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Abstract

We show how localization and smoothing techniques can be used to establish
universality in the bulk of the spectrum for a fixed positive measure � on Œ�1; 1�.
Assume that � is a regular measure, and is absolutely continuous in an open interval
containing some point x. Assume moreover, that �0 is positive and continuous at
x. Then universality for � holds at x. If the hypothesis holds for x in a compact
subset of .�1; 1/, universality holds uniformly for such x. Indeed, this follows from
universality for the classical Legendre weight. We also establish universality in an
Lp sense under weaker assumptions on �:

1. Introduction and results

Let � be a finite positive Borel measure on .�1; 1/. Then we may define
orthonormal polynomials

pn.x/D nx
n
C � � � ; n > 0;

nD 0; 1; 2; : : : satisfying the orthonormality conditionsZ 1

�1

pnpmd�D ımn:

These orthonormal polynomials satisfy a recurrence relation of the form

(1.1) xpn.x/D anC1pnC1.x/C bnpn .x/C anpn�1.x/;

where
an D

n�1

n
> 0 and bn 2 R; n� 1;

and we use the convention p�1 D 0. Throughout we use

w D
d�

dx
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916 DORON S. LUBINSKY

to denote the Radon-Nikodym derivative of �. A classic result of E. A. Rakhmanov
[12] asserts that if w > 0 a.e. in Œ�1; 1�, then � belongs to the Nevai-Blumenthal
class M, that is,

(1.2) lim
n!1

an D
1
2

and lim
n!1

bn D 0:

We note that there are pure jump and pure singularly continuous measures in M,
despite the fact that one tends to associate it with weights that are a.e. positive. A
class of measures that contains M is the class of regular measures on Œ�1; 1� (see
[13]), defined by the condition

lim
n!1

1=nn D 2:

Orthogonal polynomials play an important role in random matrix theory [3],
[8]. One of the key limits there involves the reproducing kernel

(1.3) Kn.x; y/D

n�1X
kD0

pk.x/pk .y/ :

Because of the Christoffel-Darboux formula, it may also be expressed as

(1.4) Kn.x; y/D an
pn.x/pn�1 .y/�pn�1.x/pn.y/

x�y
:

Define the normalized kernel

(1.5) zKn.x; y/D w.x/
1=2w.y/1=2Kn.x; y/:

The simplest case of the universality law is the limit

(1.6) lim
n!1

zKn

�
xC

a
zKn.x; x/

; xC
b

zKn .x; x/

�
zKn.x; x/

D
sin�.a� b/
�.a� b/

:

Typically this holds uniformly for x in a compact subinterval of .�1; 1/ and a; b
in compact subsets of the real line. Of course, when a D b, we interpret the
quotient sin�.a� b/=.� .a� b// as 1. We cannot hope to survey the vast body of
results on universality limits here — the reader may consult [1], [2], [3], [8] and the
forthcoming proceedings of the conference devoted to the 60th birthday of Percy
Deift.

Our goal here is to present what we believe is a new approach, based on
localization and smoothing. Our main result is:

THEOREM 1.1. Let � be a finite positive Borel measure on .�1; 1/ that is
regular. Let J � .�1; 1/ be compact, and such that � is absolutely continuous in
an open set containing J . Assume moreover, that w is positive and continuous at
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each point of J . Then uniformly for x 2 J and a; b in compact subsets of the real
line, we have

(1.7) lim
n!1

zKn

�
xC

a
zKn.x; x/

; xC
b

zKn .x; x/

�
zKn.x; x/

D
sin�.a� b/
�.a� b/

:

If J consists of just a single point x, then the hypothesis is that � is absolutely
continuous in some neighborhood .x� "; xC "/ of x, while w.x/ > 0 and w is
continuous at x. This alone is sufficient for universality at x.

COROLLARY 1.2. Let m� 1 and

Rm.y1; y2; : : : ; ym/D det
�
zKn.yi ; yj /

�m
i;jD1

denote them-point correlation function. Uniformly for x2J , and for given
˚
�j
	m
jD1

,
we have

lim
n!1

1

zKn.x; x/m
Rm

�
xC

�1

zKn.x; x/
; xC

�2

zKn.x; x/
; : : : ; xC

�m

zKn.x; x/

�
D det

�
sin�.�i � �j /
�.�i � �j /

�m
i;jD1

:

COROLLARY 1.3. Let r; s be nonnegative integers and

(1.8) K.r;s/n .x; x/D

n�1X
kD0

p
.r/

k
.x/p

.s/

k
.x/:

Let

(1.9) �r;s D

8<:0; r C s odd
.�1/.r�s/=2

rCsC1
; r C s even :

Then uniformly for x 2 J ,

(1.10) lim
n!1

1

nrCsC1
K.r;s/n .x; x/D

1

�w.x/
�
1� x2

�.rCsC1/=2 �r;s:
Remarks. (a) We believe that the hypotheses above are the weakest imposed

thus far guaranteeing universality for a fixed weight on .�1; 1/. Most hypotheses
imposed so far involve analyticity, for example in [5].

(b) The only reason for restricting a; b to be real in (1.7), is that

zKn

�
xC

a

zKn.x; x/
; xC

b

zKn.x; x/

�
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involves the weight evaluated at arguments involving a and b. If we consider instead

Kn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
;

then the limits hold uniformly for a; b in compact subsets of the plane.

We also present Lp results, assuming less about w:

THEOREM 1.4. Let � be a finite positive Borel measure on .�1; 1/ that is
regular. Let p > 0. Let I be a closed subinterval of .�1; 1/ in which � is absolutely
continuous, and w is bounded above and below by positive constants.

(a) If I 0 is a closed subinterval of I 0,

(1.11) lim
n!1

Z
I 0

ˇ̌̌̌
ˇ̌̌̌
ˇ
Kn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
Kn.x; x/

�
sin�.a� b/
�.a� b/

ˇ̌̌̌
ˇ̌̌̌
ˇ
p

dx D 0;

uniformly for a; b in compact subsets of the real line.

(b) If , in addition, w is Riemann integrable in I , we may replace

Kn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
Kn.x; x/

by

zKn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
zKn.x; x/

in (1.11).

When we assume only that w is bounded below, and do not assume absolute
continuity of �, we can still prove an L1 form of universality, see Theorem 5.1.

In the sequel C;C1; C2; : : : denote constants independent of n; x; y; s; t . The
same symbol does not necessarily denote the same constant in different occurrences.
We shall write C D C .˛/ or C ¤ C .˛/ respectively to denote dependence on, or
independence of, the parameter ˛. Given measures ��, �#, we use K�n , K#

n and
p�n ; p

#
n to denote respectively their reproducing kernels and orthonormal polynomi-

als. Similarly superscript �; # are used to distinguish other quantities associated
with them. The superscript L denotes quantities associated with the Legendre
weight 1 on Œ�1; 1�. For x 2 R and ı > 0, we set

I .x; ı/D Œx� ı; xC ı� :

The distance from a point x to a set J is denoted dist.x; J /. For such a J , we let

I .J; ı/D fx W dist.x; J /� ıg :
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By Œx� we denote the greatest integer � x. Recall that the nth Christoffel function
for a measure � is

�n.x/D 1=Kn.x; x/D min
deg.P /�n�1

�Z 1

�1

P 2d�

�
=P 2 .x/ :

The most important new idea in this paper is a localization principle for
universality. We use it repeatedly in various forms, but the following basic inequality
is typical. Suppose that �;�� are measures with � � �� in Œ�1; 1�. Then for
x; y 2 Œ�1; 1�,

jKn.x; y/�K
�
n .x; y/j

Kn.x; x/
�

�
Kn.y; y/

Kn.x; x/

�1=2 �
1�

K�n .x; x/

Kn.x; x/

�1=2

D

�
�n.x/

�n.y/

�1=2 �
1�

�n.x/

��n.x/

�1=2
:

Observe that on the right-hand side, we have only Christoffel functions, and their
asymptotics are very well understood.

This paper is organised as follows. In Section 2, we present some asymptotics
for Christoffel functions. In Section 3, we prove our localization principle, including
the above inequality. In Section 4, we approximate locally the measure� in Theorem
1.1 by a scaled Jacobi weight and then prove Theorem 1.1. In Section 5, we prove
the L1 result Theorem 5.1, and in Section 6, prove the Lp result Theorem 1.4. In
Section 7, we prove Corollaries 1.2 and 1.3.

Acknowledgement. This research was stimulated by the wonderful conference
in honor of Percy Deift’s 60th birthday, held at the Courant Institute in June 2006.
In the present form, it was also inspired by a visit to Peter Sarnak at Princeton
University, and discussions with Eli Levin during our collaboration on [6].

2. Christoffel functions

We use �Ln to denote the nth Christoffel function for the Legendre weight on
Œ�1; 1�. The methods used to prove the following result are very well known, but
I could not find this theorem as stated in the literature. The issue is that known
asymptotics for Christoffel functions do not include the increment a=n. We could
use existing results in [7], [9], [10], [14] to treat the case where xC a=n 2 J , and
add a proof for the case where this fails, but the amount of effort seems almost the
same.

THEOREM 2.1. Let � be a regular measure on Œ�1; 1�. Assume that � is
absolutely continuous in an open set containing a compact set J , and in J , w D �0
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is positive and continuous. Let A > 0. Then uniformly for a 2 Œ�A;A�, and x 2 J ,

(2.1) lim
n!1

�n

�
xC

a

n

�.
�Ln

�
xC

a

n

�
D w.x/:

Moreover, uniformly for n� n0.A/, x 2 J , and a 2 Œ�A;A�,

(2.2) �n

�
xC

a

n

�
�
1

n
:

The constants implicit in � do not depend on �.

Remarks. (a) The notation � means that the ratio of the two Christoffel
functions is bounded above and below by positive constants independent of n,
x and a.

(b) We emphasize that we are assuming that w is continuous in J when regarded
as a function defined on .�1; 1/.

(c) Using asymptotics for �Ln , we can rewrite (2.1) as

lim
n!1

n�n

�
xC

a

n

�
D �
p

1� x2w.x/:

Proof. Let " > 0 and choose ı > 0 such that � is absolutely continuous in
I .J; ı/� .�1; 1/, and such that

(2.3) .1C "/�1 �
w.x/

w .y/
� 1C "; x 2 I .J; ı/ with jx�yj � ı:

(This is possible because of compactness of J and continuity and positivity of w
at every point of J .) Let us fix x0 2 J and recall that I.x0; ı/D Œx0� ı; x0C ı� :
Define a measure �� with

�� D � in Œ�1; 1�nI .x0; ı/

and in I.x0; ı/, let �� be absolutely continuous, with absolutely continuous com-
ponent w� satisfying

(2.4) w� D w .x0/ .1C "/ in I.x0; ı/:

Because of (2.3), d�� d�� in Œ�1; 1�; so that if ��n is the nth Christoffel function
for ��, we have for all x;

(2.5) �n.x/� �
�
n.x/:

We now find an upper bound for ��n.x/ for x 2 I .x0; ı=2/. There exists r 2 .0; 1/
depending only on ı such that

(2.6) 0� 1�

�
t � x

2

�2
� r for x 2 I .x0; ı=2/ and t 2 Œ�1; 1�nI.x0; ı/:
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(In fact, we may take r D 1� .ı=4/2.) Let � 2
�
0; 1
2

�
and choose � > 1 so close to

1 that

(2.7) �1�� < r��=4:

Let mDm.n/D n� 2 Œ�n=2�. Fix x 2 I .x0; ı=2/ and choose a polynomial Pm
of degree � m� 1 such that

�Lm.x/D

Z 1

�1

P 2m and P 2m.x/D 1:

Thus Pm is the minimizing polynomial in the Christoffel function for the Legendre
weight at x. Let

Sn.t/D Pm.t/

 
1�

�
t � x

2

�2!Œ�n=2�
;

a polynomial of degree � m� 1C 2 Œ�n=2� � n� 1 with Sn.x/D 1. Then using
(2.4) and (2.6),

��n.x/�

Z 1

�1

S2nd�
�

� w .x0/ .1C "/

Z
I.x0;ı/

P 2m

CkPmk
2
L1.Œ�1;1�nI.x0;ı//

r2Œ�n=2�
Z
Œ�1;1�nI.x0;ı/

d��

� w .x0/ .1C "/�
L
m.x/CkPmk

2
L1Œ�1;1� r

2Œ�n=2�

Z 1

�1

d��:

Now we use the key idea from [7, Lemma 9, p. 450]. For m�m0 .�/, we have

kPmk
2
L1Œ�1;1� � �

m

Z 1

�1

P 2m D �
m�Lm.x/:

(This holds more generally for any polynomial P of degree � m � 1, and is a
consequence of the regularity of the Legendre weight. Alternatively, we could use
classic bounds for the Christoffel functions for the Legendre weight.) Then from
(2.7), uniformly for x 2 I .x0; ı=2/,

��n.x/� w .x0/ .1C "/�
L
m.x/

n
1CC

h
�1��r�=2

ino
� w .x0/ .1C "/�

L
m.x/ f1C o.1/g ;

so as �n � ��n,

(2.8) sup
x2I.x0;ı=2/

�n.x/

�Ln .x/
� w.x0/.1C "/f1C o.1/g sup

x2I.x0;ı/

�Lm.x/

�Ln .x/
:
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The o.1/ term is independent of x0. Now for large enough n, and some C indepen-
dent of �;m; n; x0,

(2.9) sup
x2Œ�1;1�

�Lm.x/=�
L
n .x/� 1CC�:

Indeed if
˚
pL
k

	
denote the orthonormal Legendre polynomials, they admit the bound

[9, p. 170] ˇ̌̌
pLk .x/

ˇ̌̌
� C

�
1� x2C

1

k2

��1=4
; x 2 Œ�1; 1�:

Then uniformly for x 2 Œ�1; 1�,

0� 1�
�Ln .x/

�Lm.x/
D �Ln .x/

n�1X
kDm

�
pLk .x/

�2
� C�Ln .x/.n�m/ max

n
2
�k�n

�
1� x2C

1

k2

��1=2
� C�n�Ln .x/

�
1� x2C

1

n2

��1=2
� C�;

by classical bounds for Christoffel functions [9, p. 108, Lemma 5]. Thus we have
(2.9), and then (2.8) and (2.3) give for n� n0 D n0.x0; ı/,

sup
x2I.x0;ı=2/

�n.x/

�Ln .x/w.x/
� .1C "/2.1CC�/:

By covering J with finitely many such intervals I .x0; ı=2/, we obtain for some
maximal threshold n1 D n1 ."; ı; J /, that for n� n1,

sup
x2I.J;ı=2/

�n.x/�
�Ln .x/w.x/

� � .1C "/2.1CC�/:
It is essential here that C is independent of "; �. Now let A> 0 and jaj �A. There
exists n2 D n2.A/ such that for n � n2 and all jaj � A and all x 2 J , we have
xC a

n
2 I .J; ı=2/. We deduce that

lim sup
n!1

sup
a2Œ�A;A�;x2J

�n
�
xC a

n

�
�Ln

�
xC a

n

�
w.x/

� .1C "/2 .1CC�/ :

As the left-hand side is independent of the parameters "; �, we deduce that

(2.10) lim sup
n!1

 
sup

a2Œ�A;A�;x2J

�n
�
xC a

n

�
�Ln

�
xC a

n

�
w.x/

!
� 1:
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In a similar way, we can establish the converse bound

(2.11) lim sup
n!1

 
sup

a2Œ�A;A�;x2J

�Ln
�
xC a

n

�
w.x/

�n
�
xC a

n

� !
� 1:

Indeed with m, x and � as above, let us choose a polynomial P of degree �m� 1
such that

�m.x/D

Z 1

�1

P 2m.t/d�.t/ and P 2m.x/D 1:

Then with Sn as above, and proceeding as above,

�Ln .x/�

Z 1

�1

S2n

� Œw.x0/
�1.1C"/�

Z
I.x0;ı/

P 2md�CkPmk
2
L1.Œ�1;1�nI.x0;ı//

r2Œ�n=2�
Z

Œ�1;1�nI.x0;ı/

1

� Œw.x0/
�1.1C"/� �m.x/

n
1CC Œ�1��r�=2�n

o
;

and so as above,

sup
x2I.x0;ı=2/

�Lm.x/

�m.x/
�
�
w.x0/

�1.1C "/.1C o.1//
�

sup
x2I.x0;ı=2/

�Lm.x/

�Ln .x/

�
�
w.x0/

�1.1C "/
�
f1C o.1/g .1CC�/ :

As n runs through all the positive integers, so does mD n� 2 Œ�=2�. (Indeed, the
difference between successive such m is at most 1.) Then (2.11) follows and using
monotonicity of �n in n, much as above. Together (2.10) and (2.11) give (2.1).
Finally, (2.2) follows from standard bounds for the Christoffel function for the
Legendre weight. �

3. Localization

THEOREM 3.1. Assume that �;�� are regular measures on Œ�1; 1� which are
absolutely continuous in an open interval containing a compact set J . Assume that
w D �0 is positive and continuous in J and

d�D d�� in J:

Let A > 0. Then as n!1,

(3.1) sup
a;b2Œ�A;A�;x2J

ˇ̌̌̌�
Kn�K

�
n

� �
xC

a

n
; xC

b

n

�ˇ̌̌̌
=nD o .1/ :

Proof. We initially assume that

(3.2) d�� d�� in .�1; 1/:
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The idea is to estimate the L2 norm of Kn.x; t/�K�n .x; t/ over Œ�1; 1�, and then
to use Christoffel function estimates. NowZ 1

�1

�
Kn.x; t/�K

�
n .x; t/

�2
d�.t/

D

Z 1

�1

K2n.x; t/d�.t/� 2

Z 1

�1

Kn.x; t/K
�
n .x; t/d�.t/C

Z 1

�1

K�2n .x; t/d� .t/

DKn.x; x/� 2K
�
n .x; x/C

Z 1

�1

K�2n .x; t/d�.t/;

by the reproducing kernel property. As d�� d��, we also haveZ 1

�1

K�2n .x; t/d�.t/�

Z 1

�1

K�2n .x; t/d�
�.t/DK�n .x; x/:

Thus Z 1

�1

�
Kn.x; t/�K

�
n .x; t/

�2
d�.t/�Kn.x; x/�K

�
n .x; x/:(3.3)

Next for any polynomial P of degree � n� 1, we have the Christoffel function
estimate

(3.4) jP.y/j �Kn.y; y/
1=2

�Z 1

�1

P 2d�

�1=2
:

Applying this to P.t/DKn.x; t/�K�n .x; t/ and using (3.3) gives, for all x; y 2
Œ�1; 1�, ˇ̌

Kn.x; y/�K
�
n .x; y/

ˇ̌
�Kn.y; y/

1=2
�
Kn.x; x/�K

�
n .x; x/

�1=2
so

jKn.x; y/�K
�
n .x; y/j

Kn.x; x/
�

�
Kn.y; y/

Kn.x; x/

�1=2 �
1�

K�n .x; x/

Kn.x; x/

�1=2
:(3.5)

Now we set x D x0C a=n and y D x0C b=n, where a; b 2 Œ�A;A� and x0 2 J .
By Theorem 2.1, uniformly for such x, we have K�n .x; x/=Kn.x; x/D 1C o.1/,
because they both have the same asymptotics as for the Legendre weight on Œ�1; 1�.
Moreover, uniformly for a; b 2 Œ�A;A�,

Kn

�
x0C

b

n
; x0C

b

n

�
�Kn

�
x0C

a

n
; x0C

a

n

�
� n;

and so

sup
a;b2Œ�A;A�;x02J

ˇ̌̌̌�
Kn�K

�
n

��
x0C

a

n
; x0C

b

n

�ˇ̌̌̌.
nD o.1/:

Now we drop the extra hypothesis (3.2). Define a measure � by � D �D �� in J .
In Œ�1; 1�nJ , let

d�.x/Dmax
˚
dist.x; J /; w.x/; w�.x/

	
dxC d�s.x/C d�

�
s .x/;
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where w;w� and �s; ��s are respectively the absolutely continuous and singular
components of �;��. Then d� � d� and d�� � d�, and � is regular as its
absolutely continuous component is positive in .�1; 1/, and hence lies in the even
smaller class M. Moreover, � is absolutely continuous in an open interval containing
J; and �0 D w in J . The case above shows that the reproducing kernels for � and
�� have the same asymptotics as that for �, in the sense of (3.1), and hence the
same asymptotics as each other. �

4. Smoothing

In this section, we approximate � of Theorem 1.1 by a scaled Legendre Jacobi
measure �# and then prove Theorem 1.1. Recall that QKn is the normalized kernel,
given by (1.5). Our smoothing result (which may also be viewed as localization) is:

THEOREM 4.1. Let � be as in Theorem 1.1. Let A > 0, " 2
�
0; 1
2

�
and choose

ı > 0 such that (2.3) holds. Let x0 2 J . Then there exists C and n0 such that for
n� n0,

(4.1) sup
a;b2Œ�A;A�;x2I.x0; ı2/\J

ˇ̌̌̌
. QKn�K

L
n /
�
xC

a

n
; xC

b

n

�ˇ̌̌̌.
n� C"1=2;

where C is independent of ", ı, n, x0.

Proof. Fix x0 2 J and let w# be the scaled Legendre weight

w#
D w.x0/ in .�1; 1/:

Note that

(4.2) K#
n.x; y/D

1

w.x0/
KLn .x; y/:

(Recall that the superscript L indicates the Legendre weight on Œ�1; 1�.) Because
of our localization result Theorem 3.1, we may replace d� by w�.x/dx, where

w� D w in I.x0; ı/

and

w� D w.x0/ in Œ�1; 1�nI.x0; ı/;

without affecting the asymptotics forKn
�
xCa

n
; xCb

n

�
in the interval I

�
x0;

ı
2

�
. (Note

that " and ı play no role in Theorem 3.1.) Thus, in the sequel, we assume that
w D w.x0/D w

# in Œ�1; 1�nI.x0; ı/, while not changing w in I.x0; ı/. Observe
that (2.3) implies that

(4.3) .1C "/�1 �
w

w# � 1C ", in Œ�1; 1�:
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Then, much as in the previous section,Z 1

�1

�
Kn.x; t/�K

#
n.x; t/

�2
w#.t/dt

D

Z 1

�1

K2n.x; t/w
#.t/dt�2

Z 1

�1

Kn.x; t/K
#
n.x; t/w

#.t/dtC

Z 1

�1

K#2
n .x; t/w

#.t/dt

D

Z 1

�1

K2n.x; t/w.t/dtC

Z
I.x0;ı/

K2n.x; t/.w
#
�w/.t/dt�2Kn.x; x/CK

#
n.x; x/

DK#
n.x; x/�Kn.x; x/C

Z
I.x0;ı/

K2n.x; t/.w
#
�w/.t/dt:

Recall that w D w# in Œ�1; 1�nI .x0; ı/. By (4.3),Z
I.x0;ı/

K2n.x; t/
�
w#
�w

�
.t/dt � "

Z
I.x0;ı/

K2n.x; t/w.t/dt � "Kn.x; x/:

Thus

(4.4)
Z 1

�1

�
Kn.x; t/�K

#
n.x; t/

�2
w#.t/dt �K#

n.x; x/� .1� "/Kn.x; x/:

Applying an obvious analogue of (3.4) to P.t/DKn .x; t/�K#
n.x; t/ and using

(4.4) gives for x, y 2 Œ�1; 1�;ˇ̌
Kn.x; y/�K

#
n.x; y/

ˇ̌
�K#

n.y; y/
1=2

�
K#
n.x; x/� .1� "/Kn.x; x/

�1=2
so ˇ̌

Kn.x; y/�K
#
n.x; y/

ˇ̌
K#
n.x; x/

�

�
K#
n.y; y/

K#
n .x; x/

�1=2 �
1� .1� "/

Kn.x; x/

K#
n.x; x/

�1=2
:

In view of (4.3), we also have

Kn.x; x/

K#
n.x; x/

D
�#
n.x/

�n.x/
�

1

1C "
;

so for all x, y 2 Œ�1; 1�,ˇ̌
Kn.x; y/�K

#
n.x; y/

ˇ̌
K#
n.x; x/

�

�
K#
n.y; y/

K#
n .x; x/

�1=2 h
1�

1�"

1C"

i1=2
�
p
2"

�
K#
n.y; y/

K#
n.x; x/

�1=2

D
p
2"

 
KLn .y; y/

KLn .x; x/

!1=2
D
p
2"

 
�Ln .x/

�Ln .y/

!1=2
:

Here we have used (4.2). Now we set x D x1 C
a
n

and y D x1 C
b
n

, where
x1 2 I

�
x0;

ı
2

�
and a; b 2 Œ�A;A�. By classical estimates for Christoffel functions

for the Legendre weight (or even Theorem 2.1), uniformly for a; b 2 Œ�A;A� ; and
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x1 2 J ,

�Ln

�
x1C

b

n

�
� �Ln

�
x1C

a

n

�
� n�1;

and also the constants implicit in � are independent of ", ı and x1 (this is crucial!).
Thus for some C and n0 depending only on A and J , we have for n� n0,

sup
a;b2Œ�A;A�;x12I.x0;

ı
2
/\J

ˇ̌̌̌
.Kn�K

#
n/
�
x1C

a

n
; x1C

b

n

�ˇ̌̌̌.
n� C

p
":

Then also, from (4.2),

sup
a;b2Œ�A;A�;x12I.x0; ı2/\J

ˇ̌̌̌
.w.x0/Kn�K

L
n /
�
x1C

a

n
; x1C

b

n

�ˇ̌̌̌.
n� C

p
":

Finally, note that for n� n0, x1 2 I
�
x0;

ı
2

�
\J and a; b 2 Œ�A;A�,

.1C "/�1 �
w
�
x1C

a
n

�1=2
w
�
x1C

b
n

�1=2
w.x0/

� 1C ":

Changing x1 to x gives (4.1). �

Proof of Theorem 1.1. Let A; "1 >0. Choose " > 0 so small that the right-hand
side C"1=2 of (4.1) is less than "1. Choose ı > 0 such that (2.3) holds. Now cover J
by, say M intervals I

�
xj ;

ı
2

�
, 1� j �M , each of length ı. For each j , there exists

a threshold n0D n0.j / for which (4.1) holds for n� n0.j / with I
�
x0;

ı
2

�
replaced

by I
�
xj ;

ı
2

�
. Let n1 denote the largest of these. Then we obtain, for n� n1,

sup
a;b2Œ�A;A�;x2J

ˇ̌̌̌
. QKn�K

L
n /
�
xC

a

n
; xC

b

n

�ˇ̌̌̌.
n� "1:

It follows that

(4.5) lim
n!1

�
sup

a;b2Œ�A;A�;x2J

ˇ̌̌̌
. QKn�K

L
n /
�
xC

a

n
; xC

b

n

�ˇ̌̌̌�
D 0:

Finally the universality limit for the Legendre weight (see for example [5]) gives as
n!1,

(4.6)
�
p
1� x2

n
KLn

�
xC

u�
p
1� x2

n
; xC

v�
p
1� x2

n

�
!

sin�.u� v/
�.u� v/

;

uniformly for u; v in compact subsets of the real line, and x in compact subsets of
.�1; 1/. Setting

aD u�
p

1� x2 and b D v�
p

1� x2
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in (4.5), we obtain as n!1, uniformly for x 2 J and u; v in compact subsets of
the real line,

(4.7) lim
n!1

�
p
1� x2

n
QKn

�
xC

u�
p
1� x2

n
; xC

v�
p
1� x2

n

�
D

sin�.u� v/
�.u� v/

:

Since uniformly for x 2 J , by Theorem 2.1,

QKn.x; x/
�1
DKLn .x; x/

�1 .1C o.1//D �
p

1� x2=n .1C o.1// ;

we then also obtain the conclusion of Theorem 1.1. �

For future use, we also record that

(4.8) lim
n!1

1

n
QKn

�
xC

a

n
; xC

b

n

�
D

sin
�
.a� b/=

p
1� x2

�
�.a� b/

uniformly for x 2 J and a; b 2 Œ�A;A�.

5. Universality in L1

In this section, we prove:

THEOREM 5.1. Let � be a finite positive Borel measure on .�1; 1/ that is
regular. Let I be a closed subinterval of .�1; 1/ such that

(5.1) w � C0 in I:

Then if I 0 is a closed subinterval of I 0, uniformly for a; b in compact subsets of the
plane,

lim
n!1

Z
I 0

ˇ̌̌̌
ˇ1nKn

�
xC

�a
p
1� x2

n
; xC

�b
p
1� x2

n

�
(5.2)

�
1

�w.x/
p
1� x2

sin�.a� b/
�.a� b/

ˇ̌̌̌
ˇ dx D 0:

Let �> 0, also with � less than half the length of I . Define a measure �# by

�#
D � in Œ�1; 1�nI

and in I , we define d�#.x/D w#.x/dx, where

(5.3) w#.x/D
1

2�

Z xC�

x��

w D
1

2

Z 1

�1

w .xC s�/ ds:

LEMMA 5.2. Let I 0 be a closed subinterval of I 0.

(a) �# is absolutely continuous in I 0and w# � 1
2
C0 in I 0.

(b) �# is regular on Œ�1; 1�.
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(c) There exists C1 > 0, independent of �, such that for n� 1,

(5.4) sup
t2I 0

1

n
Kn.t; t/� C1 and sup

t2I 0

1

n
K#
n.t; t/� C1:

(d)

(5.5) lim
n!1

1

n

Z
I 0

ˇ̌
Kn�K

#
n

ˇ̌
.t; t/dt D

1

�

Z
I 0

ˇ̌̌̌
1

w.t/
�

1

w#.t/

ˇ̌̌̌
dt

p
1� t2

:

(e) For some C2 > 0 independent of �,

(5.6)
Z
I 0

1
p
1� t2

ˇ̌̌̌
1

w .t/
�

1

w#.t/

ˇ̌̌̌
dt � C2 sup

juj��

Z
I

jw.t Cu/�w.t/j dt:

Proof. (a) is immediate.
(b) This follows from Theorem 5.3.3 in [13, p. 148]. As � is regular, that

theorem shows that the restriction of � to Œ�1; 1�nI is regular. Hence the restriction
of �# is trivially regular in Œ�1; 1�nI . The restriction of �# to I is regular as its
absolutely continuous component w# > 0 there. Then the theorem just cited shows
that �# is regular as a measure on all of Œ�1; 1�.

(c) In view of (5.1), we have for x 2 I 0,

�n.x/� C0 inf
deg.P /�n�1

Z
I

P 2=P 2.x/� C0C1=n:

Here we are using classical bounds for the Legendre weight translated to the interval
I , and the constant C1 depends only on the intervals I 0 and I . Then the first bound
in (5.4) follows, and that for �#

n is similar. Since the lower bound on �# in I
is independent of �, it follows that the constants we obtain in (5.4) will also be
independent of �.

(d) Since � is regular, and �0 D w is bounded below by a positive constant in
I , we have a.e. in I ,

lim
n!1

Kn.x; x/

n
D

1

�w .x/
p
1� x2

:

See for example [7, p. 449, Thm. 8] or [14, Thm. 1]. A similar limit holds forK#
n=n.

We also have the uniform bound in (c). Then Lebesgue’s Dominated Convergence
Theorem gives the result.

(e) Recall that I is a positive distance from ˙1, while w;w# are bounded
below in I by C0=2. Then
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I 0

1
p
1� t2

ˇ̌̌̌
1

w .t/
�

1

w#.t/

ˇ̌̌̌
dt � C

Z
I 0

ˇ̌
w#.t/�w.t/

ˇ̌
dt

� C

Z
I 0

Z 1

�1

jw .t C s�/�w.t/j ds dt

D C

Z 1

�1

Z
I 0

jw .t C s�/�w.t/j dt ds

� C sup
juj��

Z
I 0

jw.t Cu/�w.t/j dt: �

Proof of Theorem 5.1. As per usual,Z 1

�1

.K#
n�Kn/

2.x; t/d�#.t/D

Z 1

�1

K#2
n .x; t/d�

#.t/�2

Z 1

�1

K#
n.x; t/Kn.x; t/d�

#.t/

C

Z 1

�1

K2n.x; t/d�.t/C

Z
I

K2n.x; t/d.�
#
��/.t/

DK#
n.x;x/�Kn.x;x/C

Z
I

K2n.x; t/d.�
#
��/.t/

�K#
n.x;x/�Kn.x;x/C

Z
I

K2n.x; t/.w
#
�w/.t/dt:

Recall that �D �# outside I and that �# is absolutely continuous in I . Then the
Christoffel function estimate (3.4) gives for x; y 2 Œ�1; 1�;

(5.7)
ˇ̌
Kn�K

#
n

ˇ̌
.x; y/

�K#
n.y; y/

1=2

�
K#
n.x; x/�Kn.x; x/C

Z
I

K2n.x; t/
�
w#
�w

�
.t/dt

�1=2
:

We now replace x by xC a�
p
1� x2=n, y by xC b�

p
1� x2=n, integrate over

I 0, and then use the Cauchy-Schwarz inequality. We obtain

(5.8)
Z
I 0

ˇ̌
Kn�K

#
n

ˇ̌ �
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
dx � T

1=2
1 T

1=2
2 ;

where

(5.9)

T1 D

Z
I 0

K#
n

�
xC

b�
p
1� x2

n
; xC

b�
p
1� x2

n

�
dx;

T2 D

Z
I 0

.K#
n�Kn/

�
xC

a�
p
1� x2

n
; xC

a�
p
1� x2

n

�
dx

C

Z
I 0

� Z
I

K2n

�
xC

a�
p
1� x2

n
; t

�
.w#
�w/.t/dt

�
dx

DW T21CT22:
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Now let A > 0 and a; b 2 Œ�A;A�. Choose a subinterval I 00 of I 0 such that
I 0 � .I 00/

0. Observe that for some n0 depending only on A and I 0; I 00,

(5.10) xC
b�
p
1� x2

n
2 I 00 for x 2 I 0; b 2 Œ�A;A�; n� n0:

Then (c) of Lemma 5.2 shows that for n� n0,

(5.11) T1 � C2n;

where C2 is independent of n and b 2 Œ�A;A�. Next, we make the substitution
s D xC a�

p
1�x2

n
in T21. Observe that

ds

dx
D 1�

a�x

n
p
1� x2

2
�
1
2
; 2
�
;

for n � n1, where n1 depends only on A and I . We can also assume that (5.10)
holds, with a replacing b, for n � n1. Hence for n � maxfn0; n1g and all a in
Œ�A;A�,

jT21j �

Z
I 0

ˇ̌
K#
n�Kn

ˇ̌ �
xC

a�
p
1� x2

n
; xC

a�
p
1� x2

n

�
dx

� 2

Z
I 00

ˇ̌
K#
n�Kn

ˇ̌
.s; s/ ds:

Thus, using (d) and (e) of the above lemma,

lim sup
n!1

1

n
T21 � C sup

juj��

Z
I 00

jw .t Cu/�w.t/j dt;

where C does not depend on � and a. Next,

jT22j �

Z
I

ˇ̌
w�w#ˇ̌ .t/"Z

I 0

K2n

�
xC

a�
p
1� x2

n
; t

�
dx

#
dt:

Here for n�max fn0; n1g,Z
I 0

K2n

�
xC

a�
p
1� x2

n
; t

�
dx

�
1

C0

Z
I 0

K2n

�
xC

a�
p
1� x2

n
; t

�
w

�
xC

a�
p
1� x2

n

�
dx

�
2

C0

Z
I 00

K2n.s; t/w.s/ds �
2

C0
Kn.t; t/:

Then using (c) of the previous lemma, we obtain

jT22j � Cn

Z
I

ˇ̌
w�w#ˇ̌ .t/dt � Cn sup

juj��

Z
I 00

jw.t Cu/�w.t/j dt I
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compare (5.6). Substituting all the above estimates in (5.8), we obtain

lim sup
n!1

1

n

Z
I 0

ˇ̌
Kn�K

#
n

ˇ̌ �
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
dx

� C

�
sup
juj��

Z
I 00

jw.t Cu/�w.t/j dt

�1=2
;

uniformly for a; b 2 Œ�A;A�, where C is independent of �. Now as �# is regular
and absolutely continuous in I , and w# is continuous in I 0, Theorem 2.1 shows
that

lim
n!1

1

n
K#
n

�
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
D

sin�.a� b/
�.a� b/

1

�
p
1� x2w#.x/

;

uniformly for x 2 I 0 and a; b 2 Œ�A;A�. It follows that

lim sup
n!1

Z
I 0

ˇ̌̌̌
ˇ1nKn

�
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
�

sin�.a� b/
�.a� b/

1

�
p
1� x2w.x/

ˇ̌̌̌
ˇ dx

�

ˇ̌̌̌
sin�.a� b/
�.a� b/

ˇ̌̌̌ Z
I 0

1

�
p
1� x2

ˇ̌̌̌
1

w#.x/
�

1

w.x/

ˇ̌̌̌
dx

CC

�
sup
juj��

Z
I 00

jw.t Cu/�w.t/j dt

�1=2
;

uniformly for a; b 2 Œ�A;A�, where C is independent of �. Since the left-hand
side is independent of �, we may apply (e) of the previous lemma, and then let
�! 0C to get the result. Of course, as w is integrable, we have as �! 0C;

sup
juj��

Z
I 00

jw.t Cu/�w.t/j dt ! 0: �

6. Universality in Lp

The case pD 1 of Theorem 1.4(a) is an easy consequence of Theorem 5.1 and
the following lemma:

LEMMA 6.1. Assume the hypotheses of Theorem 1.4(a). Let A> 0 and I 0 be a
closed subinterval of I 0. As n!1, uniformly for a; b 2 Œ�A;A�,
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(6.1)
1

n

Z
I 0

ˇ̌̌̌
ˇKn

�
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
�Kn

�
xC

a

QKn.x; x/
; xC

b

QKn.x; x/

�ˇ̌̌̌
ˇdx! 0:

Proof. Choose a subinterval I 00 of I 0 such that I 0 � .I 00/0. Define rn .x/ by

1

QKn.x; x/
D
�
p
1� x2

n
rn.x/:

Then the integrand in (6.1) may be written asˇ̌̌̌
ˇ̌̌̌
ˇ
Kn

�
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
�Kn

�
xC

a�
p
1� x2

n
rn.x/; xC

b�
p
1� x2

n
rn.x/

�
ˇ̌̌̌
ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ @@sKn

�
s; xC

b�
p
1� x2

n

�ˇ̌̌̌
ˇ
jsD�

jaj�
p
1� x2

n
j1� rn.x/j

C

ˇ̌̌̌
ˇ @@t Kn

�
xC

a�
p
1� x2

n
rn.x/; t

�ˇ̌̌̌
ˇ
jtD�

jbj�
p
1� x2

n
j1� rn.x/j

where � lies between x C a�
p
1� x2=n and x C .a�

p
1� x2=n/rn.x/, with a

similar restriction on �. Now by Lemma 5.2(c) and Cauchy-Schwarz,

sup
s;t2I

jKn.s; t/j � Cn:

By Bernstein’s inequality [4, p. 98, Cor. 1.2],

sup
s2I 00;t2I

ˇ̌̌̌
@

@s
Kn.s; t/

ˇ̌̌̌
� C1Cn

2

with a similar bound for @
@t
Kn. Here C1 depends only on I and I 00. Then for some

C2 independent of a; b; n; x,

1

n

ˇ̌̌̌
ˇ̌̌̌
ˇ
Kn

�
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
�Kn

�
xC

a�
p
1� x2

n
rn.x/; xC

b�
p
1� x2

n
rn.x/

�
ˇ̌̌̌
ˇ̌̌̌
ˇ� C j1� rn.x/j :

Hence the integral in the left-hand side of (6.1) is bounded above by

C

Z
I 0

j1� rn.x/j dx:
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Of course C is independent of n. Next [7, p. 449, Thm. 8],

(6.2) rn.x/D
n

Kn.x; x/w.x/�
p
1� x2

! 1 a.e. in I:

We shall shortly show that

(6.3) rn.x/� C for x 2 I 0 and n� n0.

Then Lebesgue’s Dominated Convergence Theorems shows that

lim
n!1

Z
I 0

j1� rn .x/j dx D 0:

To prove (6.3), choose M > 0 such that w �M in I . Define a measure �� by

d�D d�� in Œ�1; 1�nI I d��.x/DM dx in I:

Then d�� d�� in Œ�1; 1� and so �n � ��n in Œ�1; 1�. As the absolutely continuous
component of �� is positive and continuous in I , Theorem 2.1 shows that for some
C > 0,

��n.x/�
C

n
for x 2 I 0 and n� 1:

Then

(6.4)
n

Kn.x; x/
D n�n.x/� C for x 2 I 0 and n� 1:

The definition (6.2) of rn, the fact that w is bounded below in I , and this last
inequality, give (6.3). �

Proof of Theorem 1.4(a). As w is bounded above and below in I , the lemma
and Theorem 5.1 show that

lim
n!1

Z
I 0

ˇ̌̌̌
ˇKn

�
xC

a

QKn.x; x/
; xC

b

QKn.x; x/

�
w.x/�

p
1�x2

n
�

sin�.a�b/
�.a�b/

ˇ̌̌̌
ˇ dxD 0

uniformly for a; b 2 Œ�A;A�. Now as in (6.2), a.e. in I;

1

Kn.x; x/
D
w.x/�

p
1� x2

n
.1C o.1// :

Moreover, by (6.4), Lemma 5.2(c), and Cauchy-Schwarz, both

1

n
Kn

�
xC

a

QKn.x; x/
; xC

b

QKn.x; x/

�
and

Kn

�
xC

a

QKn.x; x/
; xC

b

QKn.x; x/

�.
Kn.x; x/
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are bounded above uniformly for a; b 2 Œ�A;A�; x 2 I 0, and n� n0. We deduce
that

lim
n!1

Z
I 0

ˇ̌̌̌
Kn

�
xC

a

QKn.x; x/
; xC

b

QKn.x; x/

�.
Kn.x; x/�

sin�.a�b/
�.a�b/

ˇ̌̌̌
dx D 0:

Finally, as we have just noted, the integrand in the last integral is bounded above
uniformly for a; b 2 Œ�A;A�, x 2 I 0, and n� n0, so we may replace the first power
by the pth power, for any p > 1. For p < 1, we can use Hölder’s inequality. �

In proving Theorem 1.4(b), our last step is to replace

Kn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
Kn.x; x/

by

zKn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
zKn.x; x/

:

This is more difficult than one might expect — it is only here that we need Riemann
integrability of w in I . For general Lebesgue measurable w, it seems difficult to
deal with the factor zKn.x; x/D w.x/Kn.x; x/ below.

LEMMA 6.2. Assume that w is Riemann integrable and bounded below by a
positive constant in I . Let I 0 be a compact subinterval of I . Let p;A > 0. Then
uniformly for a; b 2 Œ�A;A�,

lim
n!1

Z
I 0

ˇ̌̌̌
ˇ
s
w

�
xC

a

zKn.x; x/

�
w

�
xC

b

zKn.x; x/

�.
w.x/� 1

ˇ̌̌̌
ˇ
p

dx D 0:

Proof. Let a; b 2 Œ�A;A�. From (6.4), for a suitable integer n0 and some
L> 0, ˇ̌̌̌

a

zKn.x; x/

ˇ̌̌̌
�
L

n
and

ˇ̌̌̌
b

zKn .x; x/

ˇ̌̌̌
�
L

n
;

uniformly for x 2 I 0, a; b 2 Œ�A;A�, and n� n0. Next, as w is Riemann integrable
in I , it is continuous a.e. in I [11, p. 23]. For x 2 I and n� 1, let

�n.x/D sup
n
jw.xC s/�w.x/j W jsj �

L

n

o
:

Note that for x 2 I 0; n� n0 and a; b 2 Œ�A;A�,ˇ̌̌̌
w

�
xC

a

zKn.x; x/

�
�w.x/

ˇ̌̌̌
��n.x/:

We have at every point of continuity of w and in particular for a.e. x 2 I ,

lim
n!1

�n.x/D 0:
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Moreover, as w is Riemann integrable, �n is bounded above in I , uniformly in n.
Then Lebesgue’s Dominated Convergence Theorem gives uniformly for a2 Œ�A;A�,Z

I 0

ˇ̌̌̌
w

�
xC

a

zKn .x; x/

�
�w.x/

ˇ̌̌̌p
dx �

Z
I 0

�n.x/
pdx! 0; n!1:

This, the fact that w is bounded above and below, and some elementary manipula-
tions, give the result. �

Proof of Theorem 1.4(b). Since

Kn

�
xC

a
zKn.x; x/

; xC
b

zKn.x; x/

�
Kn .x; x/

is bounded uniformly in n; x; a; b (over the relevant ranges) and

zKn

�
xC

a
zKn .x; x/

; xC
b

zKn.x; x/

�
zKn.x; x/

� Kn

�
xC

aeKn.x; x/ ; xC b
zKn.x; x/

�
Kn.x; x/

D

s
w

�
xC

a

zKn.x; x/

�
w

�
xC

b

zKn.x; x/

�.
w.x/;

this follows directly from the lemma above and Theorem 1.4(a). �

7. Proof of Corollaries 1.2 and 1.3

Proof of Corollary 1.2. This follows directly by substituting (1.6) into the
determinant defining Rm. �

In proving Corollary 1.3, we need

LEMMA 7.1. Let w �C in I and I 0; I 00 be closed subintervals of I 0 such that
I 0 is contained in the interior of I 00. Let A > 0. There exists C2 such that for n� 1,
x 2 I 0, and all ˛; ˇ 2 C with j˛j ; jˇj � A,

(7.1)
ˇ̌̌̌
1

n
Kn

�
xC

˛

n
; xC

ˇ

n

�ˇ̌̌̌
� C2:

Proof. Recall that 1
n
Kn.x; x/ is uniformly bounded above for x 2I 0 by Lemma

5.2(c). Applying Cauchy-Schwarz, we obtain for x; y 2 I 00,

(7.2) 1

n
jKn.x; y/j �

r
1

n
Kn.x; x/

r
1

n
Kn.y; y/� C1:

Next we note Bernstein’s growth lemma for polynomials in the plane [4, Thm. 2.2,
p. 101]: if P is a polynomial of degree � n, we have for z … Œ�1; 1�,

jP.z/j �
ˇ̌̌
zC
p

z2� 1
ˇ̌̌n
kP kL1Œ�1;1� :
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From this we deduce that given L>0, and 0< ı < 1, there exists C2¤C2.n; P; z/
such that for jRe.z/j � ı, and jIm zj � L

n

jP.z/j � C2 kP kL1Œ�1;1� :

Mapping this to I by a linear transformation, we deduce that for Re z 2 I 0 and
jIm zj � L

n
;

jP.z/j � C3 kP kL1.I 00/

where C3 ¤ C3.n; P; z/. We now apply this to 1
n
Kn.x; y/, separately in each

variable, obtaining the stated result. �

Proof of Corollary 1.3. Since w is positive and continuous at each point of
the compact set J , we may find C > 0 and finitely many closed intervals fI g such
that w � C in each I , and such that J is contained in the union of their interiors
I 0. From each such interval I , we can choose a subinterval I 0 as in Lemma 7.1, in
such a way that J is contained in the union of the finitely many intervals fI 0g. It
suffices to prove (1.11) for just one of the intervals I 0. We proceed to do this.

By the lemma,
n
1
n
Kn

�
xC ˛

n
; xC ˇ

n

�o1
nD1

is analytic in ˛; ˇ and uniformly

bounded for ˛; ˇ in compact subsets of the plane, and x 2 I 0. Moreover, from (4.8),
and continuity of w,

lim
n!1

1

n
w.x/Kn

�
xC

˛

n
; xC

ˇ

n

�
D

sin
�
.˛�ˇ/=

p
1� x2

�
� .˛�ˇ/

uniformly for x 2I 0 and ˛; ˇ in compact subsets of I 0. By convergence continuation
theorems, this last limit then holds uniformly for ˛; ˇ in compact subsets of the
plane. Next, expanding pk

�
xC ˛

n

�
and pk

�
xC ˇ

n

�
in Taylor series about x,

1

n
Kn

�
xC

˛

n
; xC

ˇ

n

�
D
1

n

n�1X
kD0

pk

�
xC

˛

n

�
pk

�
xC

ˇ

n

�

D
1

n

1X
r;sD0

�
˛

n

�r
rŠ

�
ˇ

n

�s
sŠ

n�1X
kD0

p
.r/

k
.x/p

.s/

k
.x/

D

1X
r;sD0

˛r

rŠ

ˇs

sŠ

1

nrCsC1
K.r;s/n .x; x/;

with the notation (1.8). Since the series terminates, the interchanges are valid. By
using the Maclaurin series of sin and the binomial theorem, we see that

sin .˛�ˇ/
˛�ˇ

D

1X
r;sD0

˛r

rŠ

ˇs

sŠ
�r;s;
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where �r;s is given by (1.9). Since uniformly convergent sequences of analytic
functions have Taylor series coefficients that also converge, we see that for x 2 I ,
and each r; s � 0,

lim
n!1

1

nrCsC1
w.x/K.r;s/n .x; x/D

�r;s

�

�
1� x2

��.rCsC1/=2
:

This establishes the limit (1.11), but we must still prove uniformity in x. Let
A; " > 0. By the uniform convergence in Theorem 1.1, there exists n0 such that for
n� n0;

(7.3)

ˇ̌̌̌
ˇ̌̌̌
ˇ
w.x/

p
1� x2

n
Kn

�
xC

a�
p
1� x2

n
; xC

b�
p
1� x2

n

�
�
w.y/

p
1�y2

n
Kn

�
yC

a�
p
1�y2

n
; yC

b�
p
1�y2

n

�
ˇ̌̌̌
ˇ̌̌̌
ˇ� ";

uniformly for x; y 2 J , a; b 2 Œ�A;A� and n � n0. Using Bernstein’s growth
inequality as in the lemma above, applied to the polynomial in a; b in the left-
hand side of (7.3), we obtain that this inequality persists for complex a; b with
jaj; jbj �A, except that we must replace " by C", where C depends only on A, not
on n; x; a; b; ". We can now use Cauchy’s inequalities to bound the Taylor series
coefficients of the double series in a; b implicit in the left-hand side in (7.3). This
leads to bounds onˇ̌̌̌

1

nrCsC1
w.x/K.r;s/n .x; x/�

1

nrCsC1
w.y/K.r;s/n .y; y/

ˇ̌̌̌
that are uniform in x; y 2 I 0. �
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