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Complex varieties with infinite
Chow groups modulo 2

By Burt Totaro

Abstract

For a very general principally polarized complex abelian 3-fold, the Chow

group of algebraic cycles is infinite modulo every prime number. In partic-

ular, this gives the first examples of complex varieties with infinite Chow

groups modulo 2.

Schoen gave the first examples of smooth complex projective varieties X

and prime numbers l for which the Chow group of algebraic cycles modulo l

is infinite [21]. In particular, he showed that this occurs for all prime numbers

l with l ≡ 1 (mod 3), with X the product of three copies of the Fermat cubic

curve x3+y3+z3 = 0. This is a fundamental example, showing how far motivic

cohomology with finite coefficients can be from étale cohomology, which is finite

in this situation. Nonetheless, the restriction on l was frustrating.

Rosenschon and Srinivas then showed that for a very general principally

polarized complex abelian 3-fold X, the Chow group CH2(X)/l is infinite for

all prime numbers l at least some (unknown) constant l0 [18].

In this paper, we show that for a very general principally polarized com-

plex abelian 3-fold X, the Chow group CH2(X)/l is infinite for all prime num-

bers l (Theorem 3.1). In particular, these are the first examples of smooth

complex projective varieties with infinite mod 2 Chow groups. The prime 2

seemed inaccessible for earlier arguments. The mod 2 result also implies that

the Witt group W (X) of quadratic bundles is infinite [17], [23, Th. 1.4]. Again,

these are the first complex varieties known to have infinite Witt group.

The method is flexible, and much of it should apply to other classes of

varieties. The infiniteness of CH2(X)/l arises from pulling back Ceresa cycles,

as discussed in Section 1, by infinitely many different isogenies. A striking

feature of the argument is that the analysis of Chow groups modulo l for a

complex variety X involves the reduction of X to characteristic l.
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Using products X × Pn−3 for any n ≥ 3, we have similar examples in

higher dimensions:

Corollary 0.1. For each n ≥ 3, there is a smooth complex projective

n-fold X such that CHi(X)/l is infinite for all 2 ≤ i ≤ n − 1 and all prime

numbers l.

By taking the product with a very general elliptic curve, we get varieties

for which the subgroup of Chow groups killed by l is infinite. This uses Schoen’s

theorem on exterior product maps on Chow groups [20, Th. 0.2].

Corollary 0.2. For each n ≥ 4, there is a smooth complex projective

n-fold X such that CHi(X)[l] is infinite for all 3 ≤ i ≤ n − 1 and all prime

numbers l.

The bounds in these corollaries are optimal. In particular, for any smooth

complex projective n-fold X and any prime number l, the group CHi(X)/l is

finite if i is 0, 1, or n, and the l-torsion subgroup CHi(X)[l] is finite if i is 0, 1,

2, or n. The harder cases are finiteness of CHn(X)[l], by Roitman’s theorem

[1, Th. 5.1], and finiteness of CH2(X)[l], by the Merkurjev-Suslin theorem [14,

§18.4].

I thank Tudor Pădurariu and Shou-Wu Zhang for useful conversations,

and the referee for improving the exposition. This work was supported by

The Ambrose Monell Foundation and Friends, via the Institute for Advanced

Study, and by NSF grant DMS-1303105.

1. Moduli spaces

A property holds for very general complex points of a complex variety S

if it holds for all points outside a countable union of lower-dimensional closed

subvarieties of S. In particular, we can talk about properties of a very general

variety in an irreducible family of varieties.

For a curve C of genus ≥ 2 with a rational point p over a field k, the

Ceresa cycle is the 1-cycle on the Jacobian J(C) given by C − C−. Here C

is embedded in J(C) with p mapping to 0, and C− denotes the image of that

curve by the automorphism x 7→ −x of the Jacobian. The Ceresa cycle is

homologically trivial, and Ceresa showed that it is not algebraically equivalent

to zero for a very general complex curve C of genus at least 3 [5]. The choice

of point p is irrelevant if we only consider the Ceresa cycle modulo algebraic

equivalence. Something similar holds in the Chow group of algebraic cycles

modulo rational equivalence. Namely, for a curve C over an algebraically

closed field and a positive integer m, the choice of p does not affect the Ceresa

cycle in CH1(J(C))/m, since the subgroup of the Chow group consisting of

cycles algebraically equivalent to zero is divisible [7, Exam. 19.1.2].
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For a positive integer N , let ζN be a fixed primitive Nth root of unity.

Define a (full) level N structure on a principally polarized abelian variety A of

dimension g to be a basis {u1, . . . , ug, v1 . . . , vg} of the subgroup of A killed

by N such that, with respect to the Weil pairing A[N ]×A[N ]→ µN , we have

〈ui, vi〉=ζN for all i, 0=〈ui, uj〉=〈vi, vj〉 for all i and j, and 〈ui, vj〉=0 if i 6=j.

Fix a prime number l. Let N be a prime number at least 3 and different

from l. Let X(N) be the moduli space of principally polarized abelian varieties

of dimension 3 with a full level N structure with respect to ζN . Then X(N)

is a smooth quasi-projective integral scheme over Z[1/N, ζN ].

Let L be the function field over Q(ζN ) of the moduli space X(N), and

let A be the natural abelian variety over L. The main theorem will be that

CH2(AL)/l is infinite. (We need N ≥ 3 for L and A to make sense, because

the moduli stack X (N) has nontrivial generic stabilizer when N is 1 or 2.

Also, note that the algebraic closure L and the abelian variety AL are actually

independent of the choice of N , up to isomorphism.)

By Lecomte and Suslin, for any variety X over an algebraically closed

field F and any algebraically closed extension field E of F , the natural map

CH2(X)/m→ CH2(XE)/m is an isomorphism [13], [22]. As a result, showing

that CH2(AL)/l is infinite will imply that CH2(A)/l is infinite for a very general

principally polarized complex abelian 3-fold A.

Let M = M(N) be the moduli space of curves of genus 3 with a full level

N structure on the Jacobian. Then M is a smooth quasi-projective integral

scheme over Z[1/N, ζN ]. The convenient feature of abelian 3-folds for us is

that the Torelli map M(N) → X(N) is dominant, of degree 2. (This uses

that N ≥ 3. For N equal to 1 or 2, the moduli stack X (N) has generic

stabilizer group of order 2, and the map M(N) → X(N) of coarse moduli

spaces has degree 1.) That is, most principally polarized abelian 3-folds A

over an algebraically closed field are Jacobians; but a general curve of genus

3 has trivial automorphism group, whereas a general abelian 3-fold A has

automorphism group ±1.

It may be helpful to say in more detail why M(N) → X(N) has degree

2 for N ≥ 3. Let (A,Θ) be a principally polarized abelian 3-fold with a level

N structure s. Then the object (A,Θ,−s) is isomorphic to (A,Θ, s) (so they

represent the same point in X(N)), because there is an automorphism of A

(namely x 7→ −x) that moves one to the other. But for a general curve C of

genus 3, there is no automorphism of C that moves a given level N structure

s on J(C) to −s; so (C, s) and (C,−s) are different points in M(N).

Let E be the function field of M(N). For any finite extension field E1

of E such that the universal curve C over E has an E1-rational point p, we

can define the Ceresa cycle y ∈ CH2(J(C)E1). We are usually concerned only

with the class of y in CH2(J(C)E)/lm for a natural number m; that class is
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independent of the choice of E1 and p, since two different Ceresa cycles are

algebraically equivalent. In fact, the same argument shows that y is fixed by

the action of the Galois group Gal(E/E) on CH2(J(C)E)/lm.

Since E is a quadratic extension of L, the function field of X(N), we can

view y as a class in CH2(AL)/lm for any m. But it is well defined only up to

sign, because of the choice of isomorphism J(C) ∼= A. As a result, Gal(L/L)

acts on y by gy = y if y is in the index-2 subgroup Gal(L/E), and by gy = −y
otherwise.

2. The Ceresa cycle modulo a power of any prime number

In this section, we will show that for each prime number l, the “universal”

Ceresa cycle (on the Jacobian A of the generic curve of genus 3, extended to

an algebraically closed base field) is nonzero in the Chow group modulo some

power of l (Proposition 2.2).

The argument works by proving that the universal Ceresa cycle has non-

zero image under a suitable l-adic Abel-Jacobi map. The fact that the Ceresa

cycle is nonzero moduli some power of l on A over the function field of some

moduli space of genus 3 curves follows from the monodromy calculation that

Hain used to prove Ceresa’s theorem. Then we have the serious problem of

showing that the Ceresa cycle remains nonzero modulo some power of l when

the base field becomes algebraically closed. For that, we use a result of Bloch

and Esnault (Theorem 2.1 below), an application of Bloch and Kato’s work on

p-adic Hodge theory, along with further monodromy arguments.

For a variety X over an algebraically closed field, the coniveau filtration

on étale cohomology is defined by the following: an element x of H∗(X,Z/a)

is in N rH∗(X,Z/a) if there is a closed subset Y of codimension at least r in

X such that x restricts to zero in H∗(X − Y,Z/a). We now state Bloch and

Esnault’s result [2, §1].

Theorem 2.1. Let K be a field with a discrete valuation v, and let k be

the residue field. Assume that K has characteristic zero and k is perfect of

characteristic l > 0. Let X be a smooth projective variety over K with good

ordinary reduction at v, and let Y be the special fiber over k. Assume either

that the crystalline cohomology of Y has no torsion or that

dim(X) < (l − 1)/ gcd(e, l − 1),

where e is the absolute ramification degree of K (meaning that v(K∗) = Z ·
(v(l)/e)). Finally, let m be a natural number such that H0(Y,Ωm) 6= 0.

Then N1Hm(XK ,Fl) 6= Hm(XK ,Fl). Equivalently, writing K(X) for the

function field, the natural map

Hm(XK ,Fl)→ Hm(K(X),Fl)

is not zero.



COMPLEX VARIETIES WITH INFINITE CHOW GROUPS MODULO 2 367

Classical Hodge theory implies that a complex variety with nonzero differ-

ential forms has nontrivial coniveau filtration on rational cohomology. We need

Theorem 2.1, however, in order to say anything about the coniveau filtration

on mod l cohomology.

We will apply Theorem 2.1 to an abelian variety X with good ordinary

reduction. In this case, the special fiber Y is an ordinary abelian variety over k.

Every abelian variety over a perfect field of characteristic l > 0 has torsion-

free crystalline cohomology [10, §7.1]. So Bloch-Esnault’s result applies for all

prime numbers l in this case.

Here is the main result of this section.

Proposition 2.2. Let l be a prime number, and let N be a prime number

at least 3 and different from l. Let E be the function field over Q(ζN ) of the

moduli space of curves of genus 3 with level N structure, and let C be the

universal curve over E. Let L be an algebraic closure of E, and let y be the

Ceresa cycle in CH2(J(C)L) associated to an L-point of C . Then there is a

positive integer c such that 2y is not zero in CH2(J(C)L)/lc.

Proof. Fix a prime number l and a prime number N ≥ 3 different from l.

As in Section 1, let L be the function field of the moduli space X(N) of princi-

pally polarized abelian 3-folds with a level N structure. Let A be the natural

abelian 3-fold over L. (Much of what follows works under some conditions for

other abelian 3-folds over fields of characteristic zero.)

Let Θ ∈ H2(AL,Ql(1)) be the given polarization. The primitive part

PH3(AL,Ql(2)) is the kernel of multiplication by Θ. The hard Lefschetz theo-

rem over C, translated to étale cohomology, gives a direct-sum decomposition

H3(AL,Ql(2)) = PH3(AL,Ql(2))⊕Θ ·H1(AL,Ql(1))

[8, p. 122].

Let v be the discrete valuation on L whose residue field is the moduli space

of principally polarized abelian 3-folds over Fl(ζN ) with level N structure.

Since the generic abelian 3-fold in characteristic l is ordinary, A has good ordi-

nary reduction at v. By Theorem 2.1, N1H3(AL,Z/l(2)) is a proper subgroup

of H3(AL,Z/l(2)). (The Tate twist Z/l(2) = (µl)
⊗2 makes no difference to

the statement, since we are considering étale cohomology over an algebraically

closed field.) It follows that N1H3(AL,Z/l
r(2))/l→ H3(AL,Z/l

r(2))/l is not

surjective for any positive integer r. So the injection

B := (lim←−
r

N1H3(AL,Z/l
r(2)))⊗Zl

Ql → H3(AL,Ql(2))

is not surjective. (Note that the subspace B may a priori be bigger than

N1H3(AL,Ql(2).) That actually happens in some examples over Fp, by Schoen

[19, after Th. 0.4]. It would be relatively easy to prove an upper bound for
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N1H3(AL,Ql(2)), but we need Bloch-Esnault’s argument in order to prove an

upper bound for B.)

The Galois group Gal(L/L) acts on H3(AL,Ql(2)), preserving the prim-

itive subspace PH3. The Galois group Gal(L/LQ) ⊂ Gal(L/L) maps onto

a completion of the congruence subgroup Γ(N) of Sp(6,Z), which acts on

H1(A,Ql)
∼= (Ql)

6 as the standard representation V of the symplectic group.

Since Γ(N) is Zariski dense in Sp(6,Ql) and PH3(AL,Ql(2)) is the irreducible

representation Λ3(V )/V of Sp(6,Ql), PH3(AL,Ql(2)) is an irreducible repre-

sentation of Gal(L/L). The Galois group also preserves the subspace B in the

previous paragraph, and it is clear that B contains the subspace Θ ·H1 (since

classes in Θ · H1 are supported on a theta divisor in AL). The irreducibility

together with the previous paragraph’s result implies that B is equal to Θ ·H1.

It follows that the inverse limit lim←−rN
1H3(AL,Z/l

r(2)), a finitely gener-

ated Zl-submodule of H3(AL,Zl(2)), contains Θ ·H1(AL,Zl(1)) as a subgroup

of finite index. So there is anm≥0 such that for all r≥0, lmN1H3(AL,Z/l
r(2))

is contained in Θ ·H1(AL,Z/l
r(2)). (In the case at hand (with Θ a principal

polarization), we could take m = 0, but we choose to state the argument in a

way that would work more generally.)

Let P ∈ CH3(A×A) be a correspondence (with integer coefficients) such

that the action of P on H3(AL,Ql(2)) sends Θ ·H1 to zero and maps the prim-

itive part PH3(AL,Ql(2)) to itself by an isomorphism. The existence of such a

correspondence is part of the Lefschetz standard conjecture, which is a theorem

for abelian varieties [12]. (In fact, P can be defined explicitly as a polynomial

in divisor classes on A × A [15, Remark 5.11].) By the previous paragraph,

there is an a ≥ 0 such that P∗N
1H3(AL,Z/l

r(2)) is killed by la for all r ≥ 0.

The Merkurjev-Suslin theorem implies that for all smooth projective va-

rieties X over L, Bloch’s cycle class map

CH2(XL)[l∞]→ H3(XL,Ql/Zl(2))

is injective, with image N1H3(XL,Ql/Zl(2)) [14, §18.4]. So the previous para-

graph implies that P∗(CH2(AL)[l∞]) is killed by la.

Let E be the function field of the moduli space M(N) of curves of genus 3

with level N structure, and let C be the universal curve over E. Then E is a

quadratic extension of L. Let y be the Ceresa cycle in CH2(AE1) associated

to a finite extension E1 of E and an E1-point of C, as in Section 1. We are

primarily interested in the image of y in CH2(AL)/lm for natural numbers m,

which is independent of the choice of E1 and p, but which depends up to sign

on the choice of isomorphism J(C) ∼= AE .

Let z = 2y. Then z is a codimension-2 cycle on AL that is homologically

trivial, meaning that z maps to zero in H4(AL,Zl(2)). There is an l-adic Abel-

Jacobi map for homologically trivial cycles, taking values in continuous Galois
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cohomology [4, §1]:

CH2
hom(AE1)→ H1(E1, H

3(AL,Zl(2))).

Following Jannsen, continuous cohomology means the derived functors of the

functor (Mn) 7→ lim←−n(Mn)G on inverse systems [11].

We now use that the field L is finitely generated over Q. The following

result is modeled on Bloch and Esnault [2, proof of Prop. 4.1]:

Lemma 2.3. The natural map

H1(L,P∗H
3(AL,Zl(2)))→ H1(L′, P∗H

3(AL,Zl(2)))Gal(L′/L)

is an isomorphism for all finite Galois extensions L′ of L.

Proof. Let M = P∗H
3(AL,Zl(2)), and let G = Gal(L/L). Then M is

a finitely generated free Zl-module on which G acts with nonzero weight m

(namely, m = −1). (That is, let Y be a scheme of finite type over Z with

fraction field L (in the case at hand, Y is the moduli space X(N)). To say

that M has weight m means that the eigenvalues of Frobenius on M ⊗Ql at

all closed points y of Y in some nonempty open subset are algebraic numbers,

with all archimedean absolute values equal to qm, where q is the order of the

residue field at y. To prove that, it suffices to take an open subset of Y where

A has good reduction and then apply Deligne’s theorem (the Weil conjecture)

[6]. Since A is an abelian variety, we could also reduce to the Weil conjecture

for H1, proved by Weil.)

Let Mn = M/ln for any natural number n. Write H i(G,M) for continu-

ous cohomology as defined above. Since the groups Mn are finite, the natural

map H i(G,M)→ lim←−nH
i(G,Mn) is an isomorphism for all i [11, eq. 2.1]. We

want to show that for any open normal subgroup H of G, the natural map

H1(G,M)→ H1(H,M)G/H

is an isomorphism.

The Hochschild-Serre spectral sequence gives an exact sequence for each n:

0 // H1(G/H,MH
n ) // H1(G,Mn)

αn
// H1(H,Mn)G/H // H2(G/H,MH

n ).

The groups on the left are finite, and so they satisfy the Mittag-Leffler condi-

tion as n varies. This implies the exact sequences:

0→ lim←−
n

H1(G/H,MH
n )→ lim←−

n

H1(G,Mn)→ lim←−
n

im(αn)→ 0

and

0→ lim←−
n

im(αn)→ lim←−
n

H1(H,Mn)G/H → lim←−
n

H2(G/H,MH
n ).

The groups MH
n are finite, and so the inverse system MH

n satisfies Mittag-

Leffler. That implies that the continuous cohomology H i(G/H, lim←−nM
H
n ) is

computed by the complex of continuous cochains with coefficients in lim←−nM
H
n
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[11, Th. 2.2]. But lim←−M
H
n =(lim←−Mn)H =0 because M has nonzero weight as an

H-module and is torsion free. So H i(G/H, lim←−nM
H
n )=0 for all i. By the exact

sequences above, the map H1(G,M)→H1(H,M)G/H is an isomorphism. �

By Section 1, the Ceresa class y and therefore z = 2y are invariant un-

der Gal(L/E) in CH2(AL)/lm, for all natural numbers m. By Lemma 2.3, it

follows that z has a well-defined class in H1(E,H3(AL,Zl(2))).

Next, we show that P∗z has nonzero image in H1(E,H3(AL,Ql(2))),

which is defined to mean the continuous cohomology group above tensored

with Ql [11, Def. 5.13]. This follows from Hain’s proof of Ceresa’s theorem.

Let F be the direct limit of the function fields of the moduli spaces M(N ′) over

all positive integers N ′. Then Gal(F/E) is a completion of the congruence sub-

group Γ(N) in Sp(6,Z). It suffices to show that P∗z in H1(E,PH3(AL,Ql(2)))

has nonzero restriction to H1(F,PH3(AL,Ql(2))).

The action of the Galois group of E on the cohomology of AL factors

through Gal(F/E), and so we are just claiming that P∗z determines a nonzero

homomorphism Gal(L/F ) → PH3(AL,Ql(2)). Here Gal(L/EQ) maps onto

a completion of the Torelli group, the kernel of the homomorphism from the

genus 3 mapping class group to Sp(6,Z). By working over C, it suffices to show

that the Ceresa class determines a nonzero homomorphism from the Torelli

group to PH3(AC,Q). (Here the prime number l is irrelevant.) This is exactly

what Hain’s computation of the normal function of the Ceresa cycle shows [9,

proof of Th. 8.2]. (In fact, the Ceresa cycle gives an isomorphism from the

abelianized Torelli group tensor Q to PH3(AC,Q). Johnson had earlier shown

that these two groups are isomorphic.)

Remark 2.4. Shou-Wu Zhang strengthened Ceresa’s theorem in a cer-

tain direction. Namely, let B be a smooth projective curve over a field k0,

and let C → B be a nonisotrivial family of curves of genus 3 over B with

all fibers smooth. (Such families do exist.) Let C be the generic fiber over

k := k0(B). There is a height pairing CH2
hom(J(C)) ⊗ CH2

hom(J(C)) → Z on

the cycles homologically equivalent to zero, defined using intersections on the

4-fold J(C) → B. Suppose that there is a zero-cycle e of degree 1 on X, and

let y be the Ceresa cycle in CH2
hom(J(C)) associated to e. Then Zhang shows

that the height pairing 〈y, y〉 is positive [24, Th. 1.3.1, Cor. 1.3.4, Th. 1.5.5].

It follows that for every prime number l, there is a positive integer a such that

y is not zero in CH2(J(C))/la.

This proves the nontriviality of the Ceresa cycle over relatively small func-

tion fields, not just over the function field of the whole moduli space of curves

of genus 3. However, we would still need arguments as in this paper in order

to argue that the Ceresa cycle remains nonzero in CH2(J(C)k)/l
b for some b,

where the base field is algebraically closed.
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By the properties of the correspondence P , P∗z takes values in

H1(E,P∗H
3(AL,Ql(2)));

so P∗z is nonzero in H1(E,P∗H
3(AL,Zl(2))). By definition of this continuous

cohomology group, we have an exact sequence [11, 3.1]

0→ lim←−
1
r
H0(E,P∗H

3(AL,Z/l
r(2)))→ H1(E,P∗H

3(AL,Zl(2)))

→ lim←−
r

H1(E,P∗H
3(AL,Z/l

r(2)))→ 0.

Since H3(AL,Z/l
r(2)) is finite for each r, the H0 groups on the left are finite,

and so they satisfy the Mittag-Leffler condition as r varies; so the derived limit

lim←−
1 is zero. That is,

H1(E,P∗H
3(AL,Zl(2))) ∼= lim←−

r

H1(E,P∗H
3(AL,Z/l

r(2))).

It follows that every nonzero element of H1(E,P∗H
3(AL,Zl(2))) is nonzero

modulo lb for some b ≥ 0. In particular, there is a b such that P∗z is nonzero

in H1(E,P∗H
3(AL,Zl(2)))/lb.

Assume that there is a cycle w in CH2(AL) such that

la+bw = z.

Since z is homologically trivial and the cohomology of AL is torsion-free, w is

homologically trivial. Let E′ be a finite Galois extension of E such that the

cycle w is defined over E′, and consider w as an element of CH2
hom(AL′). For

σ in Gal(L/L), we have

la+bP∗(w − σ(w)) = P∗(z − σ(z))

= 0.

Since P∗(CH2(AL)[l∞]) is killed by la, it follows that laP∗(w−σ(w)) = 0; that

is, laP∗(w) is fixed by Gal(L/E). By Lemma 2.3, it follows that laP∗(w) can

be viewed as an element u of H1(E,P∗H
3(AL,Zl(2))), and we have

lbu = P∗z

in that group. Since P∗z is nonzero in H1(E,P∗H
3(AL,Zl(2)))/lb, we have a

contradiction. Thus there is no element w as above. In other words,

z 6= 0 ∈ CH2(AL)/la+b.

Since z is 2 times the Ceresa cycle y, Proposition 2.2 is proved. �

3. Isogenies

Theorem 3.1. Let A be a very general principally polarized abelian 3-fold

over C. Then CH2(A)/l is infinite for every prime number l.
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Proof. Fix a prime number N at least 3 and different from l. As discussed

in Section 1, it suffices to show that CH2(AL)/l is infinite, where L is the

function field of the moduli space X(N) of principally polarized abelian 3-folds

with level N structure.

We will imitate the strategy Nori used to show that the Griffiths group

tensor Q has infinite rank for a very general principally polarized abelian

3-fold A [16]. Rosenschon and Srinivas extended Nori’s argument to show

that CH2(AL)/l is infinite for almost all primes l [18].

Namely, AL is the Jacobian of a curve, and so we have a Ceresa cycle

y on AL, well defined up to sign in CH2(AL)/lm for any m, as discussed in

Section 1. By Proposition 2.2, there is a positive integer c such that z := 2y is

nonzero in CH2(AL)/lc.

The plan is to consider infinitely many isogenies from A to other princi-

pally polarized abelian 3-folds. Pulling the Ceresa cycles back by these iso-

genies gives infinitely many nonzero elements of CH2(AL)/lc. We argue that

these elements of CH2(AL)/lc are all different because they all have different

actions of the Galois group Gal(L/L). Thus CH2(AL)/lc is infinite, and it

follows that CH2(AL)/l is infinite.

Lemma 3.2. Let f : A→ B be an isogeny of principally polarized abelian

varieties over an algebraically closed field k. If f has degree prime to l, then

the pullback f∗ : CH∗(B)/lc → CH∗(A)/lc is an isomorphism.

Proof. f∗f
∗ is multiplication by deg(f), and so f∗ is split injective on

CH∗(A)/lc. The composition f∗f
∗ is the sum of the translates by elements of

the finite group ker(f). These translates act on Chow groups as the identity

modulo algebraic equivalence. Since k is algebraically closed, the group of

cycles algebraically equivalent to zero is divisible, and so f∗f
∗ acts as multipli-

cation by deg(f) on CH∗(B)/lc. Thus f∗ is an isomorphism on Chow groups

modulo lc. �

The abelian 3-fold AL has many prime-to-Nl isogenies to principally po-

larized abelian 3-folds. They are all isomorphic to AL as schemes (not as

schemes over L). By Lemma 3.2, the pullback of 2 times the Ceresa cycle y

under each of these isogenies is nonzero in CH2(AL)/lc. We conclude that all

the pullbacks of the Ceresa cycle y are not killed by 2 in CH2(AL)/lc.

It remains to show that for a suitable infinite family of isogenies, the pull-

backs of y are all different in CH2(AL)/lc. Let F be the direct limit of the

function fields of the moduli spaces X(M) over all positive integers M . Follow-

ing Nori, we argue that Gal(L/F ) acts by different characters Gal(L/F )→ ±1

on all these pullbacks.

Choose a sequence r1, r2, . . . of elements in Sp(6,Q) that are distinct in

the set Sp(6,Q)\Sp(6,Z). We can assume that each ri is integral (that is, in
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Sp(6,Z(p))) at primes p dividing Nl. Just as Sp(6,R) acts on the Siegel up-

per half-space, Sp(6,Q) acts on the inverse limit of the moduli spaces X(M).

In particular, Sp(6,Q) acts by automorphisms on the direct limit F of the

function fields of X(M).

The center {±1} of Sp(6,Q) acts trivially on F , and so we can also think

of this as an action ρ1 of GSp(6,Q) on F , with the center Q∗ acting trivially.

Moreover, for any element g ∈M6(Z) ∩GSp(6,Q), there are positive integers

a and M with a commutative diagram

A(Ma) //

��

A(M)

��

X(Ma) // X(M),

where the top map is an isogeny on the fibers. This induces a commutative

diagram

AF
ρ2(g)

//

��

AF

��

Spec(F )
ρ1(g)
// Spec(F ).

For N ≥ 3, the map M(N)→ X(N) has degree 2 and is ramified over the

closure of the image of the divisor of hyperelliptic curves in M(N). Let D be

the corresponding divisor in the Siegel space H. (The level structure is irrele-

vant to the definition of D; in other words, D is the inverse image of a divisor

in the coarse moduli space X(1) of principally polarized abelian 3-folds.) We

use the following observation by Nori [16, Lemma]:

Lemma 3.3. The subgroup of Sp(6,R) that maps D ⊂ H into itself is

equal to Sp(6,Z).

Proof. The subgroup K of Sp(6,R) that maps D into itself is a closed Lie

subgroup of Sp(6,R). The Lie algebra of K is stable under the adjoint action

of K, which contains Sp(6,Z), and that is Zariski dense in Sp(6,R). So this

Lie algebra is zero or all of sp(6,R). In the latter case, K is equal to Sp(6,R),

which is false since D is not all of H. So K is discrete. Since Sp(6,Z) is a

maximal discrete subgroup of Sp(6,R) [3, Th. 7], K is equal to Sp(6,Z). �

It follows that for any sequence of elements g1, g2, . . . of Sp(6,Q) that are

distinct in the set Sp(6,Q)/Sp(6,Z), the divisors giD in the Siegel space are

different. Therefore, the ramified double covering of Siegel space pulled back

from M(3)→ X(3) gives infinitely many nonisomorphic ramified coverings by

the action of g1, g2, . . . . Each of these coverings is pulled back from a ramified

double covering of some finite level X(N).

For each i, gi of the Ceresa cycle y in CH2(AF )/lc is nonzero, and y 6= −y
(since we showed that 2y 6= 0). Gal(F/F ) acts on that class by the character
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Gal(F/F )→ ±1 associated to the translate by gi of the quadratic extension of

F corresponding to M(3)→ X(3). It follows that these infinitely many trans-

lates of the Ceresa class are different in CH2(AF )/lc. In particular, CH2(AF )/lc

is infinite. It follows that CH2(AF )/l is infinite. �
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