all t . It follows that

1C 1:644104221 � 10�30C
X
x2N

f .x/� 1;

where N is the set of vectors in ƒ at which f is negative. No vector in ƒ can occur
within any region on which f is less than .1=2/.�1:644104221/ � 10�30; the extra
factor of 2 comes from the fact that f .�x/D f .x/ since f is a radial function (if
x 2 N then �x 2 N as well). That rules out all radii in the set�
2.1C "/;

p
6.1��/

�
[
�p
6.1C�/;

p
8.1� �/

�
[
�p
8.1C �/;

p
10.1�!/

�
:

In the computer file verifyf.txt we prove this by examining the radial derivative
of f . �

Much of the rest of the proof would still work if ", �, �, and ! were somewhat
larger. The two main places where they must be small are the final inequality (9.4)
and the intersection number calculations in Subsection 6.2 (as well as the bounds
used there). In each case they could be slightly larger, but not by a factor of 100.
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4.2. 196560 nearly minimal vectors. We can now show that there are exactly
196560 nearly minimal vectors. We know from Lemma 4.2 that there are at most
196560 of them. For the other direction, a lower bound greater than 196559, we
need a new kind of linear programming bound. Recall that we have shown that
all nonzero vectors in ƒ are either nearly minimal or have lengths greater than
p
6.1��/.

Suppose we knew that all nonzero vectors either have length exactly 2 or at
least
p
6. (We will first explain our method under these overly optimistic hypotheses.

Lemma 4.4 will then apply it using the actual bounds we have proved.) One might
hope to count the nearly minimal vectors using a Schwartz function gWR24! R

such that g.x/ � 0 for jxj �
p
6, yg.t/ � 0 for all t , and g.2/ > 0. Given such a

function, Poisson summation implies thatX
x2ƒ

g.x/D
X
t2ƒ�

yg.t/;

and hence
g.0/CNg.2/� yg.0/

if there are N minimal vectors. Thus, N � .yg.0/�g.0//=g.2/. We conjecture that
g can be chosen so that .yg.0/�g.0//=g.2/D 196560, which is the largest possible
value because the Leech lattice has 196560 minimal vectors. We can construct
functions that come quite close to this bound, and will use one of them to prove the
following lemma.

LEMMA 4.4. There are more than 196559 nearly minimal vectors in ƒ.

Proof. Define z1; : : : ; z10 by zi D b4�.i C 1/108c=108. In other words, they
have the following values:

i 1 2 3 4 5
zi 25.13274122 37.69911184 50.26548245 62.83185307 75.39822368

i 6 7 8 9 10
zi 87.96459430 100.53096491 113.09733552 125.66370614 138.23007675

There are unique coefficients a1; : : : ; a37 such that

1C

37X
iD1

aiL
11
i .x/

has a single root at z2 and a double root at zi for i � 3, and

1C

37X
iD1

.�1/iaiL
11
i .x/

has a double root at each zi for i � 1. Neither polynomial has any other nonnegative
roots. (We check this in the computer file verifyg.txt using Sturm’s theorem,
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except that we do not check the uniqueness of the coefficients because we do not
require it.)

Define gWR24! R by

g.x/D

 
1C

37X
iD1

aiL
11
i .2�jxj

2/

!
e��jxj

2

:

It follows that

yg.t/D

 
1C

37X
iD1

.�1/iaiL
11
i .2�jxj

2/

!
e��jxj

2

:

We have g.x/� 0 for jxj �
p
6.1��/, because z2 < 2� � 6.1��/2, the function

g changes sign only at z2, and g.0/ > 0. For all t , we have yg.t/� 0.
Apply Poisson summation to g, to deduceX

x2ƒ

g.x/D
X
t2ƒ�

yg.t/:

Applying the two inequalities above shows that

g.0/C
X
x2M

g.x/� yg.0/;

where M is the set of nearly minimal vectors. The function g.x/ is positive and a
decreasing function of jxj on the interval Œ2; 2.1C "/�, so

g.0/CjMjg.2/� yg.0/:

However,
yg.0/�g.0/

g.2/
> 196559;

so there are more than 196559 nearly minimal vectors. (All these inequalities are
checked in verifyg.txt.) �

Thus, there must be exactly 196560 nearly minimal vectors, as desired. We
conjecture that this method could be used to recover each of the coefficients of the
Leech lattice’s theta series, but we will not need that for our proof.

5. Inner products in the spherical code

We now continue to study the polynomial

f".x/DK".xC 1/

�
xC

1

2

�2 �
xC

1

4

�2
x2
�
x�

1

4

�2 �
x�

�
1�

1

2.1C "/2

��
from the previous section.
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Note that

1�
1

2.1C "/2
<
1

2
C ":

Thus, all the inner products except 1 in the spherical code Cƒ are at most 1=2C ".
We seek bounds for how far from 0;˙1=4;˙1=2;˙1 they can be. The ˙1 cases
must be exact, because of Lemma 4.1 and the fact that u 2 Cƒ if and only if
�u 2 Cƒ (i.e., the code is antipodal).

Because the zeroth ultraspherical coefficient of f" is 1, it follows from the
usual proof of the linear programming bounds for spherical codes (see Appendix B)
that

196560f".1/C
X
x¤y

f".hx; yi/� 196560
2;

where the sum is over vectors in the spherical code. Because the four inner products
hx; yi, h�x;�yi, hy; xi, and h�y;�xi are all equal, and all the terms in the sum
are nonpositive, we see that no term in the sum can be less than

1965602� 196560f".1/

4
;

which is approximately �1:99 � 10�15.
Now a short calculation implies that all the inner products must be within

6:411 � 10�9 of one of the numbers 0;˙1=4;˙1=2;˙1. The exponent is only 9
because f" has double roots, and one can stray quite far from a double root without
substantially changing the function’s value.

In the rest of the paper, we make the following definition: let

� D max
u;v2Cƒ

minfjhu; vi �˛j W ˛ 2 Sg;

where S D f0;˙1=4;˙1=2;˙1g. In other words, � is the maximum “error” in the
inner products. We have just shown that � � 6:411 � 10�9. We will improve the
upper bound for � substantially, and ultimately we will show � D 0.

5.1. Better bounds for � . Recall that we computed in Section 4.1 that vectors
ofƒwith length close to

p
6must have length in the interval

�p
6.1��/;

p
6.1C�/

�
.

Therefore if we have nearly minimal vectors u; v with hu; vi � 1 (with error less
than 10�3, say), then we see that ju� vj �

p
6. Therefore

6.1��/2 � hu; uiC hv; vi � 2hu; vi � 6.1C�/2:

In addition we have
4� hu; ui � 4.1C "/2:

Therefore
8� 6.1C�/2 � 2hu; vi � 8.1C "/2� 6.1��/2;
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so
4� 3.1C�/2

4.1C "/2
�

�
u

juj
;
v

jvj

�
� .1C "/2�

3

4
.1��/2:

Similarly we get for hu; vi � 0 that

1� .1C �/2

.1C "/2
�

�
u

juj
;
v

jvj

�
� .1C "/2� .1� �/2;

and for hu; vi � 2 that

2� .1C "/2

2.1C "/2
�

�
u

juj
;
v

jvj

�
� .1C "/2�

1

2

because 2 � ju� vj � 2.1C "/. Combining these (and if necessary replacing v
with �v), we find that for u¤˙v, the inner product hu=juj; v=jvji differs from
an element of f0;˙1=4;˙1=2g by at most 6:43801 � 10�12. We conclude that the
error � in the inner products is at most 6:43801 � 10�12.

However, we will be able to get much better bounds in Section 7, once we
have shown that the spherical code Cƒ gives us an association scheme.

6. Association schemes

We would like to turn the 196560 points in the spherical code Cƒ into a 6-class
association scheme by grouping pairs according to their approximate inner products.
(See Appendix B for background on association schemes.) It is not clear that this in
fact defines an association scheme, but we will show that it does. Furthermore, we
will show that this association scheme is isomorphic to the one derived from ƒ24.
To achieve this, we show that the intersection numbers are the same as in ƒ24. That
will also show that it is an association scheme, by showing that the intersection
numbers are independent of the pair of points. We use the same techniques as
[DGS77], but we need to keep track of error bounds.

6.1. Spherical design. First, we show that Cƒ is nearly a spherical 10-design.
(See Appendix B for background on spherical designs.) Let

Ci .x/D
C 11i .x/

C 11i .1/
�

�22Ci
22

�
C

�21Ci
22

�
vol.S23/

:

The advantage of this normalization of the ultraspherical polynomials is that for
every finite subset C of S23,

X
x;y2C

Ci .hx; yi/D

ˇ̌̌̌
ˇX
z2C

evi .z/

ˇ̌̌̌
ˇ
2

;
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where evi .z/ denotes the evaluation at z map in the dual space to the i-th degree
spherical harmonics. Although this fact is well known (e.g., it is equivalent to
Theorem 9.6.3 in [AAR99]), we will explain it here for completeness, because the
correct normalization is important for our application.

LEMMA 6.1. If C is a finite subset of S23, then

X
x;y2C

Ci .hx; yi/D

ˇ̌̌̌
ˇX
z2C

evi .z/

ˇ̌̌̌
ˇ
2

:

Proof. Let d be the dimension of the space of spherical harmonics of degree
i , and let S1; : : : ; Sd be an orthonormal basis of that space. By Theorem 9.6.3 of
[AAR99],

dX
jD1

Sj .w/Sj .z/D Ci .hw; zi/:

Let f D
P
j ajSj be any spherical harmonic of degree i . Then

.evi .z//.f /D
dX
jD1

ajSj .z/

D

dX
jD1

Sj .z/

Z
S23

Sj .w/f .w/ dw

D

Z
S23

0@ dX
jD1

Sj .w/Sj .z/

1Af .w/ dw
D

Z
S23

Ci .hw; zi/f .w/ dw:

Thus,  X
z2C

evi .z/

!
.f /D

Z
S23

 X
z2C

Ci .hw; zi/

!
f .w/ dw:

In other words, applying the element
P
z2C evi .z/ of the dual space is the same as

taking the inner product with

w 7!
X
z2C

Ci .hw; zi/:
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It follows that ˇ̌̌̌
ˇX
z2C

evi .z/

ˇ̌̌̌
ˇ
2

D

Z
S23

 X
z2C

Ci .hw; zi/

!2
dw

D

X
x;y2C

Z
S23

Ci .hw; xi/Ci .hw; yi/ dw

D

X
x;y2C

.evi .x//.w 7! Ci .hw; yi//

D

X
x;y2C

Ci .hx; yi/;

as desired. �

The following lemma asserts that Cƒ is nearly a spherical 10-design:

LEMMA 6.2. If gWS23! R is a polynomial of total degree at most 10, thenˇ̌̌̌
ˇ̌ X
z2Cƒ

g.z/�
196560

vol.S23/

Z
S23

g.z/ dz

ˇ̌̌̌
ˇ̌� 2:50193 � 10�5jgj2;

where jgj2 denotes the norm on L2.S23/.

Proof. Without loss of generality we may assume that g is a harmonic poly-
nomial (for every polynomial on R24, there is a harmonic polynomial of equal or
lesser degree with the same restriction to S23; see equation (5) in [Hel00, p. 17]).
We will use the polynomial

f".x/DK".xC 1/

�
xC

1

2

�2 �
xC

1

4

�2
x2
�
x�

1

4

�2 �
x�

�
1�

1

2.1C "/2

��
from earlier in the paper. Recall that f" is normalized to have zeroth ultraspherical
coefficient 1 (by the standard normalization of the ultraspherical polynomials, not
the new normalization Ci ). If ci denotes the coefficient of Ci in f", then

196560f".1/�
X

x;y2Cƒ

f".hx; yi/

D 1965602C

10X
iD1

ci
X
x;y2C

Ci .hx; yi/

D 1965602C

10X
iD1

ci

ˇ̌̌̌
ˇ̌ X
z2Cƒ

evi .z/

ˇ̌̌̌
ˇ̌
2

;
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from which it follows that

10X
iD1

ci

ˇ̌̌̌
ˇ̌ X
z2Cƒ

evi .z/

ˇ̌̌̌
ˇ̌
2

� 196560f".1/� 196560
2 < 7:9775 � 10�15:

Therefore,

10X
iD1

ˇ̌̌̌
ˇ̌ X
z2Cƒ

evi .z/

ˇ̌̌̌
ˇ̌
2

�
�
7:9775 � 10�15

�
max
i

1

ci
< 6:25964 � 10�10:

We can now boundˇ̌̌̌
ˇ̌ X
z2Cƒ

g.z/�
196560

vol.S23/

Z
S23

g.z/ dz

ˇ̌̌̌
ˇ̌ :

Write g D
P10
iD0 gi , where gi is homogeneous of degree i . The integral cancels

with the g0 term in the sum, so we simply need to boundˇ̌̌̌
ˇ̌ 10X
iD1

X
z2Cƒ

gi .z/

ˇ̌̌̌
ˇ̌ :

For that, we use the definition of the norm and the Cauchy-Schwarz inequality to
deduce that ˇ̌̌̌

ˇ̌ 10X
iD1

X
z2Cƒ

gi .z/

ˇ̌̌̌
ˇ̌� 10X

iD1

ˇ̌̌̌
ˇ̌ X
z2Cƒ

evi .z/

ˇ̌̌̌
ˇ̌ jgi j2

�

vuuut 10X
iD1

ˇ̌̌̌
ˇ̌ X
z2Cƒ

evi .z/

ˇ̌̌̌
ˇ̌
2vuut 10X

iD1

jgi j
2
2

� 2:50193 � 10�5jgj2;

as desired. �

In fact, it follows immediately that Cƒ is nearly a spherical 11-design in the
same sense, because it is antipodal (if x 2 Cƒ then �x 2 Cƒ) and thus every
homogeneous polynomial of odd degree averages to 0 over Cƒ. However, we will
not need that fact.

It is worth pointing out for completeness that the minimal vectors in ƒ24 do
not form a spherical 12-design: if y is a minimal vector then the polynomial�

16� hx; yi2
� �
4� hx; yi2

�2 �
1� hx; yi2

�2
hx; yi2



1018 HENRY COHN and ABHINAV KUMAR

in x vanishes at each minimal vector but does not average to 0 over the sphere of
radius 2, because it is nonnegative on that sphere.

The constant 2:50193 �10�5 in Lemma 6.2 can be made somewhat smaller for
polynomials of total degree at most 8 (using the same proof), and that is the only
case we need later. However, the present bound suffices.

6.2. Intersection numbers. We will now use the fact that Cƒ is nearly a spher-
ical 10-design to determine the intersection numbers (still following the techniques
of [DGS77]). As a computational aid, it is useful to know the following formula
for averaging homogeneous polynomials over the sphere:

1

vol.S23/

Z
S23

g.z/ dz D

R
R24 g.z/e

�jzj2 dzR1
0 rdegge�r

2 vol.S23/r23 dr
:

In the exact case of ƒ24, we can compute the intersection numbers as follows.
For each x; y 2 C24 (the spherical code derived from the minimal vectors) with a
specified inner product, we need to determine the number of z 2C24 with specified
inner products with x and y. Let P
 .˛; ˇ/ denote this number when hx; yi D 
 ,
hx; ziD˛, and hy; ziDˇ. The cases 
D˙1 simply amount to the valencies, which
are determined automatically once the other intersection numbers are determined.
For instance P1.˛; ˇ/ D 0 unless ˛ D ˇ, and P1.˛; ˛/ D

P
ˇ P0.˛; ˇ/ once we

demonstrate that every vector in C24 has a vector in C24 orthogonal to it (which
follows from, say, showing that P˛.0; 0/ ¤ 0 for each ˛ ¤ ˙1). Hence we will
focus on the remaining cases, i.e., 
 ¤˙1.

For such a pair .x; y/ with hx; yi D 
 , a priori there are 49 unknowns
P
 .˛; ˇ/ for ˛; ˇ2f�1;�1=2;�1=4; 0; 1=4; 1=2; 1g. We first note thatP
 .1; ˛/D
P
 .˛; 1/D ı˛;
 , where ı is the Kronecker delta. Similarly P
 .�1; ˛/DP
 .˛;�1/
D ı
;�˛ . Thus we can eliminate˙1 from consideration, which reduces the problem
to finding only 25 unknowns. We will find 25 linear equations that determine these
values.

Consider the polynomials gi;j .z/D hz; xii hz; yij for i; j 2 f0; 1; : : : ; 4g. Let
S be the set f�1;�1=2;�1=4; 0; 1=4; 1=2; 1g. We then know thatX

˛;ˇ2S

˛iˇjP
 .˛; ˇ/D
196560

vol.S23/

Z
S23

gi;j .z/ dz;

because C24 is a spherical 11-design (although even an 8-design would suffice).
These equations can be solved to yield the unknown values of P
 .˛; ˇ/. Note that
the right-hand side does not depend on the choice of x and y, only on 
 D hx; yi.
Therefore we see that the solutions of these equations, which are the intersection
numbers, are independent of x; y and only depend on 
 . We solve one such system
of equations for each value of 
 , and the values of the intersection numbers are
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P0.0; 0/D 43164 P0.0; 1=2/D 2464 P0.0; 1=4/D 22528

P0.1=2; 1=2/D 44 P0.1=2; 1=4/D 1024 P0.1=4; 1=4/D 11264

P1=2.0; 0/D 49896 P1=2.0; 1=2/D 891 P1=2.0; 1=4/D 20736

P1=2.1=2; 1=2/D 891 P1=2.1=2;�1=2/D 1 P1=2.1=2; 1=4/D 2816

P1=2.1=2;�1=4/D 0 P1=2.1=4; 1=4/D 20736 P1=2.1=4;�1=4/D 2816

P1=4.0; 0/D 44550 P1=4.0; 1=2/D 2025 P1=4.0; 1=4/D 22275

P1=4.1=2; 1=2/D 275 P1=4.1=2;�1=2/D 0 P1=4.1=2; 1=4/D 2025

P1=4.1=2;�1=4/D 275 P1=4.1=4; 1=4/D 15400 P1=4.1=4;�1=4/D 7128

Table 1. Intersection numbers for the Leech lattice minimal vectors.

tabulated in Table 1, which is a complete list modulo the symmetries

P
 .˛; ˇ/D P
 .ˇ; ˛/D P
 .�˛;�ˇ/D P�
 .˛;�ˇ/:

(These numbers are of course known, but they are not tabulated in standard refer-
ences such as [CS99], so we record them here for convenience.)

What happens when we are not necessarily dealing with exactlyƒ24, but rather
with ƒ? Suppose we have x; y 2 Cƒ and we want to determine the number of
z 2 Cƒ with specified approximate inner products with them. Let zP
 .˛; ˇ/ denote
the intersection numbers for Cƒ (which may depend on x and y); here we use ˛,
ˇ, and 
 to denote exact elements of f0;˙1=4;˙1=2;˙1g, and the inner products
from Cƒ are required to be approximately equal to them. Then we haveX

˛;ˇ2S

˛iˇj zP
 .˛; ˇ/D
X

w2Cƒ;hw;xi�˛;hw;yi�ˇ

˛iˇj

�

X
w2Cƒ

hw; xii hw; yij

D

X
w2Cƒ

gi;j .w/

�
196560

vol.S23/

Z
S23

gi;j .z/ dz

�
196560

vol.S23/
Gi;j .
/;

where

Gi;j .
/D

Z
S23

hz; uii hz; vij dz

with hu; vi D 
 (recall that hx; yi � 
 ).
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If these approximations are close enough, we should get about the same values
for zP
 .˛; ˇ/ as we did forP
 .˛; ˇ/, and this will show that the intersection numbers
must be the same.

LEMMA 6.3. Let ˛; ˇ 2 f0;˙1=4;˙1=2;˙1g and a; b 2 Œ�.1=2C�/; 1=2C
��[f˙1g with maxfja�˛j; jb�ˇjg � � < 0:1. Then for i; j � 0,

jaibj �˛iˇj j � .1C 2�/�:

Proof. We begin by bounding j˛i � ai j. For i D 0 or ˛ 2 f˙1g, ˛i D ai , so
we can assume that i > 0 and ˛ 2 f0;˙1=4;˙1=2g. Then

˛i � ai D .˛� a/

i�1X
kD0

˛kai�1�k :

If we apply the triangle inequality (together with j˛�aj � � and j˛j; jaj � 1=2C� ),
we find that

(6.1) j˛i � ai j � i.1=2C �/i�1�:

The function n.1=2C �/n�1 on nonnegative integers attains its maximum value
when nD 2, from which it follows that j˛i � ai j � .1C 2�/� . Note that this is the
special case of the lemma in which ˇ D b D˙1. Thus, we can henceforth assume
that neither ˇ nor b is˙1, and by symmetry we can assume the same for ˛ and a.

For the general case, we notice that

˛iˇj � aibj D .˛i � ai /ˇj C ai .ˇj � bj /;

so

j˛iˇj � aibj j � j˛i � ai j � jˇj jC jai j � jˇj � bj j:

It now follows from (6.1) that

j˛iˇj � aibj j � .i C j /.1=2C �/iCj�1�:

The right-hand side is at most .1C 2�/� , as before. �

Now we need to make precise the errors in all three approximations inX
˛;ˇ2S

˛iˇj zP
 .˛; ˇ/�
X
w2Cƒ

gi;j .w/

�
196560

vol.S23/

Z
S23

gi;j .z/ dz

�
196560

vol.S23/
Gi;j .
/:
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The first follows from Lemma 6.3:ˇ̌̌̌
ˇ̌ X
˛;ˇ2S

˛iˇj zP
 .˛; ˇ/�
X
w2Cƒ

gi;j .w/

ˇ̌̌̌
ˇ̌� X

w2Cƒ

.1C 2�/� D 196560.1C 2�/�;

because j˛iˇj � aibj j � .1C 2�/� for hw; xi D a� ˛ and hw; yi D b � ˇ.
The second we have already estimated sufficiently well in Lemma 6.2, in terms

of jgi;j j2. Because jgi;j .z/j � 1 for all z, we have

jgi;j j2 �

q
vol.S23/D

s
24 �

�12

12Š
D

�6
p
19958400

:

It follows thatˇ̌̌̌
ˇ̌ X
w2Cƒ

gi;j .w/�
196560

vol.S23/

Z
S23

gi;j .z/ dz

ˇ̌̌̌
ˇ̌

�
�6

p
19958400

� 2:50193 � 10�5 < 5:3841 � 10�6:

Finally, one can check by straightforward computation of each case that if
hx; yi differs from one of �1=2;�1=4; 0; 1=4; 1=2 by at most � (where 0� � � 1/,
and 0� i; j � 4, then

196560

vol.S23/

Z
S23

gi;j .z/ dz

differs by at most 8190� from what it would be if � were zero. (In fact, if one
expands this quantity as a power series in � , then the sum of the absolute values of
the coefficients is at most 8190.) Therefore the error in the last approximation is at
most 8190� .

Thus X
˛;ˇ2S

˛iˇj zP
 .˛; ˇ/D
196560

vol.S23/
Gi;j .
/CDi;j ;

where

jDi;j j< 196560.1C 2�/� C 8190� C 5:3841 � 10
�6 < 6:7023 � 10�6:

As before the values of QP
 .˙1; ˛/ and QP
 .˛;˙1/ are known and are the same as
the corresponding P
 .˙1; ˛/ and P
 .˛;˙1/. Thus they serve as constants in the
equation and do not contribute to the error.

Let A be the matrix of coefficients for these equations. One can check that
jA�1j1D 7225. (Here, j � j1 denotes the1-norm on matrices, which is induced by
the `1 norm on vectors. It is the maximum over all rows of the sum of the absolute
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values of the elements in that row.) It follows that the intersection numbers in Cƒ
differ by at most

7225 � 6:7023 � 10�6 < 0:05

from those in C24. Because they must be integers, this proves that they are the same
as in C24 (in particular, they do not depend on the choice of x and y, although what
we have proved is far stronger).

The computer file verifyrest.txt carries out all these calculations (as well
as those from several other points in this paper). In it, we assume without loss of
generality that 
 > 0 because zP
 .˛; ˇ/D zP�
 .˛;�ˇ/.

6.3. Uniqueness of association scheme. The spherical code C24 determines
a 6-class association scheme A24 if we partition elements .x; y/ of C24 � C24
with x ¤ y according to their inner products hx; yi. We can similarly form the
association scheme Aƒ of the spherical code Cƒ coming from ƒ, where this time
we group elements according to their approximate inner products. We wish to show
that these two association schemes are isomorphic. We will need to know that this
6-class association scheme A24 is uniquely determined by its size, valencies, and
intersection numbers. That can be proved as follows.

LetN D 196560, let C D 6=N D 1=32760, and let u1; : : : ; uN be the minimal
vectors of the Leech lattice. The following lemma restates the (known) fact thatƒ24
is strongly eutactic. We provide a proof here to make this article more self-contained.

LEMMA 6.4. For every x 2 R24,

hx; xi D C

NX
iD1

hx; ui i
2:

Proof. Because the minimal vectors of ƒ24 form a spherical 2-design, the
polynomial y 7! hx; yi2 has the same average over fu1; : : : ; uN g and the sphere
of radius 2 in R24, which is 4 times the average over the unit sphere. To average
over the unit sphere, it will be convenient to work with orthonormal bases of R24.
For each orthonormal basis e1; : : : ; e24, we have jxj2 D

P
i hx; ei i

2. If we average
over all orthonormal bases, then each of e1; : : : ; e24 is uniformly distributed over
the unit sphere, and therefore the average of y 7! hx; yi2 over the unit sphere is
jxj2=24. It follows that the average over the sphere of radius 2 is jxj2=6, so

1

N

NX
iD1

hx; ui i
2
D jxj2=6;

as desired. �
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THEOREM 6.5. There is only one 6-class association scheme with the same
size, valencies and intersection numbers as the association scheme of minimal
vectors of the Leech lattice.

Proof. Let AD fai W 1� i � 196560g be such an association scheme, with A2

partitioned into classes as

A2
DA1[A1=2[A1=4[A0[A�1=4[A�1=2[A�1

(labeled according to the corresponding inner products in the Leech case, when the
minimal vectors are rescaled to lie on the unit sphere).

Let A1; A1=2; : : : ; A�1 denote the adjacency matrices of the identity relation
and the six classes; in other words,

.A˛/i;j D

(
1 if .ai ; aj / 2A˛; and

0 otherwise:

These matrices are symmetric and commute with each other. Their span forms
an algebra, called the Bose-Mesner algebra, whose product is determined by the
valencies and intersection numbers. (See [BH95, p. 755].) Namely,

A˛Aˇ D
X



P
 .˛; ˇ/A
 :

Furthermore, note that because the A˛’s have only 0 or 1 as entries, are not identi-
cally zero, and sum to the all 1’s matrix, they must be linearly independent. Thus,
the Bose-Mesner algebra is completely determined by the valencies and intersection
numbers, with no additional relations possible.

Let

P D 4C

�
A1C

1

2
A1=2C

1

4
A1=4�

1

4
A�1=4�

1

2
A�1=2�A�1

�
:

If the association scheme A comes from the Leech lattice, then P is C times the
Gram matrix of the 196560 minimal vectors (not rescaled to the unit sphere). We
claim that P is a projection matrix, i.e., P 2 D P . One way to check that is to use
the valencies and intersection numbers to compute P 2 and verify that it equals P .
That is somewhat cumbersome to check by hand, so we will instead give a longer
but conceptually simpler proof.

First, we check it in the case of the actual Leech lattice association scheme,
using Lemma 6.4. From

hx; xi D C

NX
iD1

hx; ui i
2
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it follows that

hx; yi D
1

2
.hxCy; xCyi � hx; xi � hy; yi/

D
C

2

NX
iD1

�
hxCy; ui i

2
� hx; ui i

2
� hy; ui i

2
�

D C

NX
iD1

hx; ui ihy; ui i:

Therefore the .i; j / entry of P 2 is

.P 2/i;j D C
2
NX
kD1

hui ; ukihuj ; uki D C hui ; uj i D Pi;j ;

so for the Leech lattice, P is a projection matrix. Because the structure of the
Bose-Mesner algebra is completely determined by the valencies and intersection
numbers, the same must always be true.

Thus, P is always a projection matrix (in fact, an orthogonal projection because
P is symmetric). The trace of P is 4C times the trace of A1, because no other A˛’s
have entries on the diagonal. The trace is therefore 4NC D 24, so P projects onto
a 24-dimensional subspace.

Consider the images of the N D 196560 unit vectors (namely e1; : : : ; e196560)
under P . Their inner products are simply the entries of P , since hPei ; P ej i D
hei ; P

2ej i D hei ; P ej i D Pi;j , and if one rescales the vectors by 1=
p
4C so that

they lie on the unit sphere, then the result is a 196560-point kissing configuration
in R24. (Appendix B reviews the kissing problem.) The only such configuration is
the kissing configuration of the Leech lattice (see [BS81], which was reprinted as
Chapter 14 of [CS99]), up to orthogonal transformations of R24. Thus, P=C must
be the Gram matrix of the minimal vectors in the Leech lattice.

It follows that A is isomorphic to A24 (in particular, ai 7! P.ei /=
p
4C yields

an isomorphism). Thus, A24 is determined by its size and intersection numbers, as
desired. �

7. Inner product bounds

We will first use the intersection numbers and isomorphism of association
schemes to prove better bounds on � . We already know that for all nearly minimal
vectors u,

4� hu; ui � 4.1C "/2 < 4C 9":
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LEMMA 7.1. For nearly minimal vectors u; v with hu; vi � 2,

2� 5"� hu; vi � 2C 9":

Proof. We know that u� v is nearly minimal, so

hu� v; u� vi � 4.1C "/2:

It follows that

2hu; vi � �4.1C 2"C "2/Chu; uiC hv; vi

� 8� 4.1C 2"C "2/

� 4� 10";

which gives us one of the inequalities. Similarly,

hu� v; u� vi � 4

gives us

2hu; vi � �4Chu; uiC hv; vi

� �4C 8.1C 2"C "2/

� 4C 18";

which is the other inequality. �

Note that these inequalities could be made slightly sharper, but we prefer
simpler numbers.

LEMMA 7.2. For nearly minimal vectors u; v with hu; vi � 0,

�14"� hu; vi � 14":

Proof. Since P0.1=2; 1=2/ D 44 ¤ 0, we can find w with hu;wi � 2 and
hv;wi � 2. Then v�w is nearly minimal and we know from the previous lemma
that

2� 5"� hu;wi � 2C 9"
and

�2� 9"� hu; v�wi � �2C 5":

Adding these inequalities gives us the result. �

LEMMA 7.3. If u; v 2 ƒ24 are minimal vectors with hu; vi D 1, then there
are minimal vectors w1, w2, and w3 satisfying hu;wi i D 2, hv;wi i D 0, and
hwi ; wj i D 0 for i ¤ j .

Proof. We will use the fact that the automorphism group Co0 of the Leech
lattice acts transitively on pairs of minimal vectors with a fixed inner product
between them (see Theorem 3.13 in [Tho83] for a proof). Thus it suffices to
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consider the case of a particular pair .u; v/ of minimal vectors with inner product 1.
Let

uD
1
p
8
.1; 1; : : : ; 1; 1;�3/;

v D
1
p
8
.0; 0; : : : ; 0;�4;�4/;

w1 D
1
p
8
.2; 2; 2; 2; 2; 2; 2; 2; 0; 0; : : : ; 0/;

w2 D
1
p
8
.0; 0; : : : ; 0; 4;�4/; and

w3 D
1
p
8
.0; 0; 0; 0; 0; 0; 0; 0; 2; 2; 0; 0; 2; 2; 0; 0; 2; 2; 0; 0; 2; 2; 0; 0/:

(see [CS99, p. 131] for a description of the minimal vectors). It is easily checked
that the inner products are as desired. �

LEMMA 7.4. For nearly minimal vectors u; v with hu; vi � 1,

1� 72"� hu; vi � 1C 75":

Proof. We know that the association schemes of the Leech lattice ƒ24 and our
given lattice ƒ are the same. Let u0; v0 be the corresponding vectors in the Leech
lattice (corresponding via some fixed isomorphism of association schemes). Since
hu0; v0iD 1, we know that we can findw01, w02, andw03 in the Leech lattice satisfying
hu0; w0i i D 2, hv0; w0i i D 0, and hw0i ; w

0
j i D 0 by Lemma 7.3. Let w1; w2; w3 be

the corresponding vectors in ƒ. Then the relations hu;wi i � 2, hv;wi i � 0, and
hwi ; wj i � 0 must hold in ƒ. It follows by a short computation that 2u� v�w1�
w2�w3 is a nearly minimal vector. Therefore

4� h2u� v�w1�w2�w3; 2u� v�w1�w2�w3i

D 4hu; uiC hv; viC
X
i

hwi ; wi i � 4hu; vi

� 4
X
i

hu;wi iC 2
X
i

hv;wi iC 2
X
i<j

hwi ; wj i:

It follows that

4hu; vi � �4C 4hu; uiC hv; viC
X
i

hwi ; wi i

� 4
X
i

hu;wi iC 2
X
i

hv;wi iC 2
X
i<j

hwi ; wj i

� �4C 8.4C 9"/� 12.2� 5"/C 12.14"/:
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Thus, hu; vi � 1C 75": Similarly,

4C 9"� h2u� v�w1�w2�w3; 2u� v�w1�w2�w3i

D 4hu; uiC hv; viC
X
i

hwi ; wi i � 4hu; vi

� 4
X
i

hu;wi iC 2
X
i

hv;wi iC 2
X
i<j

hwi ; wj i:

It follows that

4hu; vi � �4� 9"C 4hu; uiC hv; viC
X
i

hwi ; wi i

� 4
X
i

hu;wi iC 2
X
i

hv;wi iC 2
X
i<j

hwi ; wj i

� �4� 9"C 8.4/� 12.2C 9"/C 12.�14"/:

Thus, hu; vi � 1� .285=4/"� 1� 72". �
We have proved the following proposition.

PROPOSITION 7.5. If u; v 2ƒ are nearly minimal vectors, then hu; vi differs
from an element of f0;˙1;˙2;˙4g by at most 75".

8. A basis of nearly minimal vectors

We wish to prove that ƒ must have a basis of nearly minimal vectors. We
first prove that the nearly minimal vectors span ƒ. Let x 2ƒ be as small a vector
as possible without being in the span of the nearly minimal vectors. Then there
does not exist a nearly minimal vector u such that ju� xj < jxj. We know that
jxj >

p
6.1��/ and 2 � juj � 2.1C "/ for each nearly minimal u. Because

ju� xj � jxj, we have

hu; xi � juj2=2� 2.1C "/2:

Consider the unit vectors x=jxj and u=juj. We have�
u

juj
;
x

jxj

�
�

2.1C "/2
p
6.1��/ � 2

<
1

2
:

If we extend the spherical code Cƒ of vectors of the form u=juj to Cƒ[fx=jxjg,
then it will contain 196561 vectors without changing the minimal angle, and we
have seen that that is impossible. Thus, the nearly minimal vectors do span the
lattice.

The same argument (with " D � D 0) also proves the following fact: if the
kissing configuration of a lattice is an optimal kissing configuration for its dimension,
then the lattice is spanned by its minimal vectors.
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Now let B be 1=
p
8 times the matrix0BBBBBBBBBBBBBBBBBBBBBBBB@

4 �4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
2 0 2 0 2 0 0 2 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0
2 0 0 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0
2 2 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0
0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0
0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
�3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

The rows of B form a basis of ƒ24 consisting of minimal vectors (see Fig-
ure 4.12 in [CS99]). One can compute the inverse matrix and check that its entries
are integers divided by

p
8. The largest entry of B�1, in absolute value, is �13=

p
8,

so
ˇ̌
B�1

ˇ̌
1
� 24 � 13=

p
8.

Let u01; : : : ; u
0
24 be the rows of B . Every minimal vector u0 is a linear combi-

nation
P
i ciu

0
i of this basis, and the coefficients are bounded by

jci j �
ˇ̌
B�1

ˇ̌
1
ju0j1 �

�
24 � 13=

p
8
�
�
�
4=
p
8
�
D 156:

Consider the corresponding nearly minimal vectors u1; : : : ; u24 of ƒ (under an
isomorphism of association schemes). We next prove that they form a basis.

We need only check that u1; : : : ; u24 span the nearly minimal vectors of ƒ. If
u is any nearly minimal vector, the isomorphism of association schemes gives us
numbers c1; : : : ; c24 such that u should be

P
i ciui (i.e., the corresponding equality

is true for the Leech lattice). We first check that
P
i ciui is a nearly minimal vector,

and then that it equals u. To check that it is nearly minimal, we just need to know
that all inner products of nearly minimal vectors are within 75" of what they are in
the Leech lattice (Proposition 7.5). When we compute the norm of

P
i ciui , each

inner product hui ; uj i could be off by as much as 75", and multiplied by up to 1562.
There are 242 such pairs, for a total error of at most 1562 �242 �75"D 1051315200",
which is minuscule (less than 10�17). Because the next smallest vectors beyond the
nearly minimal vectors have norms at least

p
6.1��/, we conclude that

P
i ciui

must be nearly minimal.
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To check that u D
P
i ciui , we need only compute their inner product and

verify that it is approximately 4. This time, the maximum error is 24 � 156 � 75",
which is again small enough by a huge margin.

Thus, u1; : : : ; u24 form a basis of ƒ, and their inner products are all within
75" of what they would be in the Leech lattice.

9. Local optimality of ƒ24

In this section, we will prove in detail that the Leech lattice is locally optimal,
and provide quantitative bounds. We will follow the notation and techniques from
[GL87] closely. The basic result is Voronoi’s theorem, which says that a lattice is a
local maximum for sphere packing density if and only if it is perfect and eutactic.
In this section of the paper only, ƒ will denote an arbitrary lattice in Rn.

It is convenient to work in terms of the quadratic form Q associated to ƒ.
Choose a lattice basis fbig, and for a vector x 2 Rn (with coordinates x1; : : : ; xn)
define

Q.x/D

*
nX
iD1

xibi ;

nX
iD1

xibi

+
:

The matrix of Q is S D .si;j /ni;jD1, where si;j D hbi ; bj i.
Let M denote the minimal nonzero norm of ƒ, and let u1; : : : ; uN 2 Zn be

the coefficient vectors of the minimal vectors in terms of the basis fbig. Thus, for
1� i �N ,

Q.ui /DM:

Recall that Q is perfect if these equations completely determine the quadratic form
Q. Equivalently, every quadratic form that vanishes at u1; : : : ; uN must vanish
everywhere.

Let D denote the determinant of S , and let QS D .Qsi;j /ni;jD1 denote the adjoint
matrix, where

Qsi;j D
@D

@si;j
:

Strictly speaking this is an abuse of notation, but of course it means we take the
partial derivatives of D as if the entries of S were variables, and then substitute
their actual values.

In other words, S QS is D times the identity matrix. (It might seem that a
transpose is missing, but note that all our matrices are symmetric.) Let QQ be the
quadratic form with matrix QS . Then ƒ is eutactic if there are positive numbers
d1; : : : ; dN such that for all x 2 Rn,

QQ.x/D

NX
kD1

dkhuk; xi
2:
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It is known thatƒ24 is perfect and eutactic, with d1D� � �Dd196560D1=32760.
For completeness we sketch a proof. Lemma 6.4 proves that the Leech lattice is
eutactic.

LEMMA 9.1. The Leech lattice ƒ24 is perfect.

Proof. Suppose Q is a quadratic form that vanishes on the minimal vectors.
Then the symmetric bilinear form B corresponding to Q satisfies B.ui ; ui / D 0.
We first show that B.u; v/D 0 for all minimal vectors u; v. If hu; vi D 2 we use
the fact that u� v is minimal to see that

B.u; v/D
1

2
.B.u; u/CB.v; v/�B.u� v; u� v//D 0:

If hu; vi D 0, then since P0.1=2;�1=2/D 44¤ 0, we can find w with hu;wi D 2
and hv;wi D �2. Then vCw is nearly minimal and we know

0D B.u;w/D B.u; vCw/I

subtracting these two gives us the result. If hu; vi D 1, then by Lemma 7.3 there are
minimal vectors w1, w2, and w3 with hu;wi i D 2, hv;wi i D 0, and hwi ; wj i D 0
for i ¤ j . It follows that 2u� v�w1�w2�w3 is a minimal vector. Therefore

0D B.2u� v�w1�w2�w3; 2u� v�w1�w2�w3/

D 4B.u; u/CB.v; v/C
X
i

B.wi ; wi /� 4B.u; v/

� 4
X
i

B.u;wi /C 2
X
i

B.v;wi /C 2
X
i<j

B.wi ; wj /

D�4B.u; v/C 0:

This forces B.u; v/D 0. Finally, the result for hu; vi < 0 follows from the above
because B.u; v/D�B.u;�v/ and hu;�vi> 0.

To conclude the proof, we use the above information on a basis of minimal
vectors to see that B is identically zero, and hence Q is as well. �

We begin by proving one direction of Voronoi’s theorem. This proof is the one
given in [GL87, §39], where one can also find a proof of the converse. We give
the details of this direction because we will need to examine it in detail to derive
quantitative estimates, and because it is the only direction needed here.

THEOREM 9.2 (Voronoi [Vor08]). Ifƒ is perfect and eutactic, then it is a strict
local maximum for density.

Proof. We wish to show that if ƒ is perturbed slightly (other than simply by
scaling and isometries), thenD�1=nM must strictly decrease. We perturb SD .si;j /
by changing it to .si;j C �ti;j /, where tj;i D ti;j and � > 0 is small. We assume
.ti;j / is not identically zero. Let Q� denote the corresponding quadratic form, and
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let D� be the determinant of the matrix .si;j C �ti;j /. We will show that for any
fixed matrix .ti;j / not proportional to S , if � is sufficiently small, then there exists a
k such that

D�1=n� Q�.uk/ < D
�1=nM:

Because Q�.uk/ is no smaller than the minimal norm of Q� (i.e., the minimum
value of Q� on Zn n f0g), this inequality is what we want.

First, note that without loss of generality we can assume that

(9.1)
X
i;j

Qsi;j ti;j D 0:

The reason is that X
i;j

Qsi;j si;j D nD ¤ 0:

Every perturbation can be broken up into the sum of a perturbation proportional to
S and a perturbation satisfying (9.1). If we deal with the latter, then we can ignore
the former (which rescales the lattice but does not change its packing density).

Thus, we assume (9.1) from now on. Then the determinant D� is given by

D� D det.si;j C �ti;j /D det.si;j /C �
X
i;j

ti;j Qsi;j CO.�
2/

DDCO.�2/ as �! 0:

Because ƒ is eutactic,

QQ.x/D

NX
kD1

dkhuk; xi
2

for all x 2 Rn. The associated symmetric bilinear form is

NX
kD1

dkhuk; xihuk; yi;

from which it follows that

Qsi;j D

NX
kD1

dk.uk/i .uk/j ;

where .uk/i denotes the i -th coefficient of uk . Therefore

NX
kD1

dk
X
i;j

ti;j .uk/i .uk/j D
X
i;j

Qsi;j ti;j D 0:
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Because ƒ is perfect, the inner sum on the left-hand side in the above equation
cannot vanish for all k. Therefore, there exists a k for which it is negative, sayX

i;j

ti;j .uk/i .uk/j � �˛

with ˛ > 0. Then

Q�.uk/D
X

.si;j C �ti;j /.uk/i .uk/j �M � �˛;

and hence

D�1=n� Q�.uk/�D
�1=nM.1� �˛=M/.1CO.�2//�1=n <D�1=nM

if � is positive and small enough. This proves that ƒ is a strict local optimum for
density when .si;j / is perturbed in the direction of .ti;j /. In fact, the choices of
˛ and the implicit constant in the big-O can be made uniformly in .ti;j /, givenP
i;j jti;j j

2 D 1. Thus ƒ is a strict local optimum for density. �

We now compute numerical bounds on the perturbations. We use the same
basis of ƒ24 as before. The corresponding Gram matrix is0BBBBBBBBBBBBBBBBBBBBBBBB@

4 0 2 2 2 2 2 0 2 2 2 0 2 0 1 1 2 1 1 0 �1 0 0 �2
0 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 2 1 0 0 �1
2 2 4 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 1 1 1 0 0 �1
2 2 2 4 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 1 1 0 0 �1
2 2 2 2 4 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 0 0 �1
2 2 2 2 2 4 2 2 2 2 2 1 2 2 1 1 2 1 2 1 0 0 0 �1
2 2 2 2 2 2 4 2 2 2 2 1 2 1 2 1 2 1 1 2 0 0 0 �1
0 2 2 2 2 2 2 4 1 1 1 2 1 2 2 2 1 2 2 2 2 0 0 1
2 2 2 2 2 2 2 1 4 2 2 2 2 2 2 2 2 2 2 2 1 1 1 �1
2 2 2 2 2 2 2 1 2 4 2 2 2 2 1 1 2 2 1 1 0 1 0 �1
2 2 2 2 2 2 2 1 2 2 4 2 2 1 2 1 2 1 2 1 0 0 1 �1
0 2 2 2 1 1 1 2 2 2 2 4 1 2 2 2 1 2 2 2 2 1 1 1
2 2 2 2 2 2 2 1 2 2 2 1 4 2 2 2 2 1 1 1 1 1 1 �1
0 2 1 1 2 2 1 2 2 2 1 2 2 4 2 2 1 2 2 2 2 2 1 1
1 1 2 1 2 1 2 2 2 1 2 2 2 2 4 2 1 2 2 2 2 1 2 1
1 1 1 2 2 1 1 2 2 1 1 2 2 2 2 4 1 2 2 2 2 1 1 1
2 2 2 2 2 2 2 1 2 2 2 1 2 1 1 1 4 2 2 2 1 1 1 �1
1 1 2 1 2 1 1 2 2 2 1 2 1 2 2 2 2 4 2 2 2 2 1 1
1 1 1 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 4 2 2 1 2 1
0 2 1 1 2 1 2 2 2 1 1 2 1 2 2 2 2 2 2 4 2 1 1 1
�1 1 1 1 1 0 0 2 1 0 0 2 1 2 2 2 1 2 2 2 4 2 2 2

0 0 0 0 0 0 0 0 1 1 0 1 1 2 1 1 1 2 1 1 2 4 2 2
0 0 0 0 0 0 0 0 1 0 1 1 1 1 2 1 1 1 2 1 2 2 4 2
�2 �1 �1 �1 �1 �1 �1 1 �1 �1 �1 1 �1 1 1 1 �1 1 1 1 2 2 2 4

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

Suppose we assume that the Gram matrix entries are perturbed by �ti;j where
maxfjti;j jg � 1 (and (9.1) holds—we will eventually deal with the case where it
does not). Then, with the same notation as in the proof of Theorem 9.2,

D� �D D
X
T

�dimT det.T / det. QT /;
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where T ranges over all nonvacuous minors of .ti;j / and det. QT / is the corresponding
cofactor of the matrix S . (The D term corresponds to the case where T is vacu-
ous, i.e., contains no rows or columns.) This expansion follows from combining
the Laplace expansion (see [Mui60, §95]) with multilinearity, and is known as
Albeggiani’s theorem [Mui60, §96].

Now let dimT D k. Then j det.T /j � kk=2 by Hadamard’s inequality, since
the length of each row of T is at most

p
k (see (7.8.2) in [HJ85]). It follows that the

absolute value of the sum of �k det.T / det. QT / over k-dimensional T is bounded by
kk=2�kAk , where Ak is the sum of the absolute values of the .24� k/-dimensional
minors of the Gram matrix. For k � 3 we use the simple bound

Ak �
�24
k

�2
�
�
42C .24� k� 1/.22/

�.24�k/=2
(the first factor is the number of .24� k/� .24� k/ minors, and the second is the
above bound on the determinant of the cofactor, because the largest entry in each
row of S is 4 and the other entries are at most 2 in absolute value). For k D 2 we
explicitly compute the sum of absolute values of the 22� 22 minors, and find that it
is 818153. Putting all this together, we see that for 0 < � < 10�20,

(9.2) D� � 1� �
2
�
22=2 � 818153C 2 � 108

�
;

where the 2 � 108 term bounds the contribution from all higher powers of �. (Recall
that D D 1 for the Leech lattice.) See the computer file verifygram.txt for the
details of this calculation.

Next, we find an ˛ that works for any choice of ti;j such that maxfjti;j jg D 1.
This is done by linear programming as follows.

We find an ˛ > 0 such that for all .i0; j0/, and for all ti;j subject to the con-
straints�1� ti;j �1 for .i; j /¤ .i0; j0/, ti;j D tj;i , ti0;j0

D1, and
P
i;j Qsi;j ti;j D0,

the following inequality holds for some minimal vector uk:

X
i;j

ti;j .uk/i .uk/j � �˛:

We do the same for ti0;j0
D�1. All these linear programs can be solved by computer,

and it appears that ˛ D 1=23 works and is the largest possible value of ˛. However,
that is the result of floating point calculations that are not rigorous. We will be
content with proving (without computer assistance) that ˛ D 4=1055 satisfies these
properties. This weaker bound will suffice for our purposes and is proved in Section
10.
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We conclude that for every perturbation by ti;j where maxfjti;j jg D � andP
i;j Qsi;j ti;j D 0, there exists a k such that for 0 < � < 10�20,

(9.3)
D
�1=24
� Q�.uk/

D�1=24 �M
� .1� �=1055/

�
1� .2 � 108C 2 � 818153/�2

��1=24
:

We used here that M D 4 for ƒ24. The upper bound in (9.3) is strictly less than 1
when 0 < � < 10�20. (Note that for notational convenience we have absorbed the
factor � into the perturbations ti;j .)

The last remaining issue is that our perturbation may not satisfy
P
i;j Qsi;j ti;j

D 0. Suppose our perturbed matrix entries are si;j C �i;j . Let

�D
X
i;j

Qsi;j�i;j :

By Proposition 7.5, j�i;j j � 75". It follows that j�j � 152100", since the sum of
the absolute values of the entries of QS is 2028.

If we divide the quadratic form by 1C�=24, which is nonzero, then it is
equivalent to ƒ24 perturbed by

ti;j D
si;j C �i;j

1C�=24
� si;j ;

where now X
i;j

Qsi;j ti;j D 0;

because X
i;j

Qsi;j si;j D 24D D 24:

To conclude our proof, we need only check that jti;j j< 10�20. (Note that if ti;j D 0
for all i; j , then the perturbed quadratic form is proportional to the original one and
therefore equal to it because they have the same determinant.)

Using j�j � 152100", j�i;j j � 75", and jsi;j j � 4, we have

(9.4) jti;j j D

ˇ̌̌̌
�i;j � si;j�=24

1C�=24

ˇ̌̌̌
�
75"C 4 � 152100"=24

1� 152100"=24
< 1:8 � 10�22:

Because 1:8 �10�22<10�20, we find that the dense latticeƒ is close enough toƒ24
to conclude that ƒ is either the same as ƒ24 (up to isometries of R24) or strictly
less dense than ƒ24.

This completes the proof of our main theorem, except for the postponed
computation of ˛ in Section 10:

THEOREM 9.3. The Leech lattice is the unique densest lattice in R24, up to
scaling and isometries of R24.
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Note that the reason why scaling ambiguity appears in the theorem statement
but not in the above proof is that we fixed jƒj D 1.

10. Computation of ˛

Suppose i0; j0 2 f1; 2; : : : ; 24g and t D˙1. We wish to find a number ˛ > 0
such that whenever �1 � ti;j � 1 for .i; j / ¤ .i0; j0/, ti;j D tj;i , ti0;j0

D t , andP
i;j Qsi;j ti;j D 0, there is a k such thatX

i;j

ti;j .uk/i .uk/j � �˛:

We will see that we can take ˛ D 4=1055, whatever i0, j0, and t are.

LEMMA 10.1. Each minimal vector of the Leech lattice is contained in a set of
twenty-four orthogonal minimal vectors.

In fact, more is true: the minimal vectors can be partitioned into 4095 sets
f˙v1; : : : ;˙v24g with vi and vj orthogonal for i ¤ j . See footnote 3 of [Elk97,
p. 6] for an elegant proof.

Proof. Because the automorphism group of the Leech lattice acts transitively
on the minimal vectors, we need only verify that there exists a set of twenty-four
orthogonal minimal vectors. Let wi be the vector

1
p
8
.0; : : : ; 0; 4; 4; 0; : : : ; 0/;

where only coordinates i and i C 1 are nonzero, and let vi be the vector

1
p
8
.0; : : : ; 0; 4;�4; 0; : : : ; 0/:

These are all minimal vectors in the Leech lattice, and w1; v1; w3; v3; : : : ; w23; v23
is an orthogonal basis of R24. �

Let T denote the matrix .ti;j /. We will also write T .v/ D hv; T vi and
T .u; v/D hu; T vi. In these terms, our goal is to show that given the assumptions
on T , there is some k such that T .uk/� �˛.

We will make use of the following lemma, which depends only on the hypothe-
ses listed in its statement:

LEMMA 10.2. Let v1; : : : ; v24 be orthogonal minimal vectors in the Leech
lattice. If

P
i;j Qsi;j ti;j D 0, then

24X
iD1

T .vi /D 0:
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Proof. Let B be the matrix whose rows are the coordinates of v1; : : : ; v24 rela-
tive to the basis we have chosen for the Leech lattice. Then we see by orthogonality
that BSB t D 4I . Thus, S D 4B�1.B t /�1. It follows that

Tr.BTB t /D Tr.B tBT /D 4Tr.S�1T /D 4
X
i;j

Qsi;j ti;j D 0;

which implies
24X
iD1

T .vi /D 0: �

Let us rephrase our basic problem, and slightly weaken the hypotheses, as
follows. Suppose

P
i;j Qsi;j ti;j D 0, and we are given minimal vectors x; y such

that
hx; yi D ˇ 2 f˙4;˙2;˙1;˙0g

and T .x; y/ D t ¤ 0. We wish to find ˛ > 0 such that there must always exist a
minimal vector w with T .w;w/� �˛jt j under these hypotheses. We will apply it
with t D˙1. (Note that we are no longer assuming jti;j j � 1.)

If we prove a bound for a certain .ˇ; t/ we automatically get the same bound
of ˛ for the case of .�ˇ;�t / (just consider the pair .x;�y/ instead of .x; y/). Thus
it suffices to prove bounds of ˛ for the cases when ˇ is nonnegative.

LEMMA 10.3. If ˇ D 4 and t < 0 then we can take ˛ D 1.

Proof. The hypothesis says that x D y and T .x; x/ D t < 0 so we just take
w D x. �

LEMMA 10.4. If ˇ D 4 and t > 0, then we can take ˛ D 1=23.

Proof. The hypothesis says that x D y and T .x; x/D t > 0. By Lemma 10.1,
the Leech lattice contains orthogonal minimal vectors v1; : : : ; v24 with v1 D x.
Then Lemma 10.2, together with T .v1/D t , implies that T .vi /� �t=23 for some
i 2 f2; : : : ; 24g. �

LEMMA 10.5. If ˇ D 2 and t < 0, then we can take ˛ D 2=25.

Proof. Let x; y be minimal vectors such that hx; yiD2 and T .x; y/Dt<0. We
know that x�y is a minimal vector. Also

T .x�y/D T .x; x/CT .y; y/� 2T .x; y/D T .x; x/CT .y; y/� 2t:

Thus either T .x; x/� 2t=25D�2jt j=25 or T .y; y/� 2t=25 or T .x�y; x�y/�
4t=25� 2t D �46t=25D 46jt j=25. However, in the last case we see by Lemma
10.4 that T .v; v/� �.1=23/.46jt j=25/D�2jt j=25 for some minimal vector v. �

LEMMA 10.6. If ˇ D 2 and t > 0, then we can take ˛ D 2=47.
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Proof. Let x; y be minimal vectors such that hx; yiD2 and T .x; y/D t >0.
Again we have

T .x�y; x�y/D T .x; x/CT .y; y/� 2t:

Thus either T .x � y; x � y/ � �2t=47 or one of T .x; x/ and T .y; y/ is at least
.2t �2t=47/=2D 46t=47. Then by Lemma 10.4, we see that there exists a minimal
vector v with T .v; v/� .�1=23/.46t=47/D�2jt j=47. �

LEMMA 10.7. If ˇ D 0, then we can take ˛ D 1=60.

Proof. By possibly exchanging .ˇ; t/ D .0; t/ with .0;�t / we can assume
t > 0. Let x; y be minimal vectors such that hx; yi D 0 and T .x; y/D t > 0. We
have computed the intersection numbers for the Leech lattice. The intersection
number P0.1=2; 1=2/ is 44, so there exists a minimal vector w with hx;wi D 2 and
hy;wi D 2. We compute that

hxCy �w; xCy �wiDhx; xiC hy; yiC hw;wiC 2hx; yi � 2hx;wi � 2hy;wi

D4C 4C 4C 0� 4� 4

D4;

so xCy �w is a minimal vector. Then we compute

T .xCy �w/DT .x; x/CT .y; y/CT .w;w/C 2T .x; y/�2T .x;w/�2T .y;w/

DT .x; x/CT .y; y/CT .w;w/C 2t � 2T .x;w/�2T .y;w/:

If T .x; x/ or T .y; y/ or T .w;w/ is at most �t=60 we are done. Similarly if
T .x C y � w; x C y � w/ � 23t=60 we are done, by Lemma 10.4, so we may
assume none of these is true. Then we see that T .x;w/C T .y;w/ � 1=2.2t �
3t=60�23t=60/D 47t=60. It follows that one of the summands is at least 47t=120,
say T .x;w/ without loss of generality. But since hx;wi D 2, an application of
Lemma 10.6 finishes the proof. �

LEMMA 10.8. If ˇ D 1 and t > 0, then we can take ˛ D 4=1055.

Proof. Let x and y be minimal vectors with hx; yi D 1. By Lemma 7.3,
there are minimal vectors w1, w2, and w3 satisfying hx;wi i D 0, hy;wi i D 2, and
hwi ; wj i D 0 for i ¤ j . It follows that z D 2y � x�w1�w2�w3 has norm 4, so
it is a minimal vector. Now,

T .z; z/D 4T .y; y/CT .x; x/C
X
i

T .wi ; wi /� 4T .x; y/

� 4
X
i

T .y;wi /C 2
X
i

T .x;wi /C 2
X
i<j

T .wi ; wj /:
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Since we know T .x; y/D t , we get

4t D 4T .y; y/CT .x; x/C
X
i

T .wi ; wi /�T .z; z/

� 4
X
i

T .y;wi /C 2
X
i

T .x;wi /C 2
X
i<j

T .wi ; wj /:

Next, we assume that T .v; v/ � �˛t for all minimal vectors v, and prove that
˛ cannot be less than 4=1055. It follows from this assumption and Lemma 10.4
that T .y; y/ � 23˛t . Similarly T .x; x/ and T .wi ; wi / are at most 23˛t , and
�T .z; z/� ˛t by hypothesis. The inner products hy;wi i are 2 so by Lemma 10.5,
�T .y;wi /�25˛t=2. Finally, T .x;wi / and T .wi ; wj / are at most 60˛t by Lemma
10.7. Therefore

4t � 8 � .23˛t/C˛t C 3 � 4 � .25˛t=2/C 2 � 6 � .60˛t/D 1055˛t;

and hence ˛ � 4=1055. Thus, T .v; v/ � �4t=1055 for some minimal vector v,
since otherwise ˛ could be decreased. �

LEMMA 10.9. If ˇ D 1 and t < 0, then we can take ˛ D 4=1033.

Proof. With the same notation as in the proof of Lemma 10.8 we have

T .z; z/D 4T .y; y/CT .x; x/C
X
i

T .wi ; wi /� 4T .x; y/

� 4
X
i

T .y;wi /C 2
X
i

T .x;wi /C 2
X
i<j

T .wi ; wj /:

Since we know T .x; y/D t < 0, we get as before

�4t D�4T .y; y/�T .x; x/�
X
i

T .wi ; wi /CT .z; z/

C 4
X
i

T .y;wi /� 2
X
i

T .x;wi /� 2
X
i<j

T .wi ; wj /:

We now use the same strategy as in Lemma 10.8. Namely, we assume that for all
minimal vectors v, T .v; v/� �˛jt j D ˛t . It follows that �T .y; y/� ˛jt j D �˛t ,
and the same holds for T .x; x/ and T .wi ; wi /. By Lemma 10.4, T .z; z/� �23˛t .
This time by Lemma 10.6, T .y;wi / is at most �47˛t=2, whereas by Lemma 10.7,
T .x;wi / and T .wi ; wj / are at least 60˛t , so their negatives are at most �60˛t .
Therefore

�4t � �.23˛t/� 8˛t C 3 � 4 � .�47˛t=2/C 2 � 6 � .�60˛t/D�1033˛t;

and hence ˛ � 4=1033 after canceling �t which is positive. �
We conclude that ˛D 4=1055 satisfies the properties we stated at the beginning

of the section.
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11. The case of E8

A very similar proof shows that the E8 lattice is the unique densest lattice
packing in R8. Since the details of the proofs are analogous, and the result was
already known, we merely sketch them in this section.

In E8 there are 240 minimal vectors of length
p
2, if we normalize the length

as usual so that the lattice is unimodular. Let ƒ be a lattice of covolume 1 that is at
least as dense as E8. As in the case of the Leech lattice, we find a suitable radial
function f with r �

p
2.1C 1:2 � 10�15/, which proves that no sphere packing in

R8 can exceed the density of E8 by a factor of more than 1C 10�14.
This function allows us to show that for 0 ¤ jxj �

p
7, the length of x is

restricted to the set�p
2;
p
2.1C"/

�
[
�
2.1��/; 2.1C�/

�
[
�p
6.1��/;

p
6.1C�/

�
;

where

"D 1:45 � 10�13;

�D 1:03 � 10�6; and

� D 4:44 � 10�6:

The details of this calculation are in the accompanying PARI file E8verifyf.txt.
All the remaining calculations from this point on for the E8 case are verified in the
Maple file E8rest.txt.

Define a nearly minimal vector to be a vector with length in Œ
p
2;
p
2.1C"/�.

We form a spherical code by rescaling the nearly minimal vectors to lie on the unit
sphere S7.

We use the polynomial

f".x/D .xC 1/

�
xC

1

2

�2
x2
�
x�

�
1�

1

2.1C "/2

��
to show as before that there are at most 240 nearly minimal vectors. Similarly, the
analogue of Lemma 4.4 goes through with a different function defined on R8, and
proves that there are exactly 240 nearly minimal vectors.

11.1. Spherical code. The analogue of Section 5 is that all the inner products
between the normalized nearly minimal vectors u=juj must be either˙1 or at most
6 � 10�5 from some element of the set f�1=2; 0; 1=2g. Then further analysis gives
us the following better bounds.

For hu; vi � 1 we have

2� .1C "/2

2.1C "/2
�

�
u

juj
;
v

jvj

�
� .1C "/2�

1

2
;
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whereas for hu; vi � 0 we have

1� .1C�/2

.1C "/2
�

�
u

juj
;
v

jvj

�
� .1C "/2� .1��/2:

We conclude that � � 8:89 �10�6, where � is the maximal error in the inner products
from the spherical code.

11.2. Intersection numbers. The analogue of Lemma 6.2 is easily shown using
the polynomial f".

LEMMA 11.1. If gWS7! R is a polynomial of total degree at most 6, thenˇ̌̌̌
ˇ̌ X
z2Cƒ

g.z/�
240

vol.S7/

Z
S7

g.z/ dz

ˇ̌̌̌
ˇ̌� 3:48 � 10�4jgj2;

where jgj2 denotes the norm on L2.S7/.

Now, since the kissing configuration of E8 is a 7-spherical design, we find
that the intersection numbers of E8 can be obtained by solving the linear system of
equations X

˛;ˇ2S

˛iˇjP
 .˛; ˇ/D
240

vol.S7/

Z
S7

gi;j .z/ dz:

for i; j 2 f0; 1; 2g, where S D f0;˙1=2;˙1g is the set of possible inner products.
As before, we know the values of P
 .˙1; ˛/ and P
 .˛;˙1/. When we perform
the same calculation for ƒ, the value of

240

vol.S7/

Z
S7

gi;j .z/ dz

differs by at most 30� from the corresponding value forE8. If we apply Lemma 6.3
and compute the error introduced into the system of equations by going from E8 to
ƒ, we get a bound of�

3:48 � 10�4
� �2
p
3
C 30� C 240.1C 2�/� < 4:4 � 10�3:

The1-norm of the inverse matrix is 100, from which it follows that the intersection
numbers in ƒ differ from those in E8 by at most 0:44. Because that number is less
than 1, they must be the same.

11.3. Association scheme. The proof of uniqueness for the Leech lattice asso-
ciation scheme depended only on the eutaxy of the Leech lattice and the uniqueness
of its kissing arrangement. The same holds for the E8 lattice. With N D 240 and
C D 4=N D 1=60 we have the following lemma.
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LEMMA 11.2. For every x 2 R8,

hx; xi D C

NX
iD1

hx; ui i
2:

The proof of the lemma is essentially the same. We then use the lemma to
prove the uniqueness of the association scheme.

THEOREM 11.3. There is only one 4-class association scheme with the same
size, valencies and intersection numbers as the association scheme of minimal
vectors of the E8 lattice.

The proof of the theorem involves, as before, the operator

P D 2C

�
A1C

1

2
A1=2�

1

2
A�1=2�A�1

�
;

which turns out to be a projection to an 8-dimensional space. Again, the proof is
essentially the same as for the Leech lattice.

11.4. Inner product bounds. The inner product bounds use only the intersec-
tion numbers (Lemma 7.4, for which we needed the isomorphism of association
schemes, deals with a case that does not occur in E8). We get almost the same
bounds as in Section 7. The proofs have to be slightly modified due to the fact that
the minimal norm of the E8 lattice is 2 instead of 4 for the Leech lattice. We get the
following result:

LEMMA 11.4. Let u; v be nearly minimal vectors.

(1) For hu; vi � 2 we have 2� hu; vi � 2C .5=2/".

(2) For hu; vi � 1 we have 1� .5=2/"� hu; vi � 1C .9=2/".

(3) For hu; vi � 0 we have �7"� hu; vi � 7".

11.5. A basis of nearly minimal vectors. The proof that there is a basis of
nearly minimal vectors is completely analogous. Consider the basis of minimal
vectors 0BBBBBBBBBBB@

1 1 0 0 0 0 0 0

1 �1 0 0 0 0 0 0

0 1 �1 0 0 0 0 0

0 0 1 �1 0 0 0 0

0 0 0 1 �1 0 0 0

0 0 0 0 1 �1 0 0

0 0 0 0 0 1 �1 0

1=2 1=2 1=2 1=2 1=2 1=2 1=2 1=2

1CCCCCCCCCCCA
ofE8, where the row vectors are the basis elements. Then the corresponding vectors
in ƒ (via an isomorphism of association schemes) can be shown to be a basis for ƒ.
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11.6. Computing ˛. One first proves an analogue of Lemma 10.1 by consider-
ing the vectors wi D .0; : : : ; 1; 1; : : : ; 0/ and vi D .0; : : : ; 1;�1; : : : ; 0/ where the
i and i C 1 coordinates are nonzero, for i 2 f1; 3; 5; 7g.

The analogue of Lemma 10.2 is immediate:

LEMMA 11.5. Let v1; : : : ; v8 be orthogonal minimal vectors in the E8 lattice.
If
P
i;j Qsi;j ti;j D 0, then

8X
iD1

T .vi /D 0:

We then proceed to use these lemmas as before to prove bounds on ˛.

LEMMA 11.6. With the same notation for ˇ and t as before, we have the
following bounds:

(1) If ˇ D 2 and t < 0 then we can take ˛ D 1.

(2) If ˇ D 2 and t > 0 then we can take ˛ D 1=7.

(3) If ˇ D 1 and t < 0 then we can take ˛ D 2=9.

(4) If ˇ D 1 and t > 0 then we can take ˛ D 2=15.

(5) If ˇ D 0 then we can take ˛ D 1=20.

In fact, the greatest possible value of ˛ is 1=7, and that can be rigorously
proved by computer calculations. (The linear programs are small enough that one
can solve them using exact rational arithmetic. The Maple file E8seventh.txt
contains the calculations.) However, the weaker bound of 1=20 will suffice.

11.7. Local optimality of E8. The proofs of perfection and eutaxy of E8
closely parallel those for the Leech lattice. The Gram matrix for the basis of E8
that we chose above is small enough that we can compute all its minors quickly. We
find that for 0 < � < 10�3,

D� � 1� �
2.7936C 21162

p
3�C 84256�2C 47300

p
5�3

C 74088�4C 10290
p
7�5C 4096�6/

� 1� 7973�2:

We conclude from the above calculations that for every perturbation by �ti;j where
maxfjti;j jg � 1 and

P
i;j Qsi;j ti;j D 0, we have some k such that

D
�1=8
� Q�.uk/

D�1=8 � 2
� .1� �=40/.1� 7973�2/�1=8:

This bound is strictly less than 1 when 0 < � � 2:5 � 10�5.
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As before, we have one final issue to deal with: our perturbation may not
satisfy

P
i;j Qsi;j ti;j D 0. We normalize as before by setting

ti;j D
si;j C �i;j

1C�=8
� si;j

(the notation is as in the Leech lattice case), and need to check that jti;j j � 2:5 �10�5.
From Lemma 11.4, we have j�i;j j � 7". Now the sum of the absolute values of the
entries of QS is 620, so j�j � 4340". The maximum value of jsi;j j is 2, so putting
everything together we have

jti;j j D

ˇ̌̌̌
�i;j C si;j�=8

1C�=8

ˇ̌̌̌
�
7"C 2 � 4340"=8

1� 4340"=8
< 1:6 � 10�10:

This proves that ƒ must be the same as E8 since it lies within the range of local
optimality of E8.

This completes our new proof of the optimality of E8:

THEOREM 11.7 (Blichfeldt, Vetčinkin). The E8 root lattice is the unique
densest lattice in R8, up to scaling and isometries of R8.
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Appendix A. Computer calculations

The computer files for checking our calculations are available from the arXiv.
This paper is available as math.MG/0403263. To access the auxiliary files, down-
load the source files for the paper. That will produce not only the LATEX files for the
paper but also the computer algebra code.

By far the most extensive use of computer calculations in this paper occurs in
Subsection 4.1. The calculations are carried out in the file verifyf.txt, which
consists of PARI code. PARI is a free computer algebra system designed for
rapid number-theoretic calculations. See http://pari.math.u-bordeaux.fr
for more information on PARI or to download a copy.

Our PARI files all contain comments that should help make them understand-
able to those unfamiliar with PARI.
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First, we will explain how one proves the properties of the function f used in
Subsection 4.1; then we will explain how it was constructed. Finally, we briefly
discuss the verification of the other calculations in this paper.

There are two auxiliary files for dealing with f : fcoeffs.txt contains
coefficients c0; : : : ; c803 which we will use to construct f , and roots.txt contains
values r0; : : : ; r200 that are nearly roots (meaning the polynomial is very near 0 at
those locations, although in fact no real roots are nearby, except near r0).

The file verifyf.txt carries out the following verifications. Let

(A.5) f0.z/D

803X
iD0

ci i ŠL
11
i .z/:

Define f WR24! R by f .x/D f0.2�jxj2/e��jxj
2

=103000. (The denominator of
103000 makes the coefficients ci integers, which is convenient.) The value of r used
in Subsection 4.1 satisfies 2�r2 D r0.

We first need to check that f .x/�0 for jxj�r , which is equivalent to f0.z/�0
for z�r0. In principle one could check this straightforwardly using Sturm’s theorem,
but that takes a tremendous amount of time for such a huge polynomial. Instead,
we will use Descartes’ rule of signs in a somewhat complicated way that may not
appear a priori superior, but works overwhelmingly better in practice: the number of
roots of a polynomial p in the interval .a; b/ is at most the number of sign changes
in the coefficients of

p

�
aC bz

1C z

�
.1C z/deg.p/;

and is congruent to it modulo 2. For .a;1/ one can simply use p.aC z/. This
result is sometimes known as Jacobi’s rule of signs (see Corollary 10.1.13 in [RS02,
p. 320]).

We check using Jacobi’s rule of signs that f0 has no roots in .dr200e;1/
or .drie; briC1c/ for 1 � i � 199 (and also check that it does not vanish at the
endpoints), and that it has exactly one root in .0; br1c/. Then we must check that it
does not vanish on Œbric; drie� with 1� i � 200, and that its one root is less than r0
(for that we simply compute the sign of f0.r0/).

Dealing with the intervals Œbric; drie� is a little more difficult. We use Jacobi’s
rule of signs to check that f 000 has no roots on these intervals, so f 00 is monotonic
and has at most one root in each. We then check that f 00.ri � 10

�350/ > 0 and
f 00.ri C 10

�350/ < 0, so the maximum of f0 must occur within 10�350 of ri .
However,

jf 00.ri ˙ 10
�350/j � 103285;



OPTIMALITY AND UNIQUENESS OF THE LEECH LATTICE 1045

from which it follows (by the mean value theorem and the monotonicity of f 00) thatˇ̌̌̌
f0.ri /� max

x2Œbric;drie�
f0.x/

ˇ̌̌̌
� 10�350 � 103285 D 102935:

Because jf0.ri /j � �102945, f0 has no roots in Œbric; drie�.
To make the proof more efficient, we arrange the calculations to ensure that

only integer arithmetic is used, so that PARI does not spend time reducing fractions
to lowest terms. (That explains why the coefficients in (A.5) are multiplied by i Š.)

Dealing with yf is similar, but of course it uses the polynomial

h0.z/D

803X
iD0

.�1/ici i ŠL
11
i .z/

instead of f0, and in this case r0 plays the same role as r1; : : : ; r200 do (rather than
being treated differently, as above).

All that remains is to check f .0/D yf .0/D 1, which is true because f0.0/D
h0.0/D 10

3000. These calculations suffice for the proof that no sphere packing can
be more than a factor of 1C 1:65 � 10�30 times denser than ƒ24. However, Proposi-
tion 4.3 requires more detailed information on the values of f . In verifyf.txt
we check these inequalities using

351X
iD0

.�z/i

i Š
� e�z �

350X
iD0

.�z/i

i Š

for 0� z � 60, as well as rational upper and lower bounds for � , to avoid having to
deal with irrational numbers.

Unfortunately the file verifyf.txt cannot address where f comes from (it
takes far longer to locate f than to verify its properties). The construction is based
on the numerical technique described in Section 7 of [CE03], which describes
functions via forced double root locations that are then repeatedly perturbed until
they reach a local optimum. Instead of this straightforward optimization algorithm
we implemented a high-dimensional version of Newton’s method (which locates a
root of the derivative of f .2/ as an implicit function of the forced double roots—
this is valuable because f .2/ is roughly proportional to jr � 2j). We arrived at
200 forced double roots, whose locations are specified in roots.txt. The next
step of the method from [CE03] also caused trouble: solving for the polynomial
with those forced roots. Exact rational arithmetic was immensely time-consuming
and produced huge denominators. Instead, we carried out high-precision floating
point arithmetic and rounded the result to within 10�3000. That could ruin the sign
conditions on f and yf , by turning a double root into a pair of nearby single roots,
so instead of solving for actual double roots we required that f and yf should stay
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slightly on the correct side of 0. That does not greatly change the resulting bounds,
and leads to the function f used in this paper.

Lemma 4.4 requires the second largest amount of computation to check, al-
though far less than Subsection 4.1. The file verifyg.txt and the auxiliary file
gcoeffs.txt deal with it in a fairly straightforward way. The calculations required
for (9.2) and (9.3) are dealt with in verifygram.txt.

Finally, the file verifyrest.txt verifies all remaining calculations in the
paper for the Leech lattice case. Many of the calculations in this file could be
checked by hand, but that would be unpleasant and error-prone. Instead of PARI
code, this file contains Maple code. Maple is less efficient but more flexible, and it
seemed easiest to use in these calculations.

Our computer calculations are completely rigorous, in the sense that they are
carried out using exact arithmetic, and thus avoid traps such as round-off error.
Nevertheless, we cannot eliminate the possibility of a hardware error or a bug in
software beyond our control, such as the operating system or computer algebra
program. Under these circumstances, even assuming our programs are correctly
written they may return incorrect results. This possibility appears quite unlikely,
and we do not consider it a serious worry. However, we have addressed it by
asking Dimitar Jetchev to translate our programs into the Magma computer algebra
system. His translation is contained in the file magmacode.txt. Using it, we have
independently checked our calculations on a different type of processor, a different
computer algebra system, and a different operating system.

We have also documented our calculations for the E8 proof. The details can be
found in the files E8verifyf.txt and E8rest.txt. We include fewer comments
in these files than in the others, because their structure is parallel to the Leech lattice
case. The file E8seventh.txt contains a proof that ˛ D 1=7 works in the E8 case,
although we do not require that for the proof of Theorem 11.7.

Appendix B. Background

In this appendix we collect brief definitions and descriptions of a few of the
principal objects and techniques used in this paper.

An even unimodular lattice ƒ� Rn is a lattice such that jƒj D 1, hx; yi 2 Z

for all x; y 2ƒ, and hx; xi 2 2Z for all x 2ƒ. Such lattices exist only when n is
a multiple of 8. Up to isometries of Rn, the unique example when n D 8 is E8,
and there are 24 examples in R24, among which the Leech lattice is the unique one
containing no vectors of length

p
2. See [CS99, p. 48] for more information.

A spherical code of minimal angle ' in the unit sphere Sn�1 is a collection
C� Sn�1 of points such that hx; yi � cos' for all x; y 2 C with x ¤ y. In other
words, no two distinct points of C form an angle smaller than ' centered at the
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origin. Spherical codes are to Sn�1 as binary error-correcting codes are to f0; 1gn,
or as sphere packings are to Rn.

The most important approach to bounding the size of spherical codes is linear
programming bounds (due to Delsarte [Del72]; see Chapter 9 of [CS99] for an
exposition). These bounds rely on the following property of the ultraspherical
polynomials, which follows from Lemma 6.1: if �D n=2� 1, then for each finite
subset C� Sn�1, X

x;y2C

C�i .hx; yi/� 0:

Suppose f0; : : : ; fd � 0, and that f .z/ D
Pd
iD0 fiC

�
i .z/ satisfies f .z/ � 0 for

z 2 Œ�1; cos'�. Then every spherical code C in Sn�1 with minimal angle ' has
size bounded by jCj � f .1/=f0 (assuming f0 ¤ 0). The proof is simple:

jCjf .1/D
X
x2C

f .hx; xi/

�

X
x;y2C

f .hx; yi/

D

X
x;y2C

f0C

dX
iD1

fi
X
x;y2C

C�i .hx; yi/

�

X
x;y2C

f0

D jCj2f0:

The most dramatic application of the linear programming bounds for spherical
codes is the solution of the kissing problem in R8 and R24: how many unit balls can
be placed tangent to a central unit ball so that their interiors do not overlap? This
condition amounts to saying that the points of tangency form a spherical code with
minimal angle �=3. In R8 the answer is 240, and in R24 the answer is 196560. The
codes are formed from the minimal vectors in E8 and the Leech lattice, respectively
(of course the radius of the sphere involved differs in the two examples). Optimality
follows from the linear programming bounds by taking

f .z/D .zC 1/

�
zC

1

2

�2
z2
�
z�

1

2

�
in R8 and

f .z/D .zC 1/

�
zC

1

2

�2 �
zC

1

4

�2
z2
�
z�

1

4

�2 �
z�

1

2

�
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in R24. This most remarkable fact was discovered independently by Levenshtein
[Lev79] and by Odlyzko and Sloane [OS79].

A spherical t -design in Sn�1 is a nonempty finite subset D of Sn�1 such that
for every polynomial f WRn! R of total degree at most t ,

1

jDj

X
x2D

f .x/D
1

vol.Sn�1/

Z
Sn�1

f .x/ dx:

In other words, the average of f over D equals its average over the entire sphere.
The minimal vectors of the Leech lattice form a spherical 11-design, and those of
E8 form a spherical 7-design.

A k-class association scheme is a set A together with a partition

A2
DA0[ � � � [Ak

such that A0 D f.x; x/ W x 2 Ag, .x; y/ 2 Ai if and only if .y; x/ 2 Ai , and the
following property holds. Fix `, m, and n in Z\ Œ0; k�; then for all x; y 2A with
.x; y/ 2 A`, there are the same number P`.m; n/ of z 2 A such that .x; z/ 2 Am

and .y; z/ 2An. (That is, P`.m; n/ depends only on `, m, and n, and not on x and
y.) These numbers are called the intersection numbers of the association scheme.
When `D 0 and mD n they are also called valencies. In the body of the paper we
modify this notation slightly for the association scheme Cƒ (in a trivial way): we
label the classes with the corresponding inner products in C24, and use these labels
in the notation for the intersection numbers.
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