Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields

Abstract

We generalize Kontsevich’s construction of $L_{\infty}$-derivations of polyvector fields from the affine space to an arbitrary smooth algebraic variety. More precisely, we construct a map (in the homotopy category) from Kontsevich’s graph complex to the deformation complex of the sheaf of polyvector fields on a smooth algebraic variety. We show that the action of Deligne-Drinfeld elements of the Grothendieck-Teichmüller Lie algebra on the cohomology of the sheaf of polyvector fields coincides with the action of odd components of the Chern character. Using this result, we deduce that the $\hat{A}$-genus in the Calaque-Van den Bergh formula for the isomorphism between harmonic and Hochschild structures can be replaced by a generalized $\hat{A}$-genus.

Note: To view the article, click on the URL link for the DOI number.

  • [AT] Go to document A. Alekseev and C. Torossian, "The Kashiwara-Vergne conjecture and Drinfeld’s associators," Ann. of Math., vol. 175, iss. 2, pp. 415-463, 2012.
    @article{AT, mrkey = {2877064},
      author = {Alekseev, Anton and Torossian, Charles},
      title = {The {K}ashiwara-{V}ergne conjecture and {D}rinfeld's associators},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {2},
      pages = {415--463},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {17B35 (17B40 17B55)},
      mrnumber = {2877064},
      mrreviewer = {Panagiotis Batakidis},
      doi = {10.4007/annals.2012.175.2.1},
      zblnumber = {1243.22009},
      }
  • [Alm-SM] J. Alm and S. Merkulov, Grothendieck-Teichmüller group and Poisson cohomologies, 2012.
    @misc{Alm-SM,
      author = {Alm, Johan and Merkulov, Sergei},
      title = {Grothendieck-{T}eichmüller group and {P}oisson cohomologies},
      arxiv = {1203.5933},
      year = {2012},
      }
  • [Atiyah] Go to document M. F. Atiyah, "Complex analytic connections in fibre bundles," Trans. Amer. Math. Soc., vol. 85, pp. 181-207, 1957.
    @article{Atiyah, mrkey = {0086359},
      author = {Atiyah, M. F.},
      title = {Complex analytic connections in fibre bundles},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {85},
      year = {1957},
      pages = {181--207},
      issn = {0002-9947},
      mrclass = {53.3X},
      mrnumber = {0086359},
      mrreviewer = {F. Hirzebruch},
      doi = {10.2307/1992969},
      zblnumber = {0078.16002},
      }
  • [BK] Go to document S. Barannikov and M. Kontsevich, "Frobenius manifolds and formality of Lie algebras of polyvector fields," Internat. Math. Res. Notices, vol. 1998, p. no. 4, 201-215.
    @article{BK, mrkey = {1609624},
      author = {Barannikov, Sergey and Kontsevich, Maxim},
      title = {Frobenius manifolds and formality of {L}ie algebras of polyvector fields},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      volume = {1998},
      pages = {no.~4, 201--215},
      issn = {1073-7928},
      mrclass = {14D07 (14J32 17B66 32G13 58D29)},
      mrnumber = {1609624},
      mrreviewer = {Sergey Merkulov},
      doi = {10.1155/S1073792898000166},
      sortyear = {1998},
      zblnumber = {0914.58004},
      }
  • [BG] Go to document A. K. Bousfield and V. K. A. M. Gugenheim, "On ${ PL}$ de Rham theory and rational homotopy type," Mem. Amer. Math. Soc., vol. 8, iss. 179, p. ix, 1976.
    @article{BG, mrkey = {0425956},
      author = {Bousfield, A. K. and Gugenheim, V. K. A. M.},
      title = {On {${\rm PL}$} de {R}ham theory and rational homotopy type},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the American Mathematical Society},
      volume = {8},
      year = {1976},
      number = {179},
      pages = {ix+94},
      issn = {0065-9266},
      mrclass = {55D15 (58A10)},
      mrnumber = {0425956},
      mrreviewer = {Jean-Michel Lemaire},
      doi = {10.1090/memo/0179},
      zblnumber = {0338.55008},
      }
  • [Brown] Go to document F. Brown, "Mixed Tate motives over $\Bbb Z$," Ann. of Math., vol. 175, iss. 2, pp. 949-976, 2012.
    @article{Brown, mrkey = {2993755},
      author = {Brown, Francis},
      title = {Mixed {T}ate motives over {$\Bbb Z$}},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {2},
      pages = {949--976},
      issn = {0003-486X},
      mrclass = {11S20 (11M32 14F42)},
      mrnumber = {2993755},
      mrreviewer = {Pierre A. Lochak},
      doi = {10.4007/annals.2012.175.2.10},
      zblnumber = {1278.19008},
      }
  • [B1] P. Brückmann, "Zur Kohomologie von projektiven Hyperflächen," Wiss. Beitr. Martin-Luther-Univ. Halle-Wittenberg Reihe M Math., vol. 4, pp. 87-101 (1974), 1973.
    @article{B1, mrkey = {0399102},
      author = {Br{ü}ckmann, Peter},
      title = {Zur {K}ohomologie von projektiven {H}yperflächen},
      note = {Beitr{ä}ge zur Algebra und Geometrie, 2},
      journal = {Wiss. Beitr. Martin-Luther-Univ. Halle-Wittenberg Reihe M Math.},
      volume = {4},
      year = {1973},
      pages = {87--101 (1974)},
      mrclass = {14F10},
      mrnumber = {0399102},
      mrreviewer = {Y. Nakai},
      zblnumber = {0288.14008},
      }
  • [B2] Go to document P. Brückmann, "Zur Kohomologie von vollständigen Durchschnitten mit Koeffizienten in der Garbe der Keime der Differentialformen," Math. Nachr., vol. 71, pp. 203-210, 1976.
    @article{B2, mrkey = {0417202},
      author = {Br{ü}ckmann, Peter},
      title = {Zur {K}ohomologie von vollständigen {D}urchschnitten mit {K}oeffizienten in der {G}arbe der {K}eime der {D}ifferentialformen},
      journal = {Math. Nachr.},
      fjournal = {Mathematische Nachrichten},
      volume = {71},
      year = {1976},
      pages = {203--210},
      issn = {0025-584X},
      mrclass = {14M10 (14F10)},
      mrnumber = {0417202},
      mrreviewer = {Konrad Drechsler},
      doi = {10.1002/mana.19760710116},
      zblnumber = {0277.14019},
      }
  • [B3] Go to document P. Brückmann, "Zur Kohomologie von vollständigen Durchschnitten mit Koeffizienten in der Garbe der Keime der Differentialformen. II," Math. Nachr., vol. 77, pp. 307-318, 1977.
    @article{B3, mrkey = {0447266},
      author = {Br{ü}ckmann, Peter},
      title = {Zur {K}ohomologie von vollständigen {D}urchschnitten mit {K}oeffizienten in der {G}arbe der {K}eime der {D}ifferentialformen. {II}},
      journal = {Math. Nachr.},
      fjournal = {Mathematische Nachrichten},
      volume = {77},
      year = {1977},
      pages = {307--318},
      issn = {0025-584X},
      mrclass = {14M10},
      mrnumber = {0447266},
      mrreviewer = {Konrad Drechsler},
      doi = {10.1002/mana.19770770123},
      zblnumber = {0363.14004},
      }
  • [Calaque] Go to document D. Calaque, "A PBW theorem for inclusions of (sheaves of) Lie algebroids," Rend. Semin. Mat. Univ. Padova, vol. 131, pp. 23-47, 2014.
    @article{Calaque, mrkey = {3217749},
      author = {Calaque, Damien},
      title = {A {PBW} theorem for inclusions of (sheaves of) {L}ie algebroids},
      journal = {Rend. Semin. Mat. Univ. Padova},
      fjournal = {Rendiconti del Seminario Matematico della Università di Padova},
      volume = {131},
      year = {2014},
      pages = {23--47},
      issn = {0041-8994},
      mrclass = {17B35},
      mrnumber = {3217749},
      doi = {10.4171/RSMUP/131-3},
      zblnumber = {06329756},
      }
  • [CCT] Go to document D. Calaque, A. Cualduararu, and J. Tu, "PBW for an inclusion of Lie algebras," J. Algebra, vol. 378, pp. 64-79, 2013.
    @article{CCT, mrkey = {3017014},
      author = {Calaque, Damien and C{\u{a}}ld{\u{a}}raru, Andrei and Tu, Junwu},
      title = {{PBW} for an inclusion of {L}ie algebras},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {378},
      year = {2013},
      pages = {64--79},
      issn = {0021-8693},
      coden = {JALGA4},
      mrclass = {17B35},
      mrnumber = {3017014},
      mrreviewer = {Volodymyr Mazorchuk},
      doi = {10.1016/j.jalgebra.2012.12.008},
      zblnumber = {06220113},
      }
  • [Damien] Go to document D. Calaque and M. Van den Bergh, "Hochschild cohomology and Atiyah classes," Adv. Math., vol. 224, iss. 5, pp. 1839-1889, 2010.
    @article{Damien, mrkey = {2646112},
      author = {Calaque, Damien and Van den Bergh, Michel},
      title = {Hochschild cohomology and {A}tiyah classes},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {224},
      year = {2010},
      number = {5},
      pages = {1839--1889},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {14F05 (14D23 14F43 18G55 53D55)},
      mrnumber = {2646112},
      mrreviewer = {Jeremy Lee Pecharich},
      doi = {10.1016/j.aim.2010.01.012},
      zblnumber = {1197.14017},
      }
  • [Cald] Go to document A. Cualduararu, "The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism," Adv. Math., vol. 194, iss. 1, pp. 34-66, 2005.
    @article{Cald, mrkey = {2141853},
      author = {C{\u{a}}ld{\u{a}}raru, Andrei},
      title = {The {M}ukai pairing. {II}. {T}he {H}ochschild-{K}ostant-{R}osenberg isomorphism},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {194},
      year = {2005},
      number = {1},
      pages = {34--66},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {14F40 (19L10)},
      mrnumber = {2141853},
      mrreviewer = {David Ploog},
      doi = {10.1016/j.aim.2004.05.012},
      zblnumber = {1098.14011},
      }
  • [ChenXuStienon] Z. Chen, M. Stiénon, and P. Xu, From Atiyah classes to homotopy Leibniz algebras, 2012.
    @misc{ChenXuStienon,
      author = {Chen, Z. and Sti{é}non, M. and Xu, P.},
      title = {From {A}tiyah classes to homotopy {L}eibniz algebras},
      arxiv = {1204.1075},
      year = {2012},
      }
  • [DG] Go to document P. Deligne and A. B. Goncharov, "Groupes fondamentaux motiviques de Tate mixte," Ann. Sci. École Norm. Sup., vol. 38, iss. 1, pp. 1-56, 2005.
    @article{DG, mrkey = {2136480},
      author = {Deligne, Pierre and Goncharov, Alexander B.},
      title = {Groupes fondamentaux motiviques de {T}ate mixte},
      journal = {Ann. Sci. École Norm. Sup.},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      volume = {38},
      year = {2005},
      number = {1},
      pages = {1--56},
      issn = {0012-9593},
      coden = {ASENAH},
      mrclass = {11G55 (14F42 14G10 19F27)},
      mrnumber = {2136480},
      mrreviewer = {Tam{á}s Szamuely},
      doi = {10.1016/j.ansens.2004.11.001},
      zblnumber = {1084.14024},
      }
  • [FTHC] Go to document V. A. Dolgushev, "A formality theorem for Hochschild chains," Adv. Math., vol. 200, iss. 1, pp. 51-101, 2006.
    @article{FTHC, mrkey = {2199629},
      author = {Dolgushev, Vasiliy A.},
      title = {A formality theorem for {H}ochschild chains},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {200},
      year = {2006},
      number = {1},
      pages = {51--101},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {16E45 (16E05 53D17 53D55)},
      mrnumber = {2199629},
      mrreviewer = {Pasha Zusmanovich},
      doi = {10.1016/j.aim.2004.10.017},
      zblnumber = {1106.53054},
      }
  • [CEFT] Go to document V. A. Dolgushev, "Covariant and equivariant formality theorems," Adv. Math., vol. 191, iss. 1, pp. 147-177, 2005.
    @article{CEFT, mrkey = {2102846},
      author = {Dolgushev, Vasiliy A.},
      title = {Covariant and equivariant formality theorems},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {191},
      year = {2005},
      number = {1},
      pages = {147--177},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {53D55 (17B55 18G55)},
      mrnumber = {2102846},
      doi = {10.1016/j.aim.2004.02.001},
      zblnumber = {1116.53065},
      }
  • [exhausting] V. A. Dolgushev, "Exhausting formal quantization procedures," in Geometric Methods in Physics, XXX Workshop, 2011, Boston: Birkhäuser, 2013, pp. 53-62.
    @incollection{exhausting,
      author = {Dolgushev, Vasiliy A.},
      title = {Exhausting formal quantization procedures},
      booktitle = {Geometric Methods in Physics, XXX Workshop, 2011},
      series = {Trends in Math.},
      pages = {53--62},
      publisher = {Birkh{ä}user},
      address = {Boston},
      year = {2013},
      zblnumber = {1263.53085},
      }
  • [stable1] V. A. Dolgushev, Stable formality quasi-isomorphisms for Hochschild cochains I, 2011.
    @misc{stable1,
      author = {Dolgushev, Vasiliy A.},
      title = {Stable formality quasi-isomorphisms for {H}ochschild cochains {I}},
      arxiv = {1109.6031},
      year = {2011},
      }
  • [notes] Go to document V. A. Dolgushev and C. L. Rogers, "Notes on algebraic operads, graph complexes, and Willwacher’s construction," in Mathematical Aspects of Quantization, Providence, RI: Amer. Math. Soc., 2012, vol. 583, pp. 25-145.
    @incollection{notes, mrkey = {3013092},
      author = {Dolgushev, Vasily A. and Rogers, Christopher L.},
      title = {Notes on algebraic operads, graph complexes, and {W}illwacher's construction},
      booktitle = {Mathematical Aspects of Quantization},
      series = {Contemp. Math.},
      volume = {583},
      pages = {25--145},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2012},
      mrclass = {18D50 (18G55)},
      mrnumber = {3013092},
      mrreviewer = {Julia Bergner},
      doi = {10.1090/conm/583/11584},
      }
  • [DTT] Go to document V. A. Dolgushev, D. Tamarkin, and B. Tsygan, "The homotopy Gerstenhaber algebra of Hochschild cochains of a regular algebra is formal," J. Noncommut. Geom., vol. 1, iss. 1, pp. 1-25, 2007.
    @article{DTT, mrkey = {2294189},
      author = {Dolgushev, Vasiliy A. and Tamarkin, Dmitry and Tsygan, Boris},
      title = {The homotopy {G}erstenhaber algebra of {H}ochschild cochains of a regular algebra is formal},
      journal = {J. Noncommut. Geom.},
      fjournal = {Journal of Noncommutative Geometry},
      volume = {1},
      year = {2007},
      number = {1},
      pages = {1--25},
      issn = {1661-6952},
      mrclass = {18D50 (16E40 16E45 53D55)},
      mrnumber = {2294189},
      mrreviewer = {Beno\^ ıt Fresse},
      doi = {10.4171/JNCG/1},
      zblnumber = {1144.18007},
      }
  • [DefCompHi] Go to document V. A. Dolgushev and T. H. Willwacher, "The deformation complex is a homotopy invariant of a homotopy algebra," in Developments and Retrospectives in Lie Theory: Algebraic Methods, New York: Springer-Verlag, 2014, vol. 38, pp. 137-158.
    @incollection{DefCompHi, mrkey= {3308781},
      author = {Dolgushev, Vasiliy A. and Willwacher, T. H.},
      title = {The deformation complex is a homotopy invariant of a homotopy algebra},
      booktitle = {Developments and Retrospectives in Lie Theory: Algebraic Methods},
      series = {Dev. Math.},
      volume = {38},
      pages = {137--158},
      publisher = {Springer-Verlag},
      address = {New York},
      year = {2014},
      mrnumber = {3308781},
      doi = {10.1007/978-3-319-09804-3_6},
      }
  • [DeligneTwist] Go to document V. A. Dolgushev and T. Willwacher, "Operadic twisting—with an application to Deligne’s conjecture," J. Pure Appl. Algebra, vol. 219, iss. 5, pp. 1349-1428, 2015.
    @article{DeligneTwist, mrkey = {3299688},
      author = {Dolgushev, Vasily A. and Willwacher, Thomas},
      title = {Operadic twisting---with an application to {D}eligne's conjecture},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {219},
      year = {2015},
      number = {5},
      pages = {1349--1428},
      issn = {0022-4049},
      mrclass = {18D50},
      mrnumber = {3299688},
      doi = {10.1016/j.jpaa.2014.06.010},
      zblnumber = {1305.18032},
     }
  • [Drinfeld] V. G. Drinfelcprimed, "On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${ Gal}(\overline{\bf Q}/{\bf Q})$," Algebra i Analiz, vol. 2, iss. 4, pp. 149-181, 1990.
    @article{Drinfeld, mrkey = {1080203},
      author = {Drinfel{\cprime}d, V. G.},
      title = {On quasitriangular quasi-{H}opf algebras and on a group that is closely connected with {${\rm Gal}(\overline{\bf Q}/{\bf Q})$}},
      journal = {Algebra i Analiz},
      fjournal = {Algebra i Analiz},
      volume = {2},
      year = {1990},
      number = {4},
      pages = {149--181},
      issn = {0234-0852},
      mrclass = {16W30 (17B37)},
      mrnumber = {1080203},
      mrreviewer = {Ivan Penkov},
      zblnumber = {0718.16034},
     }
  • [Fresse] Go to document B. Fresse, "Koszul duality of operads and homology of partition posets," in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Providence, RI: Amer. Math. Soc., 2004, vol. 346, pp. 115-215.
    @incollection{Fresse, mrkey = {2066499},
      author = {Fresse, Benoit},
      title = {Koszul duality of operads and homology of partition posets},
      booktitle = {Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic {$K$}-Theory},
      series = {Contemp. Math.},
      volume = {346},
      pages = {115--215},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2004},
      mrclass = {18D50 (05E25 06A07 18C15 55P48)},
      mrnumber = {2066499},
      mrreviewer = {Andrey Yu. Lazarev},
      doi = {10.1090/conm/346/06287},
      zblnumber = {1077.18007},
      }
  • [Furusho] H. Furusho, Four groups related to associators.
    @misc{Furusho,
      author = {Furusho, H.},
      title = {Four groups related to associators},
      note = {Report on Mathematische Arbeitstagung, June 24--July 1, 2011},
      arxiv = {1108.3389},
      sortyear = {2011},
      }
  • [GelFuchs] Go to document I. M. Gelcprimefand and D. B. Fuks, "Cohomologies of the Lie algebra of formal vector fields," Izv. Akad. Nauk SSSR Ser. Mat., vol. 34, pp. 322-337, 1970.
    @article{GelFuchs, mrkey = {0266195},
      author = {Gel{\cprime}fand, I. M. and Fuks, D. B.},
      title = {Cohomologies of the {L}ie algebra of formal vector fields},
      journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {34},
      year = {1970},
      pages = {322--337},
      issn = {0373-2436},
      mrclass = {55.30 (57.00)},
      mrnumber = {0266195},
      mrreviewer = {W. Vogel},
      zblnumber = {0216.20302},
      doi = {10.1070/im1970v004n02abeh000908},
     }
  • [GelKazh] I. M. Gelcprimefand and D. A. Kazhdan, "Some problems of differential geometry and the calculation of cohomologies of Lie algebras of vector fields," Soviet Math. Dokl., vol. 12, pp. 1367-1370, 1971.
    @article{GelKazh,
      author = {Gel{\cprime}fand, I. M. and Kazhdan, D. A.},
      title = {Some problems of differential geometry and the calculation of cohomologies of Lie algebras of vector fields},
      journal = {Soviet Math. Dokl.},
      volume = {12},
      year = {1971},
      pages = {1367--1370},
      zblnumber = {0238.58001},
      }
  • [GJ] E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces.
    @misc{GJ,
      author = {Getzler, E. and Jones, J. D. S.},
      title = {Operads, homotopy algebra and iterated integrals for double loop spaces},
      arxiv = {hep-th/9403055},
      }
  • [GK] Go to document V. Ginzburg and M. Kapranov, "Koszul duality for operads," Duke Math. J., vol. 76, iss. 1, pp. 203-272, 1994.
    @article{GK, mrkey = {1301191},
      author = {Ginzburg, Victor and Kapranov, Mikhail},
      title = {Koszul duality for operads},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {76},
      year = {1994},
      number = {1},
      pages = {203--272},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {18D10 (14H10 16S99 18G50 55P47)},
      mrnumber = {1301191},
      mrreviewer = {Igor K{\v{r}}{\'ı}{ž}},
      doi = {10.1215/S0012-7094-94-07608-4},
      zblnumber = {0855.18006},
      }
  • [Esq] A. Grothendieck, "Esquisse d’un programme," in Geometric Galois actions, 1, Cambridge: Cambridge Univ. Press, 1997, vol. 242, pp. 5-48.
    @incollection{Esq, mrkey = {1483107},
      author = {Grothendieck, Alexandre},
      title = {Esquisse d'un programme},
      booktitle = {Geometric {G}alois actions, 1},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {242},
      pages = {5--48},
      publisher = {Cambridge Univ. Press},
      address = {Cambridge},
      year = {1997},
      mrclass = {14H10 (14F20 14H30)},
      mrnumber = {1483107},
      mrreviewer = {Hiroaki Nakamura},
      zblnumber = {0901.14001},
      }
  • [Hinich] Go to document V. Hinich, "Tamarkin’s proof of Kontsevich formality theorem," Forum Math., vol. 15, iss. 4, pp. 591-614, 2003.
    @article{Hinich, mrkey = {1978336},
      author = {Hinich, Vladimir},
      title = {Tamarkin's proof of {K}ontsevich formality theorem},
      journal = {Forum Math.},
      fjournal = {Forum Mathematicum},
      volume = {15},
      year = {2003},
      number = {4},
      pages = {591--614},
      issn = {0933-7741},
      coden = {FOMAEF},
      mrclass = {17B55 (16E40 16S80 18D50 53D55)},
      mrnumber = {1978336},
      mrreviewer = {J. Stasheff},
      doi = {10.1515/form.2003.032},
      zblnumber = {1081.16014},
      }
  • [H] F. Hirzebruch, Topological Methods in Algebraic Geometry, New York: Springer-Verlag, 1966, vol. 131.
    @book{H, mrkey = {0202713},
      author = {Hirzebruch, F.},
      title = {Topological Methods in Algebraic Geometry},
      note = {third enlarged edition; new appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel},
      series = {Grundlehren Math. Wiss.},
      volume = {131},
      publisher = {Springer-Verlag},
      year = {1966},
      pages = {x+232},
      mrclass = {14.00 (32.00)},
      mrnumber = {0202713},
      mrreviewer = {M. F. Atiyah},
      address = {New York},
      zblnumber = {0138.42001},
      }
  • [HKR] Go to document G. Hochschild, B. Kostant, and A. Rosenberg, "Differential forms on regular affine algebras," Trans. Amer. Math. Soc., vol. 102, pp. 383-408, 1962.
    @article{HKR, mrkey = {0142598},
      author = {Hochschild, G. and Kostant, Bertram and Rosenberg, Alex},
      title = {Differential forms on regular affine algebras},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {102},
      year = {1962},
      pages = {383--408},
      issn = {0002-9947},
      mrclass = {18.20 (14.52)},
      mrnumber = {0142598},
      mrreviewer = {J. W. Gray},
      doi = {10.2307/1993614},
      zblnumber = {0102.27701},
      }
  • [H-Yekutieli] Go to document R. Hübl and A. Yekutieli, "Adelic Chern forms and applications," Amer. J. Math., vol. 121, iss. 4, pp. 797-839, 1999.
    @article{H-Yekutieli, mrkey = {1704478},
      author = {H{ü}bl, Reinhold and Yekutieli, Amnon},
      title = {Adelic {C}hern forms and applications},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {121},
      year = {1999},
      number = {4},
      pages = {797--839},
      issn = {0002-9327},
      coden = {AJMAAN},
      mrclass = {14F40 (14F10)},
      mrnumber = {1704478},
      mrreviewer = {Annette Huber},
      doi = {10.1353/ajm.1999.0030},
      zblnumber = {1010.14003},
      }
  • [Jost] Go to document C. Jost, "Globalizing $L_\infty$-automorphisms of the Schouten algebra of polyvector fields," Differential Geom. Appl., vol. 31, iss. 2, pp. 239-247, 2013.
    @article{Jost, mrkey = {3032646},
      author = {Jost, Christine},
      title = {Globalizing {$L\sb \infty$}-automorphisms of the {S}chouten algebra of polyvector fields},
      journal = {Differential Geom. Appl.},
      fjournal = {Differential Geometry and its Applications},
      volume = {31},
      year = {2013},
      number = {2},
      pages = {239--247},
      issn = {0926-2245},
      coden = {DGAPEO},
      mrclass = {53D55 (16E45)},
      mrnumber = {3032646},
      mrreviewer = {Panagiotis Batakidis},
      doi = {10.1016/j.difgeo.2012.12.002},
      zblnumber = {1288.53082},
      }
  • [Kapranov] Go to document M. Kapranov, "Rozansky-Witten invariants via Atiyah classes," Compositio Math., vol. 115, iss. 1, pp. 71-113, 1999.
    @article{Kapranov, mrkey = {1671737},
      author = {Kapranov, M.},
      title = {Rozansky-{W}itten invariants via {A}tiyah classes},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {115},
      year = {1999},
      number = {1},
      pages = {71--113},
      issn = {0010-437X},
      coden = {CMPMAF},
      mrclass = {57R57 (17B70 32J18 53D35 55P48 57M27 57R56)},
      mrnumber = {1671737},
      mrreviewer = {Philip A. Foth},
      doi = {10.1023/A:1000664527238},
      zblnumber = {0993.53026},
      }
  • [K-conj] M. Kontsevich, "Formality conjecture," in Deformation Theory and Symplectic Geometry, Dordrecht: Kluwer Acad. Publ., 1997, vol. 20, pp. 139-156.
    @incollection{K-conj, mrkey = {1480721},
      author = {Kontsevich, Maxim},
      title = {Formality conjecture},
      booktitle = {Deformation Theory and Symplectic Geometry},
      venue = {{A}scona, 1996},
      series = {Math. Phys. Stud.},
      volume = {20},
      pages = {139--156},
      publisher = {Kluwer Acad. Publ.},
      address = {Dordrecht},
      year = {1997},
      mrclass = {58F06},
      mrnumber = {1480721},
      mrreviewer = {Markus J. Pflaum},
      zblnumber = {1149.53325},
      }
  • [K-motives] Go to document M. Kontsevich, "Operads and motives in deformation quantization," Lett. Math. Phys., vol. 48, iss. 1, pp. 35-72, 1999.
    @article{K-motives, mrkey = {1718044},
      author = {Kontsevich, Maxim},
      title = {Operads and motives in deformation quantization},
      journal = {Lett. Math. Phys.},
      fjournal = {Letters in Mathematical Physics. A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics},
      volume = {48},
      year = {1999},
      number = {1},
      pages = {35--72},
      issn = {0377-9017},
      coden = {LMPHDY},
      mrclass = {53D55 (14F42 16S80 18D50 18G55 55P48 81S10)},
      mrnumber = {1718044},
      mrreviewer = {Alexander A. Voronov},
      doi = {10.1023/A:1007555725247},
      zblnumber = {0945.18008},
      }
  • [Markarian] Go to document N. Markarian, "The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem," J. Lond. Math. Soc., vol. 79, iss. 1, pp. 129-143, 2009.
    @article{Markarian, mrkey = {2472137},
      author = {Markarian, Nikita},
      title = {The {A}tiyah class, {H}ochschild cohomology and the {R}iemann-{R}och theorem},
      journal = {J. Lond. Math. Soc.},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {79},
      year = {2009},
      number = {1},
      pages = {129--143},
      issn = {0024-6107},
      mrclass = {14F05 (13D03 14B10 14C40)},
      mrnumber = {2472137},
      mrreviewer = {Cristina Mart{\'ı}nez},
      doi = {10.1112/jlms/jdn064},
      zblnumber = {1167.14005},
      }
  • [MV] Go to document S. Merkulov and B. Vallette, "Deformation theory of representations of prop(erad)s. I," J. Reine Angew. Math., vol. 634, pp. 51-106, 2009.
    @article{MV, mrkey = {2560406},
      author = {Merkulov, Sergei and Vallette, Bruno},
      title = {Deformation theory of representations of prop(erad)s. {I}},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {634},
      year = {2009},
      pages = {51--106},
      issn = {0075-4102},
      coden = {JRMAA8},
      mrclass = {18G55 (16E45 16W25 17B62 18D50)},
      mrnumber = {2560406},
      mrreviewer = {Beno\^ ıt Fresse},
      doi = {10.1515/CRELLE.2009.069},
      zblnumber = {1187.18006},
      }
  • [VdB] Go to document M. Van den Bergh, "On global deformation quantization in the algebraic case," J. Algebra, vol. 315, iss. 1, pp. 326-395, 2007.
    @article{VdB, mrkey = {2344349},
      author = {Van den Bergh, Michel},
      title = {On global deformation quantization in the algebraic case},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {315},
      year = {2007},
      number = {1},
      pages = {326--395},
      issn = {0021-8693},
      coden = {JALGA4},
      mrclass = {14D15 (14F40 16E40)},
      mrnumber = {2344349},
      mrreviewer = {Corrado Marastoni},
      doi = {10.1016/j.jalgebra.2007.02.012},
      zblnumber = {1133.14021},
      }
  • [char-classes] T. Willwacher, Characteristic classes in deformation quantization, 2012.
    @misc{char-classes,
      author = {Willwacher, T.},
      title = {Characteristic classes in deformation quantization},
      arxiv = {1208.4249},
      year = {2012},
      }
  • [Thomas] Go to document T. Willwacher, "M. Kontsevich’s graph complex and the Grothendieck-Teichmueller Lie algebra," Invent. Math., vol. 200, pp. 671-760, 2015.
    @article{Thomas,
      author = {Willwacher, T.},
      title = {M. {K}ontsevich's graph complex and the {G}rothendieck-{T}eichmueller {L}ie algebra},
      journal = {Invent. Math.},
      doi = {10.1007/s00222-014-0528-x},
      volume = {200},
      year = {2015},
      pages = {671--760},
      mrnumber = {3348138},
      }
  • [Ye] Go to document A. Yekutieli, "Mixed resolutions and simplicial sections," Israel J. Math., vol. 162, pp. 1-27, 2007.
    @article{Ye, mrkey = {2365850},
      author = {Yekutieli, Amnon},
      title = {Mixed resolutions and simplicial sections},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {162},
      year = {2007},
      pages = {1--27},
      issn = {0021-2172},
      coden = {ISJMAP},
      mrclass = {14F05 (18G35 53D55)},
      mrnumber = {2365850},
      mrreviewer = {Adrian Langer},
      doi = {10.1007/s11856-007-0085-8},
      zblnumber = {1143.14002},
      }

Authors

V. A. Dolgushev

Department of Mathematics, Temple University, Philadelphia, PA

C. L. Rogers

Institut für Mathematik und Informatik, Universität Greifswald, Greifswald, Germany

Current address:

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA T. H. Willwacher

University of Zürich, Institute of Mathematics, Zürich, Switzerland