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Abstract

We prove that any unicritical polynomial fc W z 7! zd C c which is at most
finitely renormalizable and has only repelling periodic points is combinatorially
rigid. This implies that the connectedness locus (the “Multibrot set”) is locally
connected at the corresponding parameter values and generalizes Yoccoz’s Theorem
for quadratics to the higher degree case.

1. Introduction

Let us consider the one-parameter family of unicritical polynomials

fc W z 7! zd C c; c 2 C;

of degree d � 2. Let M D Md D fc 2 C; the Julia set of fc is connectedg be the
connectedness locus of this family. In the case of quadratic polynomials (d D 2),
it is known as the Mandelbrot set, while in the higher degree case it is sometimes
called the Multibrot set (see [Sch04]).

Rigidity is one of the most remarkable phenomena observed in holomor-
phic dynamics. In the unicritical case this phenomenon assumes (conjecturally)
a particularly strong form of combinatorial rigidity: combinatorially equivalent
nonhyperbolic maps are conformally equivalent. This Rigidity Conjecture is equiv-
alent to the local connectivity of the Multibrot sets Md . In the quadratic case, we
are dealing with the famous MLC conjecture asserting that the Mandelbrot set is
locally connected.

About 15 years ago Yoccoz proved that the Mandelbrot set is locally connected
at all nonhyperbolic parameter values which are at most finitely renormalizable; see
[Hub93]. In fact, this theorem consists of two independent parts dealing respectively
with maps that have neutral periodic points or not. In the presence of neutral points,
Yoccoz’s method extends readily to the higher degree case. However, the proof in
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the absence of neutral points was linked to the quadratic case in a very significant
way.1

RIGIDITY THEOREM Let fc , c 2Md , be an at most finitely renormalizable
unicritical polynomial with all periodic points repelling. Then fc is combinatorially
rigid.

Our work uses “complex bounds” recently proved in [KL09b], which in turn
are based on new analytic techniques developed in [KL09].

While combinatorial rigidity is a statement about polynomials with exactly
the same combinatorics in all scales, our further analysis (geometric and measure-
theoretical) of the parameter plane [ALS] (with applications to the real case) will
depend on comparison of polynomials whose combinatorics coincide only up
to a certain scale. For such maps one can consider pseudo-conjugacies, that is,
homeomorphisms which are equivariant up to that scale. In the course of the proof
of the Rigidity Theorem, we will show that these pseudo-conjugacies can be selected
uniformly quasi-conformally, generalizing part of the analysis of [Lyu97] in the
quadratic case.

Let us point out that our argument for existence of pseudo-conjugacies is
considerably simpler than the previous arguments, while needing much weaker
geometric control of the dynamics. Also, though we restrict ourselves to the
unicritical case in order not to overshadow the idea of the method, our argument
can be extended to the multicritical case.

In conclusion, let us briefly outline the structure of the paper. In Section 2
we construct a “favorite nest” of puzzle pieces and transfer a priori bounds of
[KL09b] to this nest. Section 3 is central in the paper: here we prove, using the a
priori bounds, that the respective favorite puzzle pieces of two maps with the same
combinatorics stay a bounded Teichmüller distance apart. In Section 4, we derive
from it, by means of the “pullback argument”, our Rigidity Theorem.

Note finally that for real polynomials of any degree, the real version of the
Rigidity Theorem has been recently proved in [KSvS07].

Basic notation and terminology.

Dr D fz 2 C W jzj< rg, DD D1, TD @D;
DomR will stand for the domain of a map R;
Connected components will be referred to as “components”;
Pullbacks of an open topological disk V under f are components of f �1.V /;
Pullbacks of a closed disk V are the closures of the pullbacks of intV .

1See also [ALdM03], [Kah], [Lyu97], [Roe00] for other proofs of this result in the quadratic case.
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2. The complex bounds

In this section we fix a map f D fc W z 7! zd C c. The constants below may
depend implicitly on its degree d , but not on c.

Let V be an (open or closed) Jordan disk V � C. We say that V is nice if
f k.@V /\ intV D∅ for all k � 1.

Let RV WDomRV !V be the first return map for f to a nice open disk V 3 0.
This map has a nice structure: its restriction to each component U of DomRV is a
proper map onto V . The degree of this restriction is d or 1 depending on whether
0 2 U or otherwise. In the former case, U is called the central component of RV .

If V is a closed nice disk with 0 2 intV , then we can apply the previous
discussion to intV . Somewhat abusing notation, we will denote DomRV the
closure of the DomRintV (and we consider RV only on DomRV ). Then the
central piece W of DomRV is defined as the closure of the central component U
of DomRintV . Notice that W is not necessarily a component of DomRV .

The first landing map LV to a nice domain V 3 0 has even nicer properties: it
univalently maps each component of DomLV onto V (one of these components is
V itself, and LV D id on it). In the case when V is closed, we will apply to the
domain of the landing maps the same conventions as for the return map.

Let us consider two nice disks, V and V 0, containing 0 in their interior. We
say that V 0 is a child of V if there exists t � 1 such that f t W V 0! V is a branched
covering of degree d . (Note that V 0 � V .) We can alternatively say that V is the
parent of V 0 (notice that any child has a single parent but not the other way around).

The children of V are naturally ordered by inclusion. Notice that the first child
of V coincides with the central piece of RV (whenever it exists). We say that V 0 is
a good child if f t .0/ 2 intU where U is the first child of V . In this case, the first
child U 0 of V 0 is contained in .f t jV 0/�1.U /. In particular

mod.V 0 nU 0/�
1

d
mod.V nU/:

A puzzle is a graded (by the depth k � 0) collection of nice closed Jordan
disks called puzzle pieces, such that for each k � 0 the puzzle pieces of depth k
have disjoint interiors, and the puzzle pieces of depth kC1 are the pullbacks of the
puzzle pieces of depth k under f .

It may happen that the first child U of V is good: then U is called spoiled. In
this case RV .0/ 2 U and the first return to V is called central.
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We say that a sequence of nested puzzle pieces W m � V m � � � � �W 0 � V 0

is a modified principal nest if

(1) W i is the first child of V i ,

(2) V iC1 is the oldest unspoiled child of W i . (In other words, V iC1 is the first
child ofW i if the return toW i is noncentral, and is the second child otherwise.)

See Section 2.2 of [KL09b] for a detailed discussion of the combinatorics of this
nest.

The following is the main technical result of [KL09b]:

THEOREM 2.1. There exists ı > 0 such that for every " > 0 there exists n0 > 0
with the following property. LetW m�V m�� � ��W 0�V 0 be a modified principal
nest for f . If mod.V 0 nW 0/ > " and n0 � n�m then mod.V n nW n/ > ı.

We will need a slight variation of this result.

LEMMA 2.2. Let us consider a nest of three puzzle pieces V 0 � U � V such
that U is the first child of V . Let D be a noncentral component of DomRV and let
D0 be a component of DomLV 0 contained in D. Then

(2.1) mod.D nD0/�mod.V nU/:

Proof. Let k D kD0 � 1 be the landing time of D0 to V 0 in terms of the return
map to V , i.e., LV 0 jD0 DRkV jD

0.
The first return map RV restricts to a univalent map D! V which maps D0

onto a component D01 of DomLV 0 . Hence

mod.D nD0/Dmod.V nD01/:

LetD1 be the component of DomRV containingD01. IfD1DU then mod.V n
D01/�mod.V nU/, and we are done. Otherwise mod.V nD01/�mod.D1 nD01/,
so it is enough to show that mod.D1 nD01/�mod.V nU/. But this inequality is
the same as (2.1) with the landing time reduced by one: kD01 D kD0 � 1. The result
follows by induction in k. �

Given a nice domain Q, let m.Q/D inf mod.Q nD/ where the infimum is
taken over all components D of DomRQ.

LEMMA 2.3. Let U be the first child of V , and let V 0 be any child of V . Then

m.V 0/�
1

d
mod.V nU/:

Proof. Let k >0 be such that f k.V 0/DV . Given a component� of DomRV 0 ,
let D0 D f k.�/. Notice that f j .V 0/\ V 0 D ∅ for 1 � j < k, so that D0 is a
component of DomLV 0 . Hence mod.V nD0/ � mod.V nU/: this is obvious if
D0 � U and otherwise it follows from Lemma 2.2.
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Consequently,

mod.V 0 n�/�
1

d
mod.V nD0/�

1

d
mod.V nU/: �

The favorite child Q0 of Q is the oldest good unspoiled child of Q. It is
constructed as follows. Let P be the first child of Q. Let k > 0 be the first moment
when RkQ.0/ 2Q nP , and let l > 0 be the first moment when RkClQ .0/ 2 P (so
that k C l is the moment of the first return back to P after first escape from P

under iterates of RQ). Then Q0 is the pullback of Q under RkClQ that contains 0.
(Compare with the construction of the domain QA in Lemma 2.5 of [KL09b].) Note
that the first child is never the favorite.

LEMMA 2.4. Let us consider a nest of four puzzle pieces, P 0 �Q0 � P �Q,
such that P is the first child of Q, P 0 is the first child of Q0, and Q0 is the favorite
child of Q. If V is a puzzle piece which contains Q and whose first child U is
contained in Q then

mod.Q0 nP 0/�
1

d2
m.V /:

Proof. Let the moments k and l have the same meaning as in the above
construction of the favorite child. Then RkClQ jP 0 is a d -to-1 branched covering
onto some domain D � P � U which is a component of DomLQ0 . Hence

mod.Q0 nP 0/D
1

d
mod.Q nD/:

Assume Q0 ¤D. Then D is contained in a component of the domain of the
first return map to U . Hence by Lemma 2.3,

mod.Q nD/�mod.U nD/�m.U /�
1

d
m.V /;

and the conclusion follows.
Assume now that Q0DD, and let �DRV .Q0/. Then �¤Q since Q0 is not

the first child of Q. Hence � returns to Q � V sometimes, so that it is contained
in a component of DomRV . Thus

mod.Q nQ0/�mod.U nQ0/D
1

d
mod.V n�/�

1

d
m.V /;

and the result follows. �

PROPOSITION 2.5. There exists ı > 0 such that for every " > 0 there exists
n0 > 0 with the following property. Let Pm �Qm � � � � � P 0 �Q0 be a nest of
puzzle pieces such that P i is the first child of Qi and QiC1 is the favorite child of
Qi . If mod.Q0 nP 0/ > " and n0 � n�m then mod.Qn nP n/ > ı.
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Proof. Let us consider the modified principal nestW k �V k � � � � �W 0�V 0

which begins with V 0 DQ0 and ends at the maximal level k such that V k �Qm.
For any n D 0; 1; : : : ; m, we define k.n/ 2 Œ0; k� as the maximal level such that
V k.n/ �Qn. (In particular, k D k.m/ by definition.)

We now show that if n�m�2 then k.nC2/ > k.n/. Indeed, since QnC1 is a
child of Qn � V k.n/, it is contained in the first child W k.n/ of V k.n/. Since QnC2

is not younger than the second child ofQnC1�W k.n/, it is contained in the second
child of W k.n/, and the latter is contained in V k.n/C1. Hence k.nC2/� k.n/C1.

By Theorem 2.1 and Lemma 2.3, it is enough to show that for every natural
n 2 Œ2;m� 2� we have:

.�/
Either mod.Qn nP n/� C�1m.V k.n//
or mod.QnC1 nP nC1/� C�1m.V k.n//

for some constant C > 0 which depends only on d .

IfW k.n/�Qn, Lemma 2.4 yields the latter estimate with C Dd2. So, assume
W k.n/ �Qn.

Let Z0 DW k.n/, and let ZiC1 be the first child of Zi (so Z0 �Z1 � � � � is
the principal nest that begins with Z0; see [Lyu97]). If Z1 �Qn �Z0, Lemmas
2.4 and 2.3 imply that

mod.QnC1 nP nC1/�
1

d2
m.Z0/�

1

d3
m.V k.n//;

and we are done.
So, assume Qn bZ1 and consider the first return map RDRZ0 . Now, find

the level j > 0 such that2 R.0/ 2Zj�1 nZj . If j D 1 then Z1 D V k.n/C1 �Qn,
contradicting the assumption. So j > 1.

LetD�Z0nZ1 be the component of DomR containingRj .0/. Then V k.n/C1

is the component of .Rj /�1.D/ containing 0. Let D0 � D be the component
of DomLZj containing Rj .0/. Then ZjC1 is the component of .Rj /�1.D0/
containing 0. Thus, we have Zj � V k.n/C1 �ZjC1 and

mod.V k.n/C1 nZjC1/D
1

d
mod.D nD0/�

1

d
mod.Z0 nZ1/;

where the inequality follows from Lemma 2.2.
If Qn �Zj then P n �ZjC1, and we obtain the following nest:

Zj �Qn � V k.n/C1 �ZjC1 � P n:

2Thus, Z0 � Z1 � � � � � Zj is a central cascade of puzzle pieces; compare Section 2.2 of
[KL09b].
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It follows that

mod.Qn nP n/�mod.V k.n/C1 nZjC1/�
1

d
mod.Z0 nZ1/�

1

d2
m.V k.n//

and we are done.
If Zj �Qn bZ1 then Qn is the first child of R.Qn/. Since every child has

a single parent, R.Qn/DQn�1. This is a contradiction since by definition, Qn is
the favorite (and hence not the first) child of Qn�1. �

3. Teichmüller distance between puzzle pieces

A good nest is a sequence Qm � � � � � Q0 such that Qi is a good child of
Qi�1, 1� i �m.

THEOREM 3.1. Let c; Qc 2 C, and let f D fc , Qf D fQc . Let Qm � � � � �Q0,
zQm � � � � � QQ0, be good nests for f , Qf , such that there exists a homeomorphism
h W C! C with h.Qi /D QQi , 0 � i �m, and h ı f .x/D Qf ı h.x/, x …Qm.3 Let
P i and zP i , 0� i �m� 1, be the first kids of Qi and zQi respectively. Assume that

(1) mod.Qi nP i / > ı and mod. zQi n zP i / > ı, 0� i �m� 1;

(2) hj@Q0 extends to a K-qc map .Q0; 0/! . zQ0; 0/.

Then hj@Qm extends to a K 0-qc map .Qm; 0/!. zQm; 0/ where K 0DK 0.ı;K/.

The basic step of the proof of Theorem 3.1 is the following lemma on covering
maps of the disk.

LEMMA 3.2. For every 0 < � < r < 1 there exists K0 D K0.�; r/ with the
following property. Let g; Qf W .D; 0/ ! .D; 0/ be holomorphic proper maps of
degree d . Let h; h0 W T! T, be such that Qf ı h0 D h ıg. Assume that

(1) The critical values of g, Qf are contained in xD�;

(2) h admits a K-qc extension H W D! D which is the identity on Dr .

Then h0 admits a K 0-qc extension H 0 W D! D which is the identity on Dr , where
K 0 DmaxfK;K0g.

Proof. Let G� be the family of proper holomorphic maps G W .D; 0/! .D; 0/

of degree d whose critical values are contained in xD�, endowed with the strong
topology of their extensions to rational maps of degree d . This family is compact.
One can see it, e.g., by checking normality of this family on the whole Riemann
sphere. Normality is obvious on D and C nD. To see normality near the unit circle
T, notice that the full preimages G�1.Dr [ .C nD1=r//, G 2 G�, contain 0 and1,
and omit a definite symmetric annulus around T (of modulus d�12 log r).

3We refer to this property as combinatorial equivalence of the nests.
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For any G 2 G�, the domain UG D G�1.Dr/ is a Jordan disk with analytic
anti-clockwise oriented boundary. By the Schwarz Lemma, Dr b UG .

Let G 2 G�, and let � W @Dr1=d ! @UG be an orientation preserving homeo-
morphism such that G ı �.z/ D zd . Then � is an analytic diffeomorphism, and
there exists an L-qc map H� W D! D such that H� jDr D id and H� j@Dr1=d D �.
Moreover LD L.r; �/ by compactness of G�.

Furthermore, the given map H W D n xDr ! D n xDr lifts to a K-qc map

yH W D n xUg ! D n xU Qf

such that yH j@DD h0 and Qf ı yH DH ıg on D n xUg . By the previous discussion,
yH extends to a qc map H 0 W D! D such that H 0jUg is the composition of two
L-qc maps which are the identity on Dr . The result follows with K0 D L2. �

Proof of Theorem 3.1. Let us consider moments ti , 1 � i � m, such that
f ti .Qi / DQi�1. By combinatorial equivalence of our nests, Qf ti . zQi / D zQi�1.
Then f ti WQi !Qi�1 are proper holomorphic maps of degree d , and similarly
for the second nest.

Let
vi D f

tiC1C���Ctm.0/;

for 0 � i � m. Since f tm.0/ 2 Pm�1 and f ti .P i / � P i�1, we have: vi 2 P i ,
0� i �m� 1.

Let  i W .Qi ; vi /! .D; 0/ be the uniformizations of the domains under consid-
eration by the unit disk, and let gi D i�1ıf ti ı �1i . The maps gi W .D; 0/! .D; 0/

are unicritical proper holomorphic maps of degree d . Let ui D  i .0/ stand for the
critical points of these maps.

The corresponding objects for the second nest will be marked with a tilde.
Let us also consider homeomorphisms hi W T! T given by hi D z i ıhı �1i .

They are equivariant with respect to the g-actions, i.e., hi�1 ıgi D Qfi ı hi .
Let i .P i /D�i . Since mod.Dn�i /�ı and�i 3 i .vi /D0, 0� i�m, these

domains are contained in some disk D� with �D �.ı/ < 1. Since f ti .0/ 2 P i�1,
we conclude that gi .ui / 2�i�1 � D�, 1 � i � m. The same assertions hold for
the second nest. So, all the maps gi and Qgi satisfy the assumptions of Lemma 3.2.

By Assumption (2) of Theorem 3.1 (which we are proving), h0 extends to a
K-qc map .D; u0/! .D; Qu0/. Fix some r 2 .�; 1/. Since u0; Qu0 2�0 � D�, we
conclude that h0 extends to an L-qc map D!D which is the identity on Dr , where
LD L.K; ı/.

LetK0DK0.�; r/ be as in Lemma 3.2, and letK 0DmaxfL;K0g. Consecutive
applications of Lemma 3.2 show that for i D 1; : : : ; m, the maps hi admit K 0-qc
extensions Hi W D! D which are the identity on Dr . The desired extension of
hj@Qm is now obtained by taking z �1m ıHm ı m. �
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4. The pullback argument

Here we will derive the Rigidity Theorem from the bound on the Teichmüller
distance between the central puzzle pieces by means of the “Pullback Argument” in
the Yoccoz puzzle framework. This method is standard in holomorphic dynamics.

4.1. Combinatorics of a map. Let A stand for the set of parameters c for
which the map fc W z 7! zd C c has an attracting fixed point. In the quadratic case,
it is a domain bounded by the main cardioid of the Mandelbrot set. In the higher
degree case, A is a domain bounded by a simple closed curve with d � 1 cusps.

For the construction of the Yoccoz puzzle for a map fc with c 2M nA, the
reader can consult [KL09b, �2.3]. Keeping in mind future applications, here we
will extend the construction (up to a certain depth) to some parameters outside M.

The set MnA is disconnected. Each connected component of MnA is called a
limb. The closure of a limb intersects A at a single point called the root of the limb.
There are two external rays landing at the root. Their union divides C into two
(open) connected components: the one containing the limb is called a parabolic
wake (see [DH85], [Mil00b], [Sch00]).

For c inside a limb, the map fc has a unique dividing repelling fixed point ˛:
the rays landing at it, together with ˛ itself, disconnect the plane into q� 2 domains.
This repelling fixed point, and the q external rays landing at it, have an analytic
continuation through the whole parabolic wake.

Let us truncate the parabolic wake by an equipotential of height h. For c in
the truncated parabolic wake, the Yoccoz puzzle pieces of depth 0 are obtained by
taking the closure of the connected components of

C n fexternal rays landing at ˛g

truncated by the equipotential of height h. We denote the Yoccoz puzzle pieces of
depth 0 by Y 0j .

We say that f has well defined combinatorics up to depth n if

f k.0/ 2
[
j

intY 0j ; 0� k � n:

In this case we define Yoccoz puzzle pieces of depth n as the pullbacks of the
Yoccoz puzzle pieces of depth 0 under f n. The puzzle pieces of depth n will be
denoted by Y nj , where the label j stands for the angles of the external rays that
bound Y nj . The puzzle piece of depth n whose interior contains 0 is called the
critical puzzle piece of depth n and it is also denoted Y n. The combinatorics of f
up to depth n (provided it is well defined) is the set of labels of puzzle pieces of
depth n. Note that the combinatorics up to depth nC t determines the puzzle piece
Y nj containing the critical value f t .0/.
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If f does not have well defined combinatorics of all depths, then either the
Julia set of f is disconnected or the critical point is eventually mapped to the
repelling fixed point ˛. Otherwise there are critical puzzle pieces of all depth. In
this case, we say that f is combinatorially recurrent if the critical point returns to all
critical puzzle pieces. Combinatorially recurrent maps can be either renormalizable
or non-renormalizable, see [KL09b, �2.3].

Two non-renormalizable maps are called combinatorially equivalent if they
have the same combinatorics up to an arbitrary depth. (See �4.3 for a definition of
combinatorial equivalence in the renormalizable case.)

The following result treats the main special case of the Rigidity Theorem.

THEOREM 4.1. Let f W z 7! zd C c be a non-renormalizable combinatorially
recurrent map. If Qf W z 7! zd C Qc is combinatorially equivalent to f , then f and Qf
are quasiconformally conjugate.

In the next section we will deduce Theorem 4.1 from a more general statement
regarding pseudo-conjugacies.

4.2. Pseudo-conjugacies and rigidity. In this section f will stand for a map
satisfying the assumptions of Theorem 4.1. For such a map, the construction of the
favorite child preceding Lemma 2.4 and the discussion of the modified principal
nest (see [KL09b, ��2.2, 2.3]) yield:

(1) Every critical puzzle piece Y s has a favorite child.

(2) Let l > 0 be the minimal moment for which f lq.0/ … Y 1. Then the first child
of Y lq is contained in intY lq .

This allows us to construct an infinite nest Q0 � P 0 �Q1 � P 1 � � � � as follows.
Take Q0 D Y lq , let QiC1 be the favorite child of Qi , and let P i be the first child
of Qi .

If f and Qf have the same combinatorics up to depth n, a weak pseudo-
conjugacy (up to depth n) between f and Qf is an orientation-preserving homeomor-
phism H W .C; 0/! .C; 0/ such that H.Y 0j /D zY

0
j and H ıf D Qf ıH outside the

interior of the puzzle pieces of depth n. If the last equation is satisfied everywhere
outside the central puzzle piece Y n, then H is called a pseudo-conjugacy (up to
depth n).

A (weak) pseudo-conjugacy is said to match the Böttcher marking if near
1 it becomes the identity in the Böttcher coordinates for f and Qf . (Then by
equivariance it is the identity in the Böttcher coordinates outside [jY nj and [j zY nj .)
In what follows all (weak) pseudo-conjugacies are assumed to match the Böttcher
marking.

The following lemma provides us with a weak pseudo-conjugacy (between f
and Qf ) with a weak dilation control.
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LEMMA 4.2. If f and Qf have the same combinatorics up to depth n then there
exists a Kn-qc weak pseudo-conjugacy between f and Qf . (Here Kn depends on
the maps f and Qf .)

Proof. The case nD 0 can be dealt with by means of holomorphic motions.
We will only sketch the construction; details can be found in [Roe00] (in the case
d D 2 which at this point does not differ from the higher degree case).

The property that f and Qf have the same combinatorics up to depth 0 just
means that c and Qc belong to the same truncated parabolic wake. Inside the truncated
parabolic wake, the q external rays landing at the ˛ fixed point, and the equipotential
of height h, move holomorphically in C n f0g. Namely, there exists a family of
injective maps �b , parametrized by a parameter b in the truncated parabolic wake,
which map the rays and equipotential in question for c to the corresponding curves
for b (matching the Böttcher marking), and such that b 7! �b.z/ is holomorphic,
�c D id.

Outside the equipotential of height h, this holomorphic motion extends to a
motion holomorphic in both variables .b; z/ and tangent to the identity at1 (it
comes from the Bötcher coordinate near1). By [BR86], the map �b extends to
a K0-qc map .C; 0/! .C; 0/, where K0 depends only on the hyperbolic distance
between c and b inside the truncated parabolic wake. This is the desired qc weak
pseudo-conjugacy H0 for nD 0.

We will now treat the general case by induction. Assuming that it holds for
some n� 1 � 0, let us modify the qc weak pseudo-conjugacy Hn�1 up to depth
n�1 inside the puzzle piece of depth n�1 containing the critical value c, so that it
takes c to Qc. The resulting map H 0n�1 is still a weak pseudo-conjugacy up to depth
n� 1, and can be taken as quasiconformal. We now define the desired qc weak
pseudo-conjugacy Hn up to depth n as the lift of H 0n�1 (i.e., Qf ıHn DH 0n�1 ıf )
normalized so that Hn DHn�1 near infinity. �

The following lemma gives a two-fold refinement of the previous one: first, it
improves equivariance properties of a weak pseudo-conjugacy H turning it into a
pseudo-conjugacy H 0; more importantly, it provides us with a dilation control of
H 0 in terms of the Teichmüller distance between the deepest puzzle pieces.

LEMMA 4.3. Let H be a qc weak pseudo-conjugacy up to depth n between
f and Qf . Assume that H j@Y n admits a K-qc extension .intY n; 0/! .int zY n; 0/.
Then there exists a K-qc pseudo-conjugacy (up to depth n) H 0 between f and Qf .

Proof. We may assume thatH j intY n isK-qc. LetH .0/DH and construct by
induction a sequence of weak pseudo-conjugacies (up to depth n) H .j / as follows.
Assume H .j�1/ has been already constructed. Since the maps

f W xC nY n! xC nf .Y n/ and Qf W xC n zY n! xC n Qf . zY n/
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are unbranched coverings of the same degree, the homeomorphism

H .j�1/
W xC nf .Y n/! xC n Qf . zY n/

lifts to a homeomorphism H .j / W xCnY n! xCn zY n satisfying the equation H .j�1/ı

f D Qf ıH .j / and matching the Böttcher coordinate outside the union of puzzle
pieces of depth n. In particular, it matches the Böttcher coordinate on @Y n, so it
can be extended to Y n as H .

We obtain a sequence fH .j /gj�0 of qc weak pseudo-conjugacies with non-
increasing dilation. Hence it is precompact in the uniform topology. Moreover,
H .j / DH .j�1/ outside the union of puzzle pieces of depth nC j � 1. Thus, the
sequence fH .j /g converges pointwise outside the filled Julia setK.f /. SinceK.f /
has empty interior, we conclude that H .j / converges uniformly on the whole plane
to some qc weak pseudo-conjugacy H 0 up to depth n.

By construction, H 0 coincides with H on intY n and also outside the union of
puzzle pieces of depth n (in particular it matches the Böttcher marking near1).
Moreover, H 0 ı f D Qf ıH 0 outside Y n, so that H 0 is a qc pseudo-conjugacy.
It follows that the dilation of H 0 is bounded by K except possibly on the set
X D fx 2 J.f / W f k.x/ … intY n; k � 0g (here J.f / stands for the Julia set of
f ). This set is uniformly expanding (see Lemma 2.8 of [Lyu97]), and hence has
zero Lebesgue measure. The result follows. �

Remark. One can construct the above map H 0 more directly as follows. First
define H 0 on the pieces of DomLY n as the univalent pullbacks of H (this map is
K-qc). Then define H 0 on F.f /nDomLY n (where F.f /D xCnJ.f / is the Fatou
set of f ) to be the identity in the Böttcher coordinates (this map is conformal).
These two maps match on the common boundary of the pieces since H respects
the Böttcher marking on @Y n. Since the remaining set X is hyperbolic, one can
show that this map admits a K-qc extension to the whole plane.

Let qm (respectively, pm) be the depth of the puzzle piece Qm (respectively,
Pm), i.e., Qm D Y qm (respectively, Pm D Y pm).

THEOREM 4.4. Assume that f is combinatorially recurrent and non-renor-
malizable. If Qf has the same combinatorics as f up to depth qmCpm�1� qm�1,
then there exists aK-qc pseudo-conjugacy between f and Qf up to depth qm, where
K DK.f; Qf /.

Proof. For k D 0; : : : ; m, let hk be the weak pseudo-conjugacies, up to depth
qk , constructed in Lemmas 4.2 and 4.3 (with the weak dilation control at this
moment).

Consider the sequence of puzzle pieces zQk D hm.Qk/ D zY qk for Qf . Let
us show that zQk is the favorite child of zQk�1 for 1 � k � m. Indeed, it is clear
that zQk is a child of zQk�1, and that this child is not the first. Moreover, the
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combinatorics up to level pk�1C qk � qk�1 determines the puzzle piece of depth
pk�1 containing the critical value of the map Qf qk�qk�1 W zQk ! zQk�1. Hence
Qf qk�qk�1.0/ 2 int zP k�1, so zQk is a good child of zQk�1. To see that zQk is a

favorite child of zQk�1, we reverse this reasoning to conclude that for l 2 .qk�1; qk/,
the piece zY l cannot be a good nonspoiled child of zQk�1, for otherwise Y l would
be a good nonspoiled child of Qk�1.

Since hmj@Q0 D h0j@Q0, hmj@Q0 extends to a Kq0
-qc map Q0!Q0 with

Kq0
DKq0

.f; Qf /. Moreover, by Proposition 2.5, a priori bounds (1) of Theorem
3.1 hold for the respective nests of f and Qf . Applying this theorem, we conclude
that hmj@Qm extends to a K 0-qc map Qm ! zQm, where K 0 D K 0.f; Qf /. The
result now follows from Lemma 4.3. �

Remark 4.1. The proof shows that K.f; Qf / only depends on Kq0
.f; Qf /, and

on mod.Q0 nP 0/, mod. zQ0 n zP 0/.

Proof of Theorem 4.1. Let hn be the pseudo-conjugacy up to depth qn between
f and Qf given by Theorem 4.4. Since the hn have uniformly bounded dilations,
we can take a limit map h. Then h is a qc map satisfying h ı f D Qf ı h outside
the filled Julia set K.f /. Since K.f / has empty interior, h ı f D Qf ı h holds
everywhere by continuity. The result follows. �

4.3. Final remarks. The Rigidity Theorem stated in the introduction is reduced
to Theorem 4.1 by standard means:

� The non-combinatorially recurrent case is simple, and is treated in the same
way as in the quadratic case (see [Mil00a]).

� Rigidity follows from the qc equivalence of combinatorially equivalent maps
by an open-closed argument which goes back to Douady-Hubbard and Sulli-
van. This argument can be summarized as follows (see e.g., �5 of [Lyu94]).
Combinatorial classes of maps with only repelling periodic orbits are closed
subsets of the parameter plane, while qc classes are either singletons or open
(in one-parameter families) by the Ahlfors-Bers Theorem. Thus, if some
combinatorial class coincides with a qc class, it must be a singleton.

� The case of at most finitely renormalizable maps is reduced to the case of
non-renormalizable maps by means of straightening. Namely, let us consider
two maps f W z 7! zd C c and Qf W z 7! zd C Qc, which are exactly n times
renormalizable. Then there is a nest of little Multibrot copies,

M�M1
� � � � �Mn

3 fc; Qcg;

such that under the canonical homeomorphism � WMn!M the parameters c
and Qc become non-renormalizable. We say that f and Qf are combinatorially
equivalent if the corresponding non-renormalizable maps z 7! zd C �.c/
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and z 7! zd C �. Qc/ are4 (see discussion in [Sch04]). If so then by the non-
renormalizable case of the Rigidity Theorem, �.c/D �. Qc/, and we are done.
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