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The two possible values of the
chromatic number of a random graph

By Dimitris Achlioptas and Assaf Naor*

Abstract

Given d ∈ (0,∞) let kd be the smallest integer k such that d < 2k log k.
We prove that the chromatic number of a random graph G(n, d/n) is either kd

or kd + 1 almost surely.

1. Introduction

The classical model of random graphs, in which each possible edge on n

vertices is chosen independently with probability p, is denoted by G(n, p). This
model, introduced by Erdős and Rényi in 1960, has been studied intensively
in the past four decades. We refer to the books [3], [5], [11] and the references
therein for accounts of many remarkable results on random graphs, as well as
for their connections to various areas of mathematics. In the present paper
we consider random graphs of bounded average degree, i.e., p = d/n for some
fixed d ∈ (0,∞).

One of the most important invariants of a graph G is its chromatic number
χ(G), namely the minimum number of colors required to color its vertices so
that no pair of adjacent vertices has the same color. Since the mid-1970s, work
on χ (G(n, p)) has been in the forefront of random graph theory, motivating
some of the field’s most significant developments. Indeed, one of the most
fascinating facts known [13] about random graphs is that for every d ∈ (0,∞)
there exists an integer kd such that almost surely χ(G(n, d/n)) is either kd or
kd + 1. The value of kd itself, nevertheless, remained a mystery.

To date, the best known [12] estimate for χ(G(n, d/n)) confines it to an
interval of length about d · 29 log log d

2(log d)2 . In our main result we reduce this length
to 2. Specifically, we prove

Theorem 1. Given d ∈ (0,∞), let kd be the smallest integer k such that
d < 2k log k. With probability that tends to 1 as n → ∞,

χ (G(n, d/n)) ∈ {kd, kd + 1} .

*Work performed while the first author was at Microsoft Research.
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Indeed, we determine χ (G(n, d/n)) exactly for roughly half of all d ∈
(0,∞).

Theorem 2. If d∈ [(2k−1) log k, 2k log k), then with probability that tends
to 1 as n → ∞,

χ (G(n, d/n)) = k + 1.

The first questions regarding the chromatic number of G(n, d/n) were
raised in the original Erdős-Rényi paper [8] from 1960. It was only until the
1990’s, though, that any progress was made on the problem. Specifically, by
the mid 1970s, the expected value of χ(G(n, p)) was known up to a factor of two
for the case of fixed p, due to the work of Bollobás and Erdős [6] and Grimmett
and McDiarmid [10]. This gap remained in place for another decade until, in a
celebrated paper, Bollobás [4] proved that for every constant p ∈ (0, 1), almost
surely χ(G(n, p)) = n

2 log n log
(

1
1−p

)
(1 + o(1)). �Luczak [12] later extended this

result to all p > d0/n, where d0 is a universal constant.
Questions regarding the concentration of the chromatic number were first

examined in a seminal paper of Shamir and Spencer [14] in the mid-80s. They
showed that χ (G(n, p)) is concentrated in an interval of length O(

√
n) for all

p and on an interval of length 5 for p < n−1/6−ε. �Luczak [13] showed that, for
p < n−1/6−ε the chromatic number is, in fact, concentrated on an interval of
length 2. Finally, Alon and Krivelevich [2] extended 2-value concentration to
all p < n−1/2−ε.

The Shamir-Spencer theorem mentioned above was based on analyzing the
so-called vertex exposure martingale. Indeed, this was the first use of martin-
gale methods in random graph theory. Later, a much more refined martingale
argument was the key step in Bollobás’ evaluation of the asymptotic value of
χ(G(n, p)). This influential line of reasoning has fuelled many developments in
probabilistic combinatorics — in particular all the results mentioned above [12],
[13], [2] rely on martingale techniques.

Our proof of Theorem 1 is largely analytic, breaking with more tradi-
tional combinatorial arguments. The starting point for our approach is re-
cent progress on the theory of sharp thresholds. Specifically, using Fourier-
analytic arguments, Friedgut [9] has obtained a deep criterion for the existence
of sharp thresholds for random graph properties. Using Friedgut’s theorem,
Achlioptas and Friedgut [1] proved that the probability that G(n, d/n) is
k-colorable drops from almost 1 to almost 0 as d crosses an interval whose
length tends to 0 with n. Thus, in order to prove that G(n, d/n) is almost surely
k-colorable it suffices to prove that lim infn→∞ Pr[G(n, d′/n) is k-colorable]
> 0, for some d′ > d. To do that we use the second moment method, which is
based on the following special case of the Paley-Zygmund inequality: for any
nonnegative random variable X, Pr[X > 0] ≥ (EX)2/EX2.
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Specifically, the number of k-colorings of a random graph is the sum,
over all k-partitions σ of its vertices (into k “color classes”), of the indicator
that σ is a valid coloring. To estimate the second moment of the number of
k-colorings we thus need to understand the correlation between these indica-
tors. It turns out that this correlation is determined by k2 parameters: given
two k-partitions σ and τ , the probability that both of them are valid colorings
is determined by the number of vertices that receive color i in σ and color j

in τ , where 1 ≤ i, j ≤ k.
In typical second moment arguments, the main task lies in using proba-

bilistic and combinatorial reasoning to construct a random variable for which
correlations can be controlled. We achieve this here by focusing on the num-
ber, Z, of k-colorings in which all color classes have exactly the same size.
However, we face an additional difficulty, of an entirely different nature: the
correlation parameter is inherently high dimensional. As a result, estimating
EZ2 reduces to a certain entropy-energy inequality over k × k doubly stochas-
tic matrices and, thus, our argument shifts to the analysis of an optimization
problem over the Birkhoff polytope. Using geometric and analytic ideas we
establish the desired inequality as a particular case of a general optimization
principle that we formulate (Theorem 9). We believe that this principle will
find further applications, for example in probability and statistical physics, as
moment estimates are often characterized by similar trade-offs.

2. Preliminaries

We will say that a sequence of events En occurs with high probabil-
ity (w.h.p.) if limn→∞ Pr[En] = 1 and with uniformly positive probability
(w.u.p.p.) if lim infn→∞ Pr[En] > 0. Throughout, we will consider k to be ar-
bitrarily large but fixed, while n tends to infinity. In particular, all asymptotic
notation is with respect to n → ∞.

To prove Theorems 1 and 2 it will be convenient to introduce a slightly
different model of random graphs. Let G(n, m) denote a random (multi)graph
on n vertices with precisely m edges, each edge formed by joining two ver-
tices selected uniformly, independently, and with replacement. The following
elementary argument was first suggested by Luc Devroye (see [7]).

Lemma 3. Define

uk ≡ log k

log k − log(k − 1)
<

(
k − 1

2

)
log k .

If c > uk, then a random graph G(n, m = cn) is w.h.p. non-k-colorable.
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Proof. Let Y be the number of k-colorings of a random graph G(n, m).
By Markov’s inequality, Pr[Y > 0] ≤ E[Y ] ≤ kn (1 − 1/k)m since, in any fixed
k-partition a random edge is monochromatic with probability at least 1/k. For
c > uk, we have k(1 − 1/k)c < 1, implying E[Y ] → 0.

Define
ck ≡ k log k .

We will prove

Proposition 4. If c < ck−1, then a random graph G(kn, m = ckn) is
w.u.p.p. k-colorable.

Finally, as mentioned in the introduction, we will use the following result
of [1].

Theorem 5 (Achlioptas and Friedgut [1]). Fix d∗ > d > 0. If G(n, d∗/n)
is k-colorable w.u.p.p. then G(n, d/n) is k-colorable w.h.p.

We now prove Theorems 1 and 2 given Proposition 4.

Proof of Theorems 1 and 2. A random graph G(n, m) may contain some
loops and multiple edges. Writing q = q(G(n, m)) for the number of such
blemishes we see that their removal results in a graph on n vertices whose
edge set is uniformly random among all edge sets of size m − q. Moreover,
note that if m ≤ cn for some constant c, then w.h.p. q = o(n). Finally,
note that the edge-set of a random graph G(n, p = 2c/n) is uniformly random
conditional on its size, and that w.h.p. this size is in the range cn±n2/3. Thus,
if A is any monotone decreasing property that holds with probability at least
θ > 0 in G(n, m = cn), then A must hold with probability at least θ − o(1) in
G(n, d/n) for any constant d < 2c and similarly, for increasing properties and
d > 2c. Therefore, Lemma 3 implies that G(n, d/n) is w.h.p. non-k-colorable
for d ≥ (2k − 1) log k > 2uk.

To prove both theorems it thus suffices to prove that G(n, d/n) is w.h.p.
k-colorable if d < 2ck−1. Let n′ be the smallest multiple of k greater than n.
Clearly, if k-colorability holds with probability θ in G(n′, d/n′) then it must
hold with probability at least θ in G(t, d/n′) for all t ≤ n′. Moreover, for n ≤
t ≤ n′, d/n′ = (1−o(1))d/t . Thus, if G(kn′, m = ckn′) is k-colorable w.u.p.p.,
then G(n, d/n) is k-colorable w.u.p.p. for all d < 2c. Invoking Proposition 4
and Theorem 5 we thus conclude that G(n, d/n) is w.h.p. k-colorable for all
d < 2ck−1.

In the next section we reduce the proof of Proposition 4 to an analytic
inequality, which we then prove in the remaining sections.
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3. The second moment method and stochastic matrices

In the following we will only consider random graphs G(n, m = cn) where
n is a multiple of k and c > 0 is a constant. We will say that a partition of
n vertices into k parts is balanced if each part contains precisely n/k vertices.
Let Z be the number of balanced k-colorings. Observe that each balanced
partition is a valid k-coloring with probability (1− 1/k)m. Thus, by Stirling’s
approximation,

EZ =
n!

[(n/k)!]k

(
1 − 1

k

)m

= Ω
(

1
n(k−1)/2

) [
k

(
1 − 1

k

)c]n

.(1)

Observe that the probability that a k-partition is a valid k-coloring is maxi-
mized when the partition is balanced. Thus, focusing on balanced partitions
reduces the number of colorings considered by only a polynomial factor, while
significantly simplifying calculations. We will show that EZ2 < C · (EZ)2 for
some C = C(k, c) < ∞. By (1) this reduces to proving

EZ2 = O

(
1

nk−1

) [
k

(
1 − 1

k

)c]2n

.

This will conclude the proof of Proposition 4 since Pr[Z > 0] ≥ (EZ)2/EZ2.

Since Z is the sum of n!/[(n/k)!]k indicator variables, one for each bal-
anced partition, we see that to calculate EZ2 it suffices to consider all pairs of
balanced partitions and, for each pair, bound the probability that both parti-
tions are valid colorings. For any fixed pair of partitions σ and τ , since edges
are chosen independently, this probability is the mth power of the probability
that a random edge is bichromatic in both σ and τ . If �ij is the number of
vertices with color i in σ and color j in τ , this single-edge probability is

1 − 2
k

+
k∑

i=1

k∑
j=1

(
�ij

n

)2

.

Observe that the second term above is independent of the �ij only because σ

and τ are balanced.
Denote by D the set of all k×k matrices L = (�ij) of nonnegative integers

such that the sum of each row and each column is n/k. For any such matrix L

observe that there are n!/(
∏

i,j �ij !) corresponding pairs of balanced partitions.
Therefore,

EZ2 =
∑
L∈D

n!∏k
i=1

∏k
j=1 �ij !

·

1 − 2
k

+
k∑

i=1

k∑
j=1

(
�ij

n

)2
cn

.(2)

To get a feel for the sum in (2) observe that the term corresponding to
�ij = n/k2 for all i, j, alone, is Θ(n−(k2−1)/2) · [k(1 − 1/k)c]2n. In fact, the



1340 DIMITRIS ACHLIOPTAS AND ASSAF NAOR

terms corresponding to matrices for which �ij = n/k2 ±O(
√

n) already sum to
Θ((EZ)2). To establish EZ2 = O((EZ)2) we will show that for c ≤ ck−1 the
terms in the sum (2) decay exponentially in their distance from (�ij) = (n/k2)
and apply Lemma 6 below. This lemma is a variant of the classical Laplace
method of asymptotic analysis in the case of the Birkhoff polytope Bk, i.e., the
set of all k × k doubly stochastic matrices. For a matrix A ∈ Bk we denote by
ρA the square of its 2-norm, i.e. ρA ≡

∑
i,j a2

ij = ‖A‖2
2. Moreover, let H(A)

denote the entropy of A, which is defined as

H(A) ≡ −1
k

k∑
i=1

k∑
j=1

aij log aij .(3)

Finally, let Jk ∈ Bk be the constant 1
k matrix.

Lemma 6. Assume that ϕ : Bk → R and β > 0 are such that for every
A ∈ Bk,

H(A) + ϕ(A) ≤ H(Jk) + ϕ(Jk) − β(ρA − 1) .

Then there exists a constant C = C(β, k) > 0 such that∑
L∈D

n!∏k
i=1

∏k
j=1 �ij !

· exp
[
n · ϕ

(
k

n
L

)]
≤ C

nk−1
·
(
k2eϕ(Jk)

)n
.(4)

The proof of Lemma 6 is presented in Section 6.
Let Sk denote the set of all k × k row-stochastic matrices. For A ∈ Sk

define

gc(A) =−1
k

k∑
i=1

k∑
j=1

aij log aij + c log

1 − 2
k

+
1
k2

k∑
i=1

k∑
j=1

a2
ij


≡H(A) + c E(A).

The heart of our analysis is the following inequality. Recall that ck−1 =
(k − 1) log(k − 1).

Theorem 7. For every A ∈ Sk and c ≤ ck−1, gc(Jk) ≥ gc(A).

Theorem 7 is a consequence of a general optimization principle that we
will prove in Section 4 and which is of independent interest. We conclude
this section by showing how Theorem 7 implies EZ2 = O((EZ)2) and, thus,
Proposition 4.

For any A ∈ Bk ⊂ Sk and c < ck−1 we have

gc(Jk) − gc(A) = gck−1(Jk) − gck−1(A) + (ck−1 − c) log
(

1 +
ρA − 1
(k − 1)2

)
≥ (ck−1 − c)

ρA − 1
2(k − 1)2

,
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where for the inequality we applied Theorem 7 with c = ck−1 and used that
ρA ≤ k so that ρA−1

(k−1)2 ≤ 1
2 . Thus, for every c < ck−1 and every A ∈ Bk

gc(A) ≤ gc(Jk) −
ck−1 − c

2(k − 1)2
· (ρA − 1) .(5)

Setting β = (ck−1 − c)/(2(k − 1)2) and applying Lemma 6 with ϕ(·) = c E(·)
yields EZ2 = O((EZ)2).

One can interpret the maximization of gc geometrically by recalling that
the vertices of the Birkhoff polytope are the k! permutation matrices (each
such matrix having one non-zero element in each row and column) and Jk is
its barycenter. By convexity, Jk is the maximizer of the entropy over Bk and
the minimizer of the 2-norm. By the same token, the permutation matrices
are minimizers of the entropy and maximizers of the 2-norm. The constant
c is, thus, the control parameter determining the relative importance of each
quantity. Indeed, it is not hard to see that for sufficiently small c, gc is max-
imized by Jk while for sufficiently large c it is not. The pertinent question
is when does the transition occur, i.e., what is the smallest value of c for
which the norm gain away from Jk makes up for the entropy loss. Probabilis-
tically, this is the point where the second moment explodes (relative to the
square of the expectation), as the dominant contribution stops corresponding
to uncorrelated k-colorings, i.e., to Jk.

The generalization from Bk to Sk is motivated by the desire to exploit the
product structure of the polytope Sk and Theorem 7 is optimal with respect
to c, up to an additive constant. At the same time, it is easy to see that the
maximizer of gc over B‖ is not Jk already when c = uk − 1, e.g. gc(Jk) < gc(A)
for A = 1

k−1Jk + k−2
k−1I. In other words, applying the second moment method

to balanced k-colorings cannot possibly match the first moment upper bound.

4. Optimization on products of simplices

In this section we will prove an inequality which is the main step in the
proof of Theorem 7. This will be done in a more general framework since the
greater generality, beyond its intrinsic interest, actually leads to a simplification
over the “brute force” argument.

In what follows we denote by ∆k the k-dimensional simplex {(x1, . . . , xk) ∈
[0, 1]k :

∑k
i=1 xi = 1} and by Sk−1 ⊂ Rk the unit Euclidean sphere centered at

the origin. Recall that Sk denotes the set of all k×k (row) stochastic matrices.
For 1 ≤ ρ ≤ k we denote by Sk(ρ) the set of all k × k stochastic matrices with
2-norm

√
ρ, i.e., Sk(ρ) =

{
A ∈ Sk; ||A||22 = ρ

}
.
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Definition 8. For 1
k ≤ r ≤ 1, let s∗(r) be the unique vector in ∆k of the

form (x, y, . . . , y) having 2-norm
√

r. Observe that

x = xr ≡ 1 +
√

(k − 1)(kr − 1)
k

and y = yr ≡ 1 − xr

k − 1
.

Given h : [0, 1] → R and an integer k > 1 we define a function f : [1/k, 1] → R
as

f(r) = h (xr) + (k − 1) · h (yr) .(6)

Our main inequality provides a sharp bound for the maximum of entropy-
like functions over stochastic matrices with a given 2-norm. In particular,
in Section 5 we will prove Theorem 7 by applying Theorem 9 below to the
function h(x) = −x log x.

Theorem 9. Fix an integer k > 1 and let h : [0, 1] → R be a continuous
strictly concave function, which is six times differentiable on (0, 1). Assume
that h′(0+) = ∞, h′(1−) > −∞ and h(3) > 0, h(4) < 0, h(6) < 0 point-wise.
Given 1 ≤ ρ ≤ k, for A ∈ Sk(ρ) define

H(A) =
k∑

i=1

k∑
j=1

h(aij).

Then, for f as in (6),

H(A) ≤ max
{

m · k h

(
1
k

)
+ (k − m) · f

(
kρ − m

k(k − m)

)
; 0 ≤ m ≤ k(k − ρ)

k − 1

}
.

(7)

To understand the origin of the right-hand side in (7), consider the follow-
ing. Given 1 ≤ ρ ≤ k and an integer 0 ≤ m ≤ k(k−ρ)

k−1 , let Bρ(m) ∈ Sk(ρ) be the
matrix whose first m rows are the constant 1/k vector and the remaining k−m

rows are the vector s∗
(

kρ−m
k(k−m)

)
. Define Qρ(m) = H(Bρ(m)). Theorem 9 then

asserts that H(A) ≤ maxmQρ(m), where 0 ≤ m ≤ k(k−ρ)
k−1 is real.

To prove Theorem 9 we observe that if ρi denotes the squared 2-norm of
the i-th row then

max
A∈Sk(ρ)

H(A) = max
(ρ1,...,ρk)∈ρ∆k

k∑
i=1

max
{

ĥ(s); s ∈ ∆k ∩√
ρi S

k−1
}

,(8)

where ĥ(s) =
∑k

j=1 h(sj). The crucial point, reflecting the product structure
of Sk, is that to maximize the sum in (8) it suffices to maximize ĥ in each row
independently. The maximizer of each row is characterized by the following
proposition:
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Proposition 10. Fix an integer k ≥ 1 and let h : [0, 1] → R be a con-
tinuous strictly concave function which is three times differentiable on (0, 1).
Assume that h′(0+) = ∞, and h′′′ > 0 point-wise. Fix 1

k ≤ r ≤ 1 and assume
that s = (s1, . . . , sk) ∈ ∆k ∩ (

√
r Sk−1) is such that

ĥ(s) ≡
k∑

i=1

h(si) = max

{
k∑

i=1

h(ti); (t1, . . . , tk) ∈ ∆k ∩
√

r Sk−1

}
.

Then, up to a permutation of the coordinates, s = s∗(r) where s∗(r) is as in
Definition 8.

Thus, if ρi denotes the squared 2-norm of the i-th row of A ∈ Sk, Proposi-
tion 10 implies that H(A) ≤ F (ρ1, . . . , ρk) ≡

∑k
i=1 f (ρi), where f is as in (6).

Hence, to prove Theorem 9 it suffices to give an upper bound on F (ρ1, . . . , ρk),
where (ρ1, . . . , ρk) ∈ ρ∆k ∩ [1/k, 1]k. This is another optimization problem
on a symmetric polytope and had f been concave it would be trivial. Unfor-
tunately, in general, f is not concave (in particular, it is not concave when
h(x) = −x log x). Nevertheless, the conditions of Theorem 9 on h suffice to
impart some properties on f :

Lemma 11. Let h : [0, 1] → R be six times differentiable on (0, 1) such
that h(3) > 0, h(4) < 0 and h(6) < 0 point-wise. Then the function f defined
in (6) satisfies f (3) < 0 point-wise.

The following lemma is the last ingredient in the proof of Theorem 9 as it
will allow us to make use of Lemma 11 to bound F .

Lemma 12. Let ψ : [0, 1] → R be continuous on [0, 1] and three times
differentiable on (0, 1). Assume that ψ′(1−) = −∞ and ψ(3) < 0 point-wise.
Fix γ ∈ (0, k] and let s = (s1, . . . , sk) ∈ [0, 1]k ∩ γ∆k. Then

Ψ(s) ≡
k∑

i=1

ψ(si) ≤ max
{

mψ(0) + (k − m)ψ
(

γ

k − m

)
; m ∈ [0, k − γ]

}
.

To prove Theorem 9 we define ψ : [0, 1] → R as ψ(x) = f
(

1
k + k−1

k x
)
.

Lemma 11 and our assumptions on h imply that ψ satisfies the conditions
of Lemma 12 (the assumption that h′(0+) = ∞ implies that ψ′(1−) = −∞).
Hence, applying Lemma 12 with γ = k(ρ−1)

k−1 yields Theorem 9, i.e.,

F (A) =
k∑

i=1

ψ

(
kρi − 1
k − 1

)
≤max

{
m ψ(0) + (k − m)ψ

(
k(ρ − 1)

(k − 1)(k − m)

)
; m∈

[
0, k − k(ρ − 1)

k − 1

]}
.
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4.1. Proof of Proposition 10. When r = 1 there is nothing to prove, so
assume that r < 1. We begin by observing that si > 0 for every i ∈ {1, . . . , k}.
Indeed, for the sake of contradiction, we may assume without loss of generality
(since r < 1) that s1 = 0 and s2 ≥ s3 > 0. Fix ε > 0 and set

µ(ε) =
s2 − s3 + ε −

√
(s2 − s3 − ε)2 + 4ε(s3 − ε)

2
and ν(ε) = −µ(ε) − ε .

Let v(ε) = (ε, s2 + µ(ε), s3 + ν(ε), s4, . . . , sk). Our choice of µ(ε) and ν(ε)
ensures that for ε small enough v(ε) ∈ ∆k ∩ (

√
r · Sk−1). Recall that, by

assumption, h′(0) = ∞ and h′(x) < ∞ for x ∈ (0, 1). When s2 > s3 it is clear
that |µ′(0)| < ∞ and, thus, d

dε ĥ(v(ε))
∣∣∣
ε=0

= ∞. On the other hand, when
s2 = s3 = s it is not hard to see that

d

dε
ĥ(v(ε))

∣∣∣∣
ε=0

= h′(0+) − h′(s) + sh
′′
(s) = ∞.

Thus, in both cases, we have d
dε ĥ(v(ε))

∣∣∣
ε=0

= ∞ which contradicts the maxi-

mality of ĥ(s).
Since si > 0 for every i (and, therefore, si < 1 as well), we may use

Lagrange multipliers to deduce that there are λ, µ ∈ R such that for every
i ∈ {1, . . . , k}, h′(si) = λsi + µ. Observe that if we let ψ(u) = h′(u) − λu

then ψ′′ = h′′′ > 0, i.e., ψ is strictly convex. It follows in particular that
|ψ−1(µ)| ≤ 2. Thus, up to a permutation of the coordinates, we may assume
that there is an integer 1 ≤ m ≤ k and a, b ∈ (0, 1) such that si = a for
i ∈ {1, . . . , m} and si = b for i ∈ {m + 1, . . . , k}. Without loss of generality
a ≥ b (so that in particular a ≥ 1/k and b ≤ 1/k). Since ma + (k − m)b = 1
and ma2 + (k − m)b2 = r, it follows that

a =
1
k

+
1
k

√
k − m

m
(kr − 1) and b =

1
k
− 1

k

√
m

k − m
(kr − 1) .

(The choice of the minus sign in the solution of the quadratic equation defining
b is correct since b ≤ 1/k.) Define α, β : [1, r−1] → R by

α(t) =
1
k

+
1
k

√
k − t

t
(kr − 1) and β(t) =

1
k
− 1

k

√
t

k − t
(kr − 1) .

Furthermore, set ϕ(t) = t · h(α(t)) + (k − t) · h(β(t)), so that ĥ(s) = ϕ(m).
The proof will be complete once we check that ϕ is strictly decreasing.

Observe that

tα(t) + (k − t)β(t) = 1

tα(t)2 + (k − t)β(t)2 = r .

Differentiating these identities we find that

α(t) + tα′(t) − β(t) + (k − t)β′(t) = 0

α(t)2 + 2tα(t)α′(t) − β(t)2 + 2(k − t)β(t)β′(t) = 0 ,
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implying

α′(t) = −α(t) − β(t)
2t

and β′(t) = −α(t) − β(t)
2(k − t)

.

Hence,

ϕ′(t) =h(α(t)) − h(β(t))+tα′(t)h′(α(t))+(k − t)β′(t)h′(β(t))

= h(α(t)) − h(β(t)) − α(t) − β(t)
2

[h′(α(t)) + h′(β(t))] .

Therefore, in order to show that ϕ′(t) < 0, it is enough to prove that if
0 ≤ β < α < 1 then

h(α) − h(β) − α − β

2
[h′(α) + h′(β)] < 0 .

Fix β and define ζ : [β, 1] → R by ζ(α) = h(α) − h(β) − α−β
2 [h′(α) + h′(β)].

Now,

ζ ′(α) =
α − β

2

(
h′(α) − h′(β)

α − β
− h′′(α)

)
.

By the Mean Value Theorem there is β < θ < α such that

ζ ′(α) =
α − β

2
[h′′(θ) − h′′(α)] < 0,

since h′′′ > 0. This shows that ζ is strictly decreasing. Since ζ(β) = 0 it follows
that for α ∈ (β, 1], ζ(α) < 0, which concludes the proof of Proposition 10.

4.2. Proof of Lemma 11. If we make the linear change of variable z =
(k− 1)(kx− 1) then our goal is to show that the function g : [0, (k− 1)2] → R,
given by

g(z) = h

(
1
k

+
√

z

k

)
+ (k − 1)h

(
1
k
−

√
z

k(k − 1)

)
,

satisfies g′′′ < 0 point-wise. Differentiation gives

8kz5/2g′′′(z) =
z

k2

[
h′′′

(
1
k

+
√

z

k

)
− 1

(k − 1)2
h′′′

(
1
k
−

√
z

k(k − 1)

)]
− 3

√
z

k

[
h′′

(
1
k

+
√

z

k

)
+

1
k − 1

h′′
(

1
k
−

√
z

k(k − 1)

)]
+ 3

[
h′

(
1
k

+
√

z

k

)
− h′

(
1
k
−

√
z

k(k − 1)

)]
.

Denote a =
√

z
k and b =

√
z

k(k−1) . Then 8kz5/2g′′′(z) = ψ(a) − ψ(−b), where

ψ(t) = t2h′′′
(

1
k

+ t

)
− 3th′′

(
1
k

+ t

)
+ 3h′

(
1
k

+ t

)
.
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Now

ψ′(t) = t2h′′′′
(

1
k

+ t

)
− th′′′

(
1
k

+ t

)
.

The assumptions on h′′′ and h′′′′ imply that ψ′(t) < 0 for t > 0, and since
a ≥ b, it follows that ψ(a) ≤ ψ(b). Since 8kz5/2g′′′(z) = ψ(a) − ψ(−b) =[
ψ(a) − ψ(b)

]
+

[
ψ(b) − ψ(−b)

]
, it suffices to show that for every b > 0,

ζ(b) = ψ(b) − ψ(−b) < 0. Since ζ(0) = 0, this will follow once we verify that
ζ ′(b) < 0 for b > 0. Observe now that ζ ′(β) = bχ(b), where

χ(b) = b

[
h′′′′

(
1
k

+ b

)
+ h′′′′

(
1
k
− b

)]
−

[
h′′′

(
1
k

+ b

)
− h′′′

(
1
k
− b

)]
.

Our goal is to show that χ(b) < 0 for b > 0, and since χ(0) = 0 it is enough to
show that χ′(b) < 0. But

χ′(b) = b

[
h(5)

(
1
k

+ b

)
− h(5)

(
1
k
− b

)]
,

so that the required result follows from the fact that h(5) is strictly decreasing.

4.3. Proof of Lemma 12. Before proving Lemma 12 we require one more
preparatory fact.

Lemma 13. Fix 0 < γ < k. Let ψ : [0, 1] → R be continuous on [0, 1] and
three times differentiable on (0, 1). Assume that ψ′(1−) = −∞ and ψ′′′ < 0
point-wise. Consider the set A ⊂ R3 defined by

A = {(a, b, �) ∈ (0, 1] × [0, 1] × (0, k]; b < a and �a + (k − �)b = γ} .

Define g : A → R by g(a, b, �) = �ψ(a) + (k − �)ψ(b). If (a, b, �) ∈ A is such
that g(a, b, �) = max(a,b,�)∈A g(a, b, �) then a = γ/�.

Proof of Lemma 13. Observe that if b = 0 or � = k we are done. Therefore,
assume that b > 0 and � < k. We claim that a < 1. Indeed, if a = 1 then b =
γ−�
k−� < 1, implying that for small enough ε > 0, w(ε) ≡

(
1 − ε, b + �ε

k−� , �
)
∈ A.

But d
dεg(w(ε))

∣∣
ε=0

= −�ψ′(1−)+�ψ′(b) = ∞, which contradicts the maximality
of g(a, b, �).

Since a ∈ (0, 1) and � ∈ (0, k) we can use Lagrange multipliers to deduce
that there is λ ∈ R such that �ψ′(a) = λ�, (k − �)ψ′(b) = λ(k − �) and
ψ(a) − ψ(b) = λ(a − b). Combined, these imply

ψ′(a) = ψ′(b) =
ψ(a) − ψ(b)

a − b
.
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By the Mean Value Theorem, there exists θ ∈ (b, a) such that ψ′(θ) = ψ(a)−ψ(b)
a−b .

But, since ψ′′′ < 0, ψ′ cannot take the same value three times, yielding the
desired contradiction.

We now turn to the proof of Lemma 12. Let s ∈ [0, 1]k ∩ γ∆k be such
that Ψ(s) is maximal. If s1 = · · · = sk = 1 then we are done, so we assume
that there exists i for which si < 1. Observe that in this case si < 1 for every
i ∈ {1, . . . , k}. Indeed, assuming the contrary we may also assume without
loss of generality that s1 = 1 and s2 < 1. For every ε > 0 consider the vector
u(ε) = (1 − ε, s2 + ε, s3, . . . , sk). For ε small enough u(ε) ∈ [0, 1]k ∩ γ∆k. But
d
dεΨ(u(ε))

∣∣
ε=0

= ∞, which contradicts the maximality of Ψ(s).
Without loss of generality we can further assume that s1, . . . , sq > 0 for

some q ≤ k and si = 0 for all i > q. Consider the function Ψ̃(t) =
∑q

i=1 ψ(ti)
defined on [0, 1]q ∩ γ∆q. Clearly, Ψ̃ is maximal at (s1, . . . , sq). Since si ∈ (0, 1)
for every i ∈ {1, . . . , q}, we may use Lagrange multipliers to deduce that there
is λ ∈ R such that for every i ∈ {1, . . . , q}, ψ′(si) = λ. Since ψ′′′ < 0, ψ′ is
strictly concave. It follows in particular that the equation ψ′(y) = λ has at
most two solutions, so that up to a permutation of the coordinates we may
assume that there is an integer 0 ≤ � ≤ q and 0 ≤ b < a ≤ 1 such that si = a

for i ∈ {1, . . . , �} and si = b for i ∈ {� + 1, . . . , q}. Now, using the notation of
Lemma 13 we have that (a, b, �) ∈ A so that

Ψ(s) = (k − q)ψ(0) + g(a, b, �)

≤ (k − q)ψ(0) + max
{

θψ(0) + (q − θ)ψ
(

γ

q − θ

)
; θ ∈ [0, q − γ]

}
≤max

{
mψ(0) + (k − m)ψ

(
γ

k − m

)
; m ∈ [0, k − γ]

}
.

5. Proof of Theorem 7

Let h(x) = −x log x and note that h′(x) = − log x − 1, h′′′(x) = 1
x2 ,

h(4)(x) = −2
x3 and h(6)(x) = −24

x5 , so that the conditions of Theorem 9 are
satisfied in this particular case. By Theorem 9 it is, thus, enough to show that
for c ≤ ck−1 = (k − 1) log(k − 1),

(9)
m log k

k
+

k − m

k
f

(
kρ − m

k(k − m)

)
+ c log

(
1 − 2

k
+

ρ

k2

)
≤ log k + 2c log

(
1 − 1

k

)
,

for every 1 ≤ ρ ≤ k and 0 ≤ m ≤ k(k−ρ)
k−1 . Here f is as in (6) for h(x) = −x log x.
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Inequality (9) simplifies to

c log
(

1 +
ρ − 1

(k − 1)2

)
≤

(
1 − m

k

) [
log k − f

(
kρ − m

k(k − m)

)]
.(10)

Setting t = m/k, s = ρ − 1 and using the inequality log(1 + a) ≤ a, it suffices
to demand that for every 0 ≤ t ≤ 1 − s

k−1 and 0 ≤ s ≤ k − 1,

cs

(k − 1)2
≤ (1 − t)

[
f

(
1
k

)
− f

(
1
k

+
s

k(1 − t)

)]
.(11)

To prove (11) we define η : (0, 1 − 1/k] → R by

η(y) =
f

(
1
k

)
− f

(
1
k + y

)
y

,

and η(0) = −f ′ ( 1
k

)
= k

2 , making η continuous on [0, 1 − 1/k]. Observe that
(11) reduces to

c ≤ (k − 1)2

k
· η

(
s

k(1 − t)

)
.

Now, η′(y) = ζ(y)
y2 , where ζ(y) = f

(
1
k + y

)
− f

(
1
k

)
− yf ′ ( 1

k + y
)
. Observe

that ζ ′(y) = −yf ′′ ( 1
k + y

)
so, by Lemma 11, ζ can have at most one zero

in
(
0, 1 − 1

k

)
. A straightforward computation gives that ζ

(
(k−2)2

k(k−1)

)
= 0, so η

achieves its global minimum on
[
0, 1 − 1

k

]
at y ∈

{
0, (k−2)2

k(k−1) , 1 − 1
k

}
. Direct

computation gives η
(
1 − 1

k

)
= k

k−1 · log k, η
(

(k−2)2

k(k−1)

)
= k−1

k−2 · log(k − 1) and,

by definition, η(0) = k
2 . Hence

(12)
(k − 1)2

k
· η

(
s

k(1 − t)

)
≥ (k − 1)2

k
· min

{
k

2
,
k − 1
k − 2

· log(k − 1),
k

k − 1
· log k

}
=

(k − 1)3

k(k − 2)
· log(k − 1) > ck−1 ,

where (12) follows from elementary calculus.

Remark. The above analysis shows that Theorem 7 is asymptotically
optimal. Indeed, let A be the stochastic matrix whose first k − 1 rows are the
constant 1/k vector and whose last row is the vector s∗(r), defined in Def-
inition 8, for r = 1

k + (k−2)2

k(k−1) . This matrix corresponds to m = k − 1 and

ρ = 1 + (k−2)2

k(k−1) in (10), and a direct computation shows that any c for which

Theorem 7 holds must satisfy c < ck−1 + 1.
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6. Appendix: Proof of Lemma 6

If (�ij) are nonnegative integers such that
∑

i,j �ij = n, standard Stirling
approximations imply

n!∏k
i=1

∏k
j=1 �ij !

≤

 k∏
i=1

k∏
j=1

(
�ij

n

)−�ij/n
n

(13)

·min

3
√

n,

(2πn)k2−1
k∏

i=1

k∏
j=1

�ij

n

−1/2
 .

Since |D| ≤ (n + 1)(k−1)2 , the contribution to the sum in (4) of the terms
for which ρ k

n
L > 1 + 1/(4k2) can, thus, be bounded by

3
√

n(n + 1)(k−1)2
(
eH( k

n
L)+log k+ϕ( k

n
L)

)n
≤ 3nk2

(
k2eϕ(Jk)

)n
· e− βn

4k2(14)

=O
(
n−k2

) (
k2eϕ(Jk)

)n
.

Furthermore, if L ∈ D is such that ρ k

n
L ≤ 1 + 1

4k2 , then for every 1 ≤
i, j ≤ k we have(

k

n
�ij −

1
k

)2

≤
k∑

s=1

k∑
t=1

(
k

n
�st −

1
k

)2

= ρ k

n
L − 1 ≤ 1

4k2
.

Therefore, for such L we must have �ij ≥ n/(2k2) for every i, j. Therefore,
by (13), (14) we get

(15)
∑
L∈D

n!∏k
i=1

∏k
j=1 �ij !

· exp
[
nϕ

(
k

n
L

)]
≤ C(β, k)

n(k2−1)/2
·
(
k2eϕ(Jk)

)n
·
∑
L∈D

e
−βn

(
k2

n2 ρL−1
)

.

Denote by Mk(R) the space of all k × k matrices over R and let F be
the subspace of Mk(R) consisting of all matrices X = (xij) for which the
sum of each row and each column is 0. The dimension of F is (k − 1)2.
Denote by B∞ the unit cube of Mk(R), i.e. the set of all k × k matrices
A = (aij) such that aij ∈ [−1/2, 1/2] for all 1 ≤ i, j ≤ k. For L ∈ D we define
T (L) = L − n

k Jk + (F ∩ B∞), i.e., the tile F ∩ B∞ shifted by L − n
k Jk.

Lemma 14. For every L ∈ D,

e
−βn

(
k2

n2 ρL−1
)
≤ e

k4β

4n ·
∫

T (L)
e−

k2β

2n
‖X‖2

2dX .
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Proof. By the triangle inequality, we see that for any matrix X

∥∥∥L − n

k
Jk

∥∥∥2

2
≥ 1

2
‖X‖2

2 −
∥∥∥L − n

k
Jk − X

∥∥∥2

2
≥ 1

2
‖X‖2

2 − k2
∥∥∥L − n

k
Jk − X

∥∥∥2

∞
.

(16)

Thus, for X ∈ T (L) we have ‖X‖2
2 ≤ 2

(
k2

n2 ρL − 1
) (

n
k

)2+k2

2 , since
∥∥L − n

k Jk

∥∥2

2
=(

k2

n2 ρL − 1
) (

n
k

)2 and
∥∥L − n

k Jk − X
∥∥2

∞ ≤ 1
4 . Therefore,∫

T (L)
e−

k2β

2n
‖X‖2

2dX ≥
∫

T (L)
e−

k4β

4n · e−βn
(

k2

n2 ρL−1
)
dX

= e−
k4β

4n · e−βn
(

k2

n2 ρL−1
)
vol (F ∩ B∞) .

It is a theorem of Vaaler [15] that for any subspace E, vol (E ∩ B∞) ≥ 1 ,
concluding the proof.

Thus, to bound the second sum in (15) we apply Lemma 14 to get∑
L∈D

e
−βn

(
k2

n2 ρL−1
)
≤ e

k4β

4n

∑
L∈D

∫
T (L)

e−
k2β

2n
‖X‖2

2 dX

≤ e
k4β

4n

∫
F

e−
k2β

2n
‖X‖2

2 dX

= e
k4β

4n

∫
R(k−1)2

e−
k2β

2n
‖X‖2

2 dX

= e
k4β

4n

(
2πn

βk2

)(k−1)2/2

where we have used the fact that the interiors of the “tiles” {T (L)}L∈D are
disjoint, that the Gaussian measure is rotationally invariant and that F is
(k − 1)2 dimensional.
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