Abstract
We show how localization and smoothing techniques can be used to establish universality in the bulk of the spectrum for a fixed positive measure $\mu $ on $[-1,1] $. Assume that $\mu $ is a regular measure, and is absolutely continuous in an open interval containing some point $x$. Assume moreover, that $\mu ^{\prime }$ is positive and continuous at $x$. Then universality for $\mu $ holds at $x$. If the hypothesis holds for $x$ in a compact subset of $\left( -1,1\right) $, universality holds uniformly for such $x$. Indeed, this follows from universality for the classical Legendre weight. We also establish universality in an $L_{p}$ sense under weaker assumptions on $\mu .$
-
[Baiketal2006] J. Baik, T. Kriecherbauer, K. D. T-R. McLaughlin, and P. D. Miller, "Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results," Int. Math. Res. Notices, vol. 2003, iss. 15, pp. 821-858, 2003.
@article{Baiketal2006,
author={Baik, J. and Kriecherbauer, T. and McLaughlin, K. D. T-R. and Miller, P.D.},
TITLE={Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results},
JOURNAL={Int. Math. Res. Notices},
VOLUME={2003},
YEAR={2003},
NUMBER={15},
PAGES={821--858},
MRNUMBER={2004e:41038},
ZBLNUMBER={1036.42023},
} -
[DeVoreLorentz1993] R. A. DeVore and G. G. Lorentz, Constructive Approximation, New York: Springer-Verlag, 1993.
@book {DeVoreLorentz1993, MRKEY = {1261635},
AUTHOR = {DeVore, Ronald A. and Lorentz, George G.},
TITLE = {Constructive Approximation},
SERIES = {Grundl. Math. Wissen.},
NUMBER = {303},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1993},
PAGES = {x+449},
ISBN = {3-540-50627-6},
MRCLASS = {41-02 (41A10 41A15 41A35 41A36 42A10)},
MRNUMBER = {95f:41001},
MRREVIEWER = {V. Totik},
ZBLNUMBER = {0797.41016},
} -
[Deift1999] P. A. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, New York: New York University Courant Institute of Mathematical Sciences, 1999.
@book {Deift1999, MRKEY = {1677884},
AUTHOR = {Deift, P. A.},
TITLE = {Orthogonal Polynomials and Random Matrices: A {R}iemann-{H}ilbert Approach},
SERIES = {Courant Lecture Notes in Mathematics},
NUMBER = {3},
PUBLISHER = {New York University Courant Institute of Mathematical Sciences},
ADDRESS = {New York},
YEAR = {1999},
PAGES = {viii+273},
ISBN = {0-9658703-2-4; 0-8218-2695-6},
MRCLASS = {47B80 (15A52 30E25 33D45 37K10 42C05 47B36 60F99)},
MRNUMBER = {2000g:47048},
MRREVIEWER = {Alexander Vladimirovich Kitaev},
ZBLNUMBER = {0997.47033},
} -
[Deiftetal1999]
P. Deift, T. Kriecherbauer, K. T. -R. McLaughlin, S. Venakides, and X. Zhou, "Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory," Comm. Pure Appl. Math., vol. 52, iss. 11, pp. 1335-1425, 1999.
@article {Deiftetal1999, MRKEY = {1702716},
AUTHOR = {Deift, P. and Kriecherbauer, T. and McLaughlin, K. T.-R. and Venakides, S. and Zhou, X.},
TITLE = {Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory},
JOURNAL = {Comm. Pure Appl. Math.},
FJOURNAL = {Communications on Pure and Applied Mathematics},
VOLUME = {52},
YEAR = {1999},
NUMBER = {11},
PAGES = {1335--1425},
ISSN = {0010-3640},
CODEN = {CPAMA},
MRCLASS = {42C05 (15A52 41A60 82B41)},
MRNUMBER = {2001g:42050},
MRREVIEWER = {D. S. Lubinsky},
DOI = {10.1002/(SICI)1097-0312(199911)52:11%3C1335::AID-CPA1%3E3.0.CO%3B2-1},
ZBLNUMBER = {0944.42013},
} -
[KuijlaarsVanlessen2002]
A. B. J. Kuijlaars and M. Vanlessen, "Universality for eigenvalue correlations from the modified Jacobi unitary ensemble," Int. Math. Res. Not., vol. 2002, iss. 30, pp. 1575-1600, 2002.
@article {KuijlaarsVanlessen2002, MRKEY = {1912278},
AUTHOR = {Kuijlaars, A. B. J. and Vanlessen, M.},
TITLE = {Universality for eigenvalue correlations from the modified {J}acobi unitary ensemble},
JOURNAL = {Int. Math. Res. Not.},
VOLUME={2002},
YEAR={2002},
FJOURNAL = {International Mathematics Research Notices},
NUMBER = {30},
PAGES = {1575--1600},
ISSN = {1073-7928},
MRCLASS = {30D05 (34M99 41A60 62H20 82B27)},
MRNUMBER = {2003g:30043},
MRREVIEWER = {D. S. Lubinsky},
DOI = {10.1155/S1073792802203116},
ZBLNUMBER = {1122.30303},
} -
[LevinLubinsky2007]
E. Levin and D. S. Lubinsky, "Universality limits for exponential weights," Constr. Approx., vol. 29, iss. 2, pp. 247-275, 2009.
@article {LevinLubinsky2007, MRKEY = {2481591},
AUTHOR = {Levin, Eli and Lubinsky, Doron S.},
TITLE = {Universality limits for exponential weights},
JOURNAL = {Constr. Approx.},
FJOURNAL = {Constructive Approximation. An International Journal for Approximations and Expansions},
VOLUME = {29},
YEAR = {2009},
NUMBER = {2},
PAGES = {247--275},
ISSN = {0176-4276},
MRCLASS = {42C05 (15A52 41A60)},
MRNUMBER = {2481591},
DOI = {10.1007/s00365-008-9020-4},
} -
[Mateetal1991]
A. Máté, P. Nevai, and V. Totik, "Szegő’s extremum problem on the unit circle," Ann. of Math., vol. 134, iss. 2, pp. 433-453, 1991.
@article {Mateetal1991, MRKEY = {1127481},
AUTHOR = {M{á}t{é},
Attila and Nevai, Paul and Totik, Vilmos},
TITLE = {Szegő's extremum problem on the unit circle},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {134},
YEAR = {1991},
NUMBER = {2},
PAGES = {433--453},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {42C05 (42A05)},
MRNUMBER = {92i:42014},
MRREVIEWER = {Walter Van Assche},
ZBLNUMBER = {0752.42015},
DOI = {10.2307/2944352},
} -
[Mehta1991] M. L. Mehta, Random Matrices, second ed., Boston, MA: Academic Press Inc., 1991.
@book {Mehta1991, MRKEY = {1083764},
AUTHOR = {Mehta, Madan Lal},
TITLE = {Random Matrices},
EDITION = {second},
PUBLISHER = {Academic Press Inc.},
ADDRESS = {Boston, MA},
YEAR = {1991},
PAGES = {xviii+562},
ISBN = {0-12-488051-7},
MRCLASS = {82-02 (15A52 60B99 60K35 82B41)},
MRNUMBER = {92f:82002},
MRREVIEWER = {B. S. Nahapetian},
ZBLNUMBER = {1107.15019},
} -
[Nevai1979] P. Nevai, "Orthogonal polynomials," Mem. Amer. Math. Soc., vol. 18, iss. 213, p. v, 1979.
@article {Nevai1979, MRKEY = {519926},
AUTHOR = {Nevai, Paul},
TITLE = {Orthogonal polynomials},
JOURNAL = {Mem. Amer. Math. Soc.},
FJOURNAL = {Memoirs of the American Mathematical Society},
VOLUME = {18},
YEAR = {1979},
NUMBER = {213},
PAGES = {v+185},
ISSN = {0065-9266},
CODEN = {MAMCAU},
MRCLASS = {42C05},
MRNUMBER = {80k:42025},
MRREVIEWER = {T. S. Chihara},
} -
[Nevai1986]
P. Nevai, "Géza Freud, orthogonal polynomials and Christoffel functions. A case study," J. Approx. Theory, vol. 48, iss. 1, pp. 3-167, 1986.
@article {Nevai1986, MRKEY = {862231},
AUTHOR = {Nevai, Paul},
TITLE = {Géza {F}reud, orthogonal polynomials and {C}hristoffel functions. {A} case study},
JOURNAL = {J. Approx. Theory},
FJOURNAL = {Journal of Approximation Theory},
VOLUME = {48},
YEAR = {1986},
NUMBER = {1},
PAGES = {3--167},
ISSN = {0021-9045},
CODEN = {JAXTAZ},
MRCLASS = {42C05 (01A60 41A10)},
MRNUMBER = {88b:42032},
MRREVIEWER = {T. S. Chihara},
DOI = {10.1016/0021-9045(86)90016-X},
ZBLNUMBER = {0606.42020},
} -
[RieszNagy1990] F. Riesz and B. Sz.-Nagy, Functional Analysis, New York: Dover Publications Inc., 1990.
@book {RieszNagy1990, MRKEY = {1068530},
AUTHOR = {Riesz, Frigyes and Sz.-Nagy, B{é}la},
TITLE = {Functional Analysis},
SERIES = {Dover Books on Adv. Math.},
PUBLISHER = {Dover Publications Inc.},
ADDRESS = {New York},
YEAR = {1990},
PAGES = {xii+504},
ISBN = {0-486-66289-6},
MRCLASS = {00A05 (01A75 28-01 46-01 47-01)},
MRNUMBER = {91g:00002},
ZBLNUMBER = {0732.47001},
} -
[Simon2005] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, Providence, RI: A.M.S., 2005, vol. 54.
@book {Simon2005, MRKEY = {2105088},
AUTHOR = {Simon, Barry},
TITLE = {Orthogonal Polynomials on the Unit Circle. {P}art 1. Classical Theory},
SERIES = {Amer. Math. Soc. Colloq. Publ.},
VOLUME = {54},
PUBLISHER = {A.M.S.},
ADDRESS = {Providence, RI},
YEAR = {2005},
PAGES = {xxvi+466},
ISBN = {0-8218-3446-0},
MRCLASS = {42-02 (30C85 33C45 42C05 47B36 47N50)},
MRNUMBER = {2006a:42002a},
MRREVIEWER = {P. L. Duren},
ZBLNUMBER = {1082.42021},
} -
[StahlTotik1992] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge: Cambridge Univ. Press, 1992.
@book {StahlTotik1992, MRKEY = {1163828},
AUTHOR = {Stahl, Herbert and Totik, Vilmos},
TITLE = {General Orthogonal Polynomials},
SERIES = {Encyclopedia Math. Appl.},
NUMBER = {43},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {1992},
PAGES = {xii+250},
ISBN = {0-521-41534-9},
MRCLASS = {42C05 (30C10 31C15)},
MRNUMBER = {93d:42029},
MRREVIEWER = {Walter Van Assche},
ZBLNUMBER = {0791.33009},
} -
[Szego1975] G. SzegHo, Orthogonal Polynomials, Fourth ed., Providence, R.I.: A.M.S., 1975, vol. 23.
@book {Szego1975, MRKEY = {0372517},
AUTHOR = {Szeg{ő},
G{á}bor},
TITLE = {Orthogonal Polynomials},
EDITION = {{F}ourth},
SERIES = {Amer. Math. Soc. Colloq. Publ.},
VOLUME={23},
PUBLISHER = {A.M.S.},
ADDRESS = {Providence, R.I.},
YEAR = {1975},
PAGES = {xiii+432},
MRCLASS = {42A52 (33A65)},
MRNUMBER = {51 \#8724},
ZBLNUMBER = {0305.42011},
} -
[Totik2000] V. Totik, "Asymptotics for Christoffel functions for general measures on the real line," J. Anal. Math., vol. 81, pp. 283-303, 2000.
@article {Totik2000, MRKEY = {1785285},
AUTHOR = {Totik, Vilmos},
TITLE = {Asymptotics for {C}hristoffel functions for general measures on the real line},
JOURNAL = {J. Anal. Math.},
FJOURNAL = {Journal d'Analyse Mathématique},
VOLUME = {81},
YEAR = {2000},
PAGES = {283--303},
ISSN = {0021-7670},
CODEN = {JOAMAV},
MRCLASS = {42C05},
MRNUMBER = {2001j:42021},
MRREVIEWER = {Walter Van Assche},
ZBLNUMBER = {0966.42017},
}