Abstract
We prove that any unicritical polynomial $f_c:z\mapsto z^d+c$ which is at most finitely renormalizable and has only repelling periodic points is combinatorially rigid. This implies that the connectedness locus (the “Multibrot set”) is locally connected at the corresponding parameter values and generalizes Yoccoz’s Theorem for quadratics to the higher degree case.
-
[ALM] A. Avila, M. Lyubich, and W. de Melo, "Regular or stochastic dynamics in real analytic families of unimodal maps," Invent. Math., vol. 154, iss. 3, pp. 451-550, 2003.
@article {ALM, MRKEY = {2018784},
AUTHOR = {Avila, Artur and Lyubich, Mikhail and de Melo, Welington},
TITLE = {Regular or stochastic dynamics in real analytic families of unimodal maps},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {154},
YEAR = {2003},
NUMBER = {3},
PAGES = {451--550},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {37E05 (30D05 37C15 37E20 37F45)},
MRNUMBER = {2006i:37083},
MRREVIEWER = {Feliks Przytycki},
ZBLNUMBER = {1050.37018},
} -
[ALS] A. Avila, M. Lyubich, and W. Shen, Parapuzzle of the Multibrot set and typical dynamics of unimodal maps.
@misc{ ALS,
author={Avila, A. and Lyubich, M. and Shen, W.},
TITLE={Parapuzzle of the Multibrot set and typical dynamics of unimodal maps},
JOURNAL={J. European Math. Soc.},
NOTE={to appear},
} -
[BR]
L. Bers and H. L. Royden, "Holomorphic families of injections," Acta Math., vol. 157, iss. 3-4, pp. 259-286, 1986.
@article {BR, MRKEY = {857675},
AUTHOR = {Bers, Lipman and Royden, H. L.},
TITLE = {Holomorphic families of injections},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {157},
YEAR = {1986},
NUMBER = {3-4},
PAGES = {259--286},
ISSN = {0001-5962},
CODEN = {ACMAA8},
MRCLASS = {30C60 (32G15 58F08 58F11)},
MRNUMBER = {88i:30034},
MRREVIEWER = {Frederick P. Gardiner},
DOI = {10.1007/BF02392595},
ZBLNUMBER = {0619.30027},
} -
[DH] A. Douady and J. H. Hubbard, "Étude dynamiques des polynômes complexes," Publications Math. d’Orsay, vol. 84-02 (1984) and 85-04, 1985.
@article{DH,
author={Douady, A. and Hubbard, J. H.},
TITLE={Étude dynamiques des polynômes complexes},
JOURNAL={Publications Math. d'Orsay},
VOLUME={84-02 {\rm (1984) and} 85-04},
YEAR={1985},
NOTE={Université de Paris-Sud, Dept. de Math., Orsay, 1984},
} -
[H] J. H. Hubbard, "Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz," in Topological methods in modern mathematics, Houston, TX: Publish or Perish, 1993, pp. 467-511.
@incollection {H, MRKEY = {1215974},
AUTHOR = {Hubbard, J. H.},
TITLE = {Local connectivity of {J}ulia sets and bifurcation loci: three theorems of {J}.-{C}. {Y}occoz},
BOOKTITLE = {Topological methods in modern mathematics},
venue={{S}tony {B}rook, {NY},
1991},
PAGES = {467--511},
PUBLISHER = {Publish or Perish},
ADDRESS = {Houston, TX},
YEAR = {1993},
MRCLASS = {58F23 (28A80 30C10 58F12)},
MRNUMBER = {94c:58172},
MRREVIEWER = {Christoph Bandt},
ZBLNUMBER = {0797.58049},
} -
[K] J. Kahn, Holomorphic removability of Julia sets.
@misc{K,
author={Kahn, Jeremy},
TITLE={ Holomorphic removability of Julia sets},
NOTE={ preprint IMS at Stony Brook, \# 11 (1998)},
} -
[KL1]
J. Kahn and M. Lyubich, "The quasi-additivity law in conformal geometry," Ann. of Math., vol. 169, iss. 2, pp. 561-593, 2009.
@article {KL1, MRKEY = {2480612},
AUTHOR = {Kahn, Jeremy and Lyubich, Mikahil},
TITLE = {The quasi-additivity law in conformal geometry},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {169},
YEAR = {2009},
NUMBER = {2},
PAGES = {561--593},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {37Fxx},
MRNUMBER = {2480612},
DOI = {10.4007/annals.2009.169.561},
} -
[KL2] J. Kahn and M. Lyubich, "\vphantombLocal connectivity of Julia sets for unicritical polynomial," Ann. of Math.\/, vol. 170, pp. 413-426, 2009.
@article{KL2, KEY={KL09b},
AUTHOR={Kahn, Jeremy and Lyubich, Mikhail},
TITLE={\vphantom{b}Local connectivity of Julia sets for unicritical polynomial},
JOURNAL={Ann. of Math.\/},
VOLUME={170},
YEAR={2009},
PAGES={413--426},
} -
[KSS]
O. Kozlovski, W. Shen, and S. van Strien, "Rigidity for real polynomials," Ann. of Math., vol. 165, iss. 3, pp. 749-841, 2007.
@article {KSS, MRKEY = {2335796},
AUTHOR = {Kozlovski, O. and Shen, W. and van Strien, S.},
TITLE = {Rigidity for real polynomials},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {165},
YEAR = {2007},
NUMBER = {3},
PAGES = {749--841},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {37E05 (30C10 30C62 37C20 37E20 37F10 37F30 37F50)},
MRNUMBER = {2008m:37063},
MRREVIEWER = {Henk P. Bruin},
DOI = {10.4007/annals.2007.165.749},
ZBLNUMBER = {1129.37020},
} -
[puzzle]
M. Lyubich, "Dynamics of quadratic polynomials. I, II," Acta Math., vol. 178, iss. 2, pp. 185-247, 247, 1997.
@article {puzzle, MRKEY = {1459261},
AUTHOR = {Lyubich, Mikhail},
TITLE = {Dynamics of quadratic polynomials. {I},
{II}},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {178},
YEAR = {1997},
NUMBER = {2},
PAGES = {185--247, 247--297},
ISSN = {0001-5962},
CODEN = {ACMAA8},
MRCLASS = {58F23 (30C10 30D05)},
MRNUMBER = {98e:58145},
MRREVIEWER = {Grzegorz {\'S}wi{\polhk{a}}tek},
DOI = {10.1007/BF02392694},
ZBLNUMBER = {0908.58053},
} -
[ideas] M. Lyubich, "Renormalization ideas in conformal dynamics," in Current Developments in Mathematics, 1995, Int. Press, Cambridge, MA, 1994, pp. 155-190.
@incollection {ideas, MRKEY = {1474978},
AUTHOR = {Lyubich, Mikhail},
TITLE = {Renormalization ideas in conformal dynamics},
BOOKTITLE = {Current Developments in Mathematics, 1995},
VENUE = {{C}ambridge, {\rm MA}},
PAGES = {155--190},
PUBLISHER = {Int. Press, Cambridge, MA},
YEAR = {1994},
MRCLASS = {58F23 (30D05)},
MRNUMBER = {98h:58161},
MRREVIEWER = {Walter Bergweiler},
ZBLNUMBER = {0877.58046},
} -
[M1] J. Milnor, "Local connectivity of Julia sets: expository lectures," in The Mandelbrot Set, Theme and Variations, Cambridge: Cambridge Univ. Press, 2000, pp. 67-116.
@incollection {M1, MRKEY = {1765085},
AUTHOR = {Milnor, John},
TITLE = {Local connectivity of {J}ulia sets: expository lectures},
BOOKTITLE = {The {M}andelbrot Set, Theme and Variations},
SERIES = {London Math. Soc. Lecture Note Ser.},
NUMBER = {274},
PAGES = {67--116},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {2000},
MRCLASS = {37F50 (30D05 37-02)},
MRNUMBER = {2001b:37073},
ZBLNUMBER = {1107.37305},
} -
[M2] J. Milnor, "Periodic orbits, externals rays and the Mandelbrot set: an expository account, in Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995)," Astérisque, vol. 261, pp. 277-333, 2000.
@article{M2, MRKEY = {1755445},
AUTHOR = {Milnor, John},
TITLE = {Periodic orbits, externals rays and the {M}andelbrot set: an expository account, in {\it G{é}om{é}trie Complexe et Syst{è}mes Dynamiques} (Orsay, 1995)},
JOURNAL={Astérisque},
FJOURNAL = {Astérisque},
VOLUME = {261},
YEAR = {2000},
PAGES = {277--333},
ISSN = {0303-1179},
MRCLASS = {37F45 (30D05)},
MRNUMBER = {2002e:37067},
MRREVIEWER = {Peter Ha{ï}ssinsky},
} -
[R] P. Roesch, "Holomorphic motions and puzzles (following M. Shishikura)," in The Mandelbrot set, theme and variations, Cambridge: Cambridge Univ. Press, 2000, pp. 117-131.
@incollection {R, MRKEY = {1765086},
AUTHOR = {Roesch, Pascale},
TITLE = {Holomorphic motions and puzzles (following {M}. {S}hishikura)},
BOOKTITLE = {The {M}andelbrot set, theme and variations},
SERIES = {London Math. Soc. Lecture Note Ser.},
NUMBER = {274},
PAGES = {117--131},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {2000},
MRCLASS = {37F45 (30D05 37F10 37F50)},
MRNUMBER = {2001c:37046},
} -
[Sch1] D. Schleicher, "Rational parameter rays of the Mandelbrot set," in Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995), , 2000, vol. 261, pp. 405-443.
@incollection{Sch1, MRKEY = {1755449},
AUTHOR = {Schleicher, D.},
TITLE = {Rational parameter rays of the {M}andelbrot set},
BOOKTITLE = {G{é}om{é}trie Complexe et Syst{è}mes Dynamiques (Orsay, 1995)},
JOURNAL = {Astérisque},
FJOURNAL = {Astérisque},
VOLUME = {261},
YEAR = {2000},
PAGES = {405--443},
ISSN = {0303-1179},
MRCLASS = {37F45 (30D05)},
MRNUMBER = {2001f:37061},
MRREVIEWER = {Peter Ha{ï}ssinsky},
} -
[Sch2] D. Schleicher, "On fibers and renormalization of Julia sets and Multibrot sets," in Geometry and Applications: A Jubilee of Benoit Mandelbrot, Providence, RI: Amer. Math. Soc., 2004, vol. 1, pp. 477-517.
@incollection{Sch2,
author = {Schleicher, Dierek},
TITLE={On fibers and renormalization of Julia sets and Multibrot sets},
BOOKTITLE={Geometry and Applications: A Jubilee of Benoit Mandelbrot},
VOLUME=1, pages={477--517},
SERIES={Proc. Sympos. Pure Math.},
number={72},
PUBLISHER={Amer. Math. Soc.},
ADDRESS={Providence, RI},
YEAR={2004},
NOTE={and Preprint IMS at Stony Brook \# 13 (1998)},
}