Abstract
Let $X=G/H$ be a reductive symmetric space and $K$ a maximal compact subgroup of $G$. The image under the Fourier transform of the space of $K$-finite compactly supported smooth functions on $X$ is characterized.
Let $X=G/H$ be a reductive symmetric space and $K$ a maximal compact subgroup of $G$. The image under the Fourier transform of the space of $K$-finite compactly supported smooth functions on $X$ is characterized.