Complex varieties with infinite Chow groups modulo 2

Abstract

For a very general principally polarized complex abelian 3-fold, the Chow group of algebraic cycles is infinite modulo every prime number. In particular, this gives the first examples of complex varieties with infinite Chow groups modulo 2.

  • [BE] Go to document S. Bloch and H. Esnault, "The coniveau filtration and non-divisibility for algebraic cycles," Math. Ann., vol. 304, iss. 2, pp. 303-314, 1996.
    @article{BE, mrkey = {1371769},
      author = {Bloch, Spencer and Esnault, H{é}l{è}ne},
      title = {The coniveau filtration and non-divisibility for algebraic cycles},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {304},
      year = {1996},
      number = {2},
      pages = {303--314},
      issn = {0025-5831},
      coden = {MAANA},
      mrclass = {14C25 (14C17 14F20)},
      mrnumber = {1371769},
      mrreviewer = {Claudio Pedrini},
      doi = {10.1007/BF01446296},
      zblnumber = {0868.14004},
      }
  • [Blochbook] Go to document S. Bloch, Lectures on Algebraic Cycles, Second ed., Cambridge: Cambridge Univ. Press, 2010, vol. 16.
    @book{Blochbook, mrkey = {2723320},
      author = {Bloch, Spencer},
      title = {Lectures on Algebraic Cycles},
      series = {New Math. Monogr.},
      volume = {16},
      edition = {Second},
      publisher = {Cambridge Univ. Press},
      address = {Cambridge},
      year = {2010},
      pages = {xxiv+130},
      isbn = {978-0-521-11842-2},
      mrclass = {14C25 (14C15 14C35 14F42 14G10 19E15)},
      mrnumber = {2723320},
      mrreviewer = {Claudio Pedrini},
      doi = {10.1017/CBO9780511760693},
      zblnumber = {1201.14006},
      }
  • [Borel] Go to document A. Borel, "Density and maximality of arithmetic subgroups," J. reine angew. Math., vol. 224, pp. 78-89, 1966.
    @article{Borel, mrkey = {0205999},
      author = {Borel, Armand},
      title = {Density and maximality of arithmetic subgroups},
      journal = {J. reine angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik},
      volume = {224},
      year = {1966},
      pages = {78--89},
      issn = {0075-4102},
      mrclass = {14.50 (20.60)},
      mrnumber = {0205999},
      mrreviewer = {H. Popp},
      doi = {10.1515/crll.1966.224.78},
      zblnumber = {0158.03105},
      }
  • [BST] Go to document J. Buhler, C. Schoen, and J. Top, "Cycles, $L$-functions and triple products of elliptic curves," J. reine angew. Math., vol. 492, pp. 93-133, 1997.
    @article{BST, mrkey = {1488066},
      author = {Buhler, Joe and Schoen, Chad and Top, Jaap},
      title = {Cycles, {$L$}-functions and triple products of elliptic curves},
      journal = {J. reine angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik},
      volume = {492},
      year = {1997},
      pages = {93--133},
      issn = {0075-4102},
      coden = {JRMAA8},
      mrclass = {11G40 (11G35 14C25 14G10 14G25)},
      mrnumber = {1488066},
      mrreviewer = {Jan Nekov{á}{\v{r}}},
      doi = {10.1515/crll.1997.492.93},
      zblnumber = {0914.11039},
      }
  • [Ceresa] Go to document G. Ceresa, "$C$ is not algebraically equivalent to $C^{-}$ in its Jacobian," Ann. of Math., vol. 117, iss. 2, pp. 285-291, 1983.
    @article{Ceresa, mrkey = {0690847},
      author = {Ceresa, G.},
      title = {{$C$} is not algebraically equivalent to {$C\sp{-}$} in its {J}acobian},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {117},
      year = {1983},
      number = {2},
      pages = {285--291},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {14C10 (14H40)},
      mrnumber = {0690847},
      mrreviewer = {Joseph Harris},
      doi = {10.2307/2007078},
      zblnumber = {0538.14024},
      }
  • [Deligne] Go to document P. Deligne, "La conjecture de Weil. I," Inst. Hautes Études Sci. Publ. Math., iss. 43, pp. 273-307, 1974.
    @article{Deligne, mrkey = {0340258},
      author = {Deligne, Pierre},
      title = {La conjecture de {W}eil. {I}},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      number = {43},
      year = {1974},
      pages = {273--307},
      issn = {0073-8301},
      mrclass = {14G13},
      mrnumber = {0340258},
      mrreviewer = {Nicholas M. Katz},
      doi = {10.1007/BF02684373},
      zblnumber = {0287.14001},
      }
  • [Fulton] Go to document W. Fulton, Intersection Theory, Second ed., New York: Springer-Verlag, 1998, vol. 2.
    @book{Fulton, mrkey = {1644323},
      author = {Fulton, William},
      title = {Intersection Theory},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {2},
      edition = {Second},
      publisher = {Springer-Verlag},
      year = {1998},
      pages = {xiv+470},
      isbn = {3-540-62046-X; 0-387-98549-2},
      mrclass = {14C17 (14-02)},
      mrnumber = {1644323},
      doi = {10.1007/978-1-4612-1700-8},
      address = {New York},
      zblnumber = {0885.14002},
      }
  • [GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, New York: Wiley-Interscience [John Wiley & Sons], 1978.
    @book{GH, mrkey = {0507725},
      author = {Griffiths, Phillip and Harris, Joseph},
      title = {Principles of Algebraic Geometry},
      series = {Pure Appl. Math.},
      publisher = {Wiley-Interscience [John Wiley \& Sons]},
      address = {New York},
      year = {1978},
      pages = {xii+813},
      isbn = {0-471-32792-1},
      mrclass = {14-01},
      mrnumber = {0507725},
      mrreviewer = {Gerhard Pfister},
      zblnumber = {0408.14001},
      }
  • [Hain] R. M. Hain, "Torelli groups and geometry of moduli spaces of curves," in Current Topics in Complex Algebraic Geometry, Cambridge: Cambridge Univ. Press, 1995, vol. 28, pp. 97-143.
    @incollection{Hain, mrkey = {1397061},
      author = {Hain, Richard M.},
      title = {Torelli groups and geometry of moduli spaces of curves},
      booktitle = {Current Topics in Complex Algebraic Geometry},
      venue = {{B}erkeley, {CA},
      1992/93},
      series = {Math. Sci. Res. Inst. Publ.},
      volume = {28},
      pages = {97--143},
      publisher = {Cambridge Univ. Press},
      address = {Cambridge},
      year = {1995},
      mrclass = {14H15 (14D07 14K20)},
      mrnumber = {1397061},
      mrreviewer = {V. V. Chueshev},
      zblnumber = {0868.14006},
      }
  • [Illusie] Go to document L. Illusie, "Complexe de de\thinspace Rham-Witt et cohomologie cristalline," Ann. Sci. École Norm. Sup., vol. 12, iss. 4, pp. 501-661, 1979.
    @article{Illusie, mrkey = {0565469},
      author = {Illusie, Luc},
      title = {Complexe de de\thinspace {R}ham-{W}itt et cohomologie cristalline},
      journal = {Ann. Sci. École Norm. Sup.},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      volume = {12},
      year = {1979},
      number = {4},
      pages = {501--661},
      issn = {0012-9593},
      coden = {ENAQAF},
      mrclass = {14F30},
      mrnumber = {0565469},
      mrreviewer = {William E. Lang},
      url = {http://www.numdam.org/item?id=ASENS_1979_4_12_4_501_0},
      zblnumber = {0436.14007},
      }
  • [Jannsen] Go to document U. Jannsen, "Continuous étale cohomology," Math. Ann., vol. 280, iss. 2, pp. 207-245, 1988.
    @article{Jannsen, mrkey = {0929536},
      author = {Jannsen, Uwe},
      title = {Continuous étale cohomology},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {280},
      year = {1988},
      number = {2},
      pages = {207--245},
      issn = {0025-5831},
      coden = {MAANA},
      mrclass = {14F20 (11G25)},
      mrnumber = {0929536},
      mrreviewer = {Wayne Raskind},
      doi = {10.1007/BF01456052},
      zblnumber = {0649.14011},
      }
  • [Kleiman] S. L. Kleiman, "Algebraic cycles and the Weil conjectures," in Dix Exposés sur la Cohomologie des Schémas, Amsterdam and Paris: North-Holland and Masson, 1968, pp. 359-386.
    @incollection{Kleiman, mrkey = {0292838},
      author = {Kleiman, S. L.},
      title = {Algebraic cycles and the {W}eil conjectures},
      booktitle = {Dix Exposés sur la Cohomologie des Schémas},
      pages = {359--386},
      publisher = {North-Holland and Masson},
      address = {Amsterdam and Paris},
      year = {1968},
      mrclass = {14G13},
      mrnumber = {0292838},
      mrreviewer = {H. Popp},
      zblnumber = {0198.25902},
      }
  • [Lecomte] Go to document F. Lecomte, "Rigidité des groupes de Chow," Duke Math. J., vol. 53, iss. 2, pp. 405-426, 1986.
    @article{Lecomte, mrkey = {0850543},
      author = {Lecomte, Florence},
      title = {Rigidité des groupes de {C}how},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {53},
      year = {1986},
      number = {2},
      pages = {405--426},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14C35 (18F25 19E15)},
      mrnumber = {0850543},
      mrreviewer = {K. R. Coombes},
      doi = {10.1215/S0012-7094-86-05325-1},
      zblnumber = {0632.14007},
      }
  • [MS] Go to document A. S. Merkurcprimeev and A. A. Suslin, "$K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism," Izv. Akad. Nauk SSSR Ser. Mat., vol. 46, iss. 5, pp. 1011-1046, 1135, 1982.
    @article{MS, mrkey = {0675529},
      author = {Merkur{\cprime}ev, A. S. and Suslin, A. A.},
      title = {{$K$}-cohomology of {S}everi-{B}rauer varieties and the norm residue homomorphism},
      journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {46},
      year = {1982},
      number = {5},
      pages = {1011--1046, 1135--1136},
      issn = {0373-2436},
      mrclass = {12A62 (12G05 14C35 14F12 14F15 14G25 18F25)},
      mrnumber = {0675529},
      mrreviewer = {Maksymilian Boraty{ń}ski},
      zblnumber = {0525.18008},
      doi = {10.1070/IM1983v021n02ABEH001793},
     }
  • [Milne] Go to document J. S. Milne, "Lefschetz classes on abelian varieties," Duke Math. J., vol. 96, iss. 3, pp. 639-675, 1999.
    @article{Milne, mrkey = {1671217},
      author = {Milne, J. S.},
      title = {Lefschetz classes on abelian varieties},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {96},
      year = {1999},
      number = {3},
      pages = {639--675},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14C25 (11G10 14C30 14K05)},
      mrnumber = {1671217},
      mrreviewer = {Fumio Hazama},
      doi = {10.1215/S0012-7094-99-09620-5},
      zblnumber = {0976.14009},
      }
  • [Nori] Go to document M. V. Nori, "Cycles on the generic abelian threefold," Proc. Indian Acad. Sci. Math. Sci., vol. 99, iss. 3, pp. 191-196, 1989.
    @article{Nori, mrkey = {1032704},
      author = {Nori, Madhav V.},
      title = {Cycles on the generic abelian threefold},
      journal = {Proc. Indian Acad. Sci. Math. Sci.},
      fjournal = {Indian Academy of Sciences. Proceedings. Mathematical Sciences},
      volume = {99},
      year = {1989},
      number = {3},
      pages = {191--196},
      issn = {0253-4142},
      mrclass = {14C10 (14J30 14K99)},
      mrnumber = {1032704},
      mrreviewer = {Fabio Bardelli},
      doi = {10.1007/BF02864390},
      zblnumber = {0725.14006},
      }
  • [Parimala] Go to document R. Parimala, "Witt groups of affine three-folds," Duke Math. J., vol. 57, iss. 3, pp. 947-954, 1988.
    @article{Parimala, mrkey = {0975129},
      author = {Parimala, R.},
      title = {Witt groups of affine three-folds},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {57},
      year = {1988},
      number = {3},
      pages = {947--954},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14C15 (11E81 11G20 14C99)},
      mrnumber = {0975129},
      mrreviewer = {Wayne Raskind},
      doi = {10.1215/S0012-7094-88-05742-0},
      zblnumber = {0674.14029},
      }
  • [RS] A. Rosenschon and V. Srinivas, "The Griffiths group of the generic abelian 3-fold," in Cycles, Motives and Shimura Varieties, Mumbai: Tata Inst. Fund. Res., 2010, pp. 449-467.
    @incollection{RS, mrkey = {2906032},
      author = {Rosenschon, Andreas and Srinivas, V.},
      title = {The {G}riffiths group of the generic abelian \hbox{3-fold}},
      booktitle = {Cycles, Motives and {S}himura Varieties},
      series = {Tata Inst. Fund. Res. Stud. Math.},
      pages = {449--467},
      publisher = {Tata Inst. Fund. Res.},
      address = {Mumbai},
      year = {2010},
      mrclass = {14C15 (14C25 14H40 14J30 14K05)},
      mrnumber = {2906032},
      mrreviewer = {Nicola Mazzari},
      zblnumber = {1222.14010},
      }
  • [Schoenladic] Go to document C. Schoen, "On the image of the $l$-adic Abel-Jacobi map for a variety over the algebraic closure of a finite field," J. Amer. Math. Soc., vol. 12, iss. 3, pp. 795-838, 1999.
    @article{Schoenladic, mrkey = {1672878},
      author = {Schoen, Chad},
      title = {On the image of the {$l$}-adic {A}bel-{J}acobi map for a variety over the algebraic closure of a finite field},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {12},
      year = {1999},
      number = {3},
      pages = {795--838},
      issn = {0894-0347},
      mrclass = {14C25 (14D10)},
      mrnumber = {1672878},
      mrreviewer = {Ben Moonen},
      doi = {10.1090/S0894-0347-99-00303-3},
      zblnumber = {0917.14004},
      }
  • [Schoenproduct] Go to document C. Schoen, "On certain exterior product maps of Chow groups," Math. Res. Lett., vol. 7, iss. 2-3, pp. 177-194, 2000.
    @article{Schoenproduct, mrkey = {1764315},
      author = {Schoen, Chad},
      title = {On certain exterior product maps of {C}how groups},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {7},
      year = {2000},
      number = {2-3},
      pages = {177--194},
      issn = {1073-2780},
      mrclass = {14C15 (14C25)},
      mrnumber = {1764315},
      mrreviewer = {James D. Lewis},
      doi = {10.4310/MRL.2000.v7.n2.a4},
      zblnumber = {1017.14002},
      }
  • [Schoen] Go to document C. Schoen, "Complex varieties for which the Chow group mod $n$ is not finite," J. Algebraic Geom., vol. 11, iss. 1, pp. 41-100, 2002.
    @article{Schoen, mrkey = {1865914},
      author = {Schoen, Chad},
      title = {Complex varieties for which the {C}how group mod {$n$} is not finite},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {11},
      year = {2002},
      number = {1},
      pages = {41--100},
      issn = {1056-3911},
      mrclass = {14C15},
      mrnumber = {1865914},
      mrreviewer = {Xian Wu},
      doi = {10.1090/S1056-3911-01-00291-0},
      zblnumber = {1059.14010},
      }
  • [SuslinICM] A. A. Suslin, "Algebraic $K$-theory of fields," in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Providence, RI, 1987, pp. 222-244.
    @inproceedings{SuslinICM, mrkey = {0934225},
      author = {Suslin, A. A.},
      title = {Algebraic {$K$}-theory of fields},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. 1, 2},
      venue = {{B}erkeley, {C}alif., 1986},
      pages = {222--244},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {1987},
      mrclass = {12G05 (11R70 18F25 19D45 19D55 19F27)},
      mrnumber = {0934225},
      mrreviewer = {J. Browkin},
      zblnumber = {0675.12005},
      }
  • [TotaroWitt] Go to document B. Totaro, "Non-injectivity of the map from the Witt group of a variety to the Witt group of its function field," J. Inst. Math. Jussieu, vol. 2, iss. 3, pp. 483-493, 2003.
    @article{TotaroWitt, mrkey = {1990223},
      author = {Totaro, Burt},
      title = {Non-injectivity of the map from the {W}itt group of a variety to the {W}itt group of its function field},
      journal = {J. Inst. Math. Jussieu},
      fjournal = {Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institute de Mathématiques de Jussieu},
      volume = {2},
      year = {2003},
      number = {3},
      pages = {483--493},
      issn = {1474-7480},
      mrclass = {19G12 (19E15)},
      mrnumber = {1990223},
      mrreviewer = {Charles Weibel},
      doi = {10.1017/S1474748003000136},
      zblnumber = {1038.19004},
      }
  • [Zhang] Go to document S. Zhang, "Gross-Schoen cycles and dualising sheaves," Invent. Math., vol. 179, iss. 1, pp. 1-73, 2010.
    @article{Zhang, mrkey = {2563759},
      author = {Zhang, Shou-Wu},
      title = {Gross-{S}choen cycles and dualising sheaves},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {179},
      year = {2010},
      number = {1},
      pages = {1--73},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {14C25 (14G20)},
      mrnumber = {2563759},
      doi = {10.1007/s00222-009-0209-3},
      zblnumber = {1193.14031},
      }

Authors

Burt Totaro

University of California, Los Angeles, CA