Abstract
Given $d \in (0,\infty)$ let $k_d$ be the smallest integer $k$ such that $d\lt 2k\log k$. We prove that the chromatic number of a random graph $G(n,d/n)$ is either $k_d$ or $k_d+1$ almost surely.
Given $d \in (0,\infty)$ let $k_d$ be the smallest integer $k$ such that $d\lt 2k\log k$. We prove that the chromatic number of a random graph $G(n,d/n)$ is either $k_d$ or $k_d+1$ almost surely.
Primary 2000: 60C05