Solution of Leray’s problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains

Abstract

We study the nonhomogeneous boundary value problem for the Navier-Stokes equations of steady motion of a viscous incompressible fluid in arbitrary bounded multiply connected plane or axially-symmetric spatial domains. (For axially symmetric domains, data is assumed to be axially symmetric as well.) We prove that this problem has a solution under the sole necessary condition of zero total flux through the boundary. The problem was formulated by Jean Leray 80 years ago. The proof of the main result uses Bernoulli’s law for a weak solution to the Euler equations.

Note: To view the article, click on the URL link for the DOI number.

  • [Amick] Go to document C. J. Amick, "Existence of solutions to the nonhomogeneous steady Navier-Stokes equations," Indiana Univ. Math. J., vol. 33, iss. 6, pp. 817-830, 1984.
    @article{Amick, mrkey = {0763943},
      author = {Amick, Charles J.},
      title = {Existence of solutions to the nonhomogeneous steady {N}avier-{S}tokes equations},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {33},
      year = {1984},
      number = {6},
      pages = {817--830},
      issn = {0022-2518},
      coden = {IUMJAB},
      mrclass = {35Q10 (76D05)},
      mrnumber = {0763943},
      mrreviewer = {Yoshikazu Giga},
      doi = {10.1512/iumj.1984.33.33043},
      zblnumber = {0563.35059},
      }
  • [BOPI] Go to document W. Borchers and K. Pileckas, "Note on the flux problem for stationary incompressible Navier-Stokes equations in domains with a multiply connected boundary," Acta Appl. Math., vol. 37, iss. 1-2, pp. 21-30, 1994.
    @article{BOPI, mrkey = {1308742},
      author = {Borchers, W. and Pileckas, K.},
      title = {Note on the flux problem for stationary incompressible {N}avier-{S}tokes equations in domains with a multiply connected boundary},
      journal = {Acta Appl. Math.},
      fjournal = {Acta Applicandae Mathematicae. An International Survey Journal on Applying Mathematics and Mathematical Applications},
      volume = {37},
      year = {1994},
      number = {1-2},
      pages = {21--30},
      issn = {0167-8019},
      coden = {AAMADV},
      mrclass = {76D05 (35Q30)},
      mrnumber = {1308742},
      mrreviewer = {Ch{é}rif Amrouche},
      doi = {10.1007/BF00995126},
      zblnumber = {0814.76029},
      }
  • [korob] Go to document J. Bourgain, M. Korobkov, and J. Kristensen, "On the Morse-Sard property and level sets of Sobolev and BV functions," Rev. Mat. Iberoam., vol. 29, iss. 1, pp. 1-23, 2013.
    @article{korob, mrkey = {3010119},
      author = {Bourgain, Jean and Korobkov, Mikhail and Kristensen, Jan},
      title = {On the {M}orse-{S}ard property and level sets of {S}obolev and {BV} functions},
      journal = {Rev. Mat. Iberoam.},
      fjournal = {Revista Matemática Iberoamericana},
      volume = {29},
      year = {2013},
      number = {1},
      pages = {1--23},
      issn = {0213-2230},
      mrclass = {58K05 (46E35)},
      mrnumber = {3010119},
      mrreviewer = {P. P. Zabre{\u\i}ko},
      doi = {10.4171/RMI/710},
      zblnumber = {1273.26017},
      }
  • [metric] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Providence, RI: Amer. Math. Soc., 2001, vol. 33.
    @book{metric, mrkey = {1835418},
      author = {Burago, Dmitri and Burago, Yuri and Ivanov, Sergei},
      title = {A Course in Metric Geometry},
      series = {Grad. Stud. in Math.},
      volume = {33},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2001},
      pages = {xiv+415},
      isbn = {0-8218-2129-6},
      mrclass = {53C23},
      mrnumber = {1835418},
      mrreviewer = {Mario Bonk},
      zblnumber = {0981.51016},
      }
  • [CLMS] R. Coifman, P. -L. Lions, Y. Meyer, and S. Semmes, "Compensated compactness and Hardy spaces," J. Math. Pures Appl., vol. 72, iss. 3, pp. 247-286, 1993.
    @article{CLMS, mrkey = {1225511},
      author = {Coifman, R. and Lions, P.-L. and Meyer, Y. and Semmes, S.},
      title = {Compensated compactness and {H}ardy spaces},
      journal = {J. Math. Pures Appl.},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      volume = {72},
      year = {1993},
      number = {3},
      pages = {247--286},
      issn = {0021-7824},
      coden = {JMPAAM},
      mrclass = {46E99 (35S05 42B30 46F10 46N20 47G30)},
      mrnumber = {1225511},
      zblnumber = {0864.42009},
      }
  • [Dor] Go to document J. R. Dorronsoro, "Differentiability properties of functions with bounded variation," Indiana Univ. Math. J., vol. 38, iss. 4, pp. 1027-1045, 1989.
    @article{Dor, mrkey = {1029687},
      author = {Dorronsoro, Jos{é} R.},
      title = {Differentiability properties of functions with bounded variation},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {38},
      year = {1989},
      number = {4},
      pages = {1027--1045},
      issn = {0022-2518},
      coden = {IUMJAB},
      mrclass = {46E35 (26B35)},
      mrnumber = {1029687},
      mrreviewer = {W. P. Ziemer},
      doi = {10.1512/iumj.1989.38.38047},
      zblnumber = {0691.42017},
      }
  • [evans] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Boca Raton, FL: CRC Press, 1992.
    @book{evans, mrkey = {1158660},
      author = {Evans, Lawrence C. and Gariepy, Ronald F.},
      title = {Measure theory and fine properties of functions},
      series = {Stud. Adv. Math.},
      publisher = {CRC Press},
      address = {Boca Raton, FL},
      year = {1992},
      pages = {viii+268},
      isbn = {0-8493-7157-0},
      mrclass = {28-02 (26-02 26Bxx 46E35)},
      mrnumber = {1158660},
      mrreviewer = {R. G. Bartle},
      zblnumber = {0804.28001},
      }
  • [Finn] Go to document R. Finn, "On the steady-state solutions of the Navier-Stokes equations. III," Acta Math., vol. 105, pp. 197-244, 1961.
    @article{Finn, mrkey = {0166498},
      author = {Finn, Robert},
      title = {On the steady-state solutions of the {N}avier-{S}tokes equations. {III}},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {105},
      year = {1961},
      pages = {197--244},
      issn = {0001-5962},
      mrclass = {35.79},
      mrnumber = {0166498},
      mrreviewer = {G. Prodi},
      doi = {10.1007/BF02559590},
      zblnumber = {0126.42203},
      }
  • [Fu] H. Fujita, "On the existence and regularity of the steady-state solutions of the Navier-Stokes theorem," J. Fac. Sci. Univ. Tokyo Sect. I, vol. 9, pp. 59-102 (1961), 1961.
    @article{Fu, mrkey = {0132307},
      author = {Fujita, Hiroshi},
      title = {On the existence and regularity of the steady-state solutions of the {N}avier-{S}tokes theorem},
      journal = {J. Fac. Sci. Univ. Tokyo Sect. I},
      fjournal = {Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics},
      volume = {9},
      year = {1961},
      pages = {59--102 (1961)},
      issn = {0040-8980},
      mrclass = {35.79},
      mrnumber = {0132307},
      mrreviewer = {G. Prodi},
      zblnumber = {0111.38502},
      }
  • [Fu1] H. Fujita, "On stationary solutions to Navier-Stokes equation in symmetric plane domains under general outflow condition," in Navier-Stokes Equations: Theory and Numerical Methods, Longman, Harlow, 1998, vol. 388, pp. 16-30.
    @incollection{Fu1, mrkey = {1773581},
      author = {Fujita, Hiroshi},
      title = {On stationary solutions to {N}avier-{S}tokes equation in symmetric plane domains under general outflow condition},
      booktitle = {Navier-{S}tokes Equations: Theory and Numerical Methods},
      venue = {{V}arenna, 1997},
      series = {Pitman Res. Notes Math. Ser.},
      volume = {388},
      pages = {16--30},
      publisher = {Longman, Harlow},
      year = {1998},
      mrclass = {35Q30 (35D05 76D05)},
      mrnumber = {1773581},
      mrreviewer = {Didier Bresch},
      zblnumber = {0946.35063},
      }
  • [Galdi1] G. P. Galdi, "On the existence of steady motions of a viscous flow with nonhomogeneous boundary conditions," Matematiche $($Catania$)$, vol. 46, iss. 1, pp. 503-524, 1991.
    @article{Galdi1, mrkey = {1228739},
      author = {Galdi, Giovanni P.},
      title = {On the existence of steady motions of a viscous flow with nonhomogeneous boundary conditions},
      journal = {Matematiche $($Catania$)$},
      fjournal = {Le Matematiche},
      volume = {46},
      year = {1991},
      number = {1},
      pages = {503--524},
      issn = {0373-3505},
      coden = {MTMTAA},
      mrclass = {35Q35 (76D05)},
      mrnumber = {1228739},
      mrreviewer = {Cun-Zheng Wang},
      zblnumber = {0780.76018},
      }
  • [Galdibook] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II, New York: Springer-Verlag, 1994, vol. 39.
    @book{Galdibook, mrkey = {1284206},
      author = {Galdi, Giovanni P.},
      title = {An Introduction to the Mathematical Theory of the {N}avier-{S}tokes Equations. {V}ol. {II}},
      series = {Springer Tracts Natural Philosophy},
      volume = {39},
      publisher = {Springer-Verlag},
      year = {1994},
      pages = {xii+323},
      isbn = {0-387-94150-9},
      mrclass = {35Q30 (76D05)},
      mrnumber = {1284206},
      mrreviewer = {Rodolfo Salvi},
      address = {New York},
      zblnumber = {0949.35005},
      }
  • [KaPi1] L. V. Kapitanskiui and K. I. Piletskas, "Spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries," Trudy Mat. Inst. Steklov., vol. 159, pp. 5-36, 1983.
    @article{KaPi1, mrkey = {0720205},
      author = {Kapitanski{\u\i},
      L. V. and Piletskas, K. I.},
      title = {Spaces of solenoidal vector fields and boundary value problems for the {N}avier-{S}tokes equations in domains with noncompact boundaries},
      note = {in {R}ussian; translated in {\it Proc. Math. Inst. Steklov} {\bf 159} (1984), 3--34 \zbl{0585.76038}},
      journal = {Trudy Mat. Inst. Steklov.},
      fjournal = {Akademiya Nauk SSSR. Trudy Matematicheskogo Instituta imeni V. A. Steklova},
      volume = {159},
      year = {1983},
      pages = {5--36},
      issn = {0371-9685},
      mrclass = {35Q10 (46E35)},
      mrnumber = {0720205},
      mrreviewer = {Yoshikazu Giga},
      zblnumber = {0528.76029},
      }
  • [korob1] Go to document M. V. Korobkov, "Bernoulli’s law under minimal smoothness assumptions," Dokl. Math., vol. 83, iss. 6, pp. 107-110, 2011.
    @article{korob1, mrkey = {2848783},
      author = {Korobkov, M. V.},
      title = {Bernoulli's law under minimal smoothness assumptions},
      journal = {Dokl. Math.},
      fjournal = {Rossiĭskaya Akademiya Nauk. Doklady Akademii Nauk},
      volume = {83},
      year = {2011},
      number = {6},
      pages = {107--110},
      issn = {0869-5652},
      mrclass = {35Q31 (76B03)},
      mrnumber = {2848783},
      doi = {10.1134/S1064562411010327},
      zblnumber = {1245.35088},
      }
  • [kpr] Go to document M. V. Korobkov, K. Pileckas, and R. Russo, "On the flux problem in the theory of steady Navier-Stokes equations with nonhomogeneous boundary conditions," Arch. Ration. Mech. Anal., vol. 207, iss. 1, pp. 185-213, 2013.
    @article{kpr, mrkey = {3004771},
      author = {Korobkov, Mikhail V. and Pileckas, Konstantin and Russo, Remigio},
      title = {On the flux problem in the theory of steady {N}avier-{S}tokes equations with nonhomogeneous boundary conditions},
      journal = {Arch. Ration. Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {207},
      year = {2013},
      number = {1},
      pages = {185--213},
      issn = {0003-9527},
      mrclass = {35Q30 (76D05)},
      mrnumber = {3004771},
      mrreviewer = {Joel David Avrin},
      doi = {10.1007/s00205-012-0563-y},
      zblnumber = {1260.35115},
      }
  • [kpr_a_crm] M. V. Korobkov, K. Pileckas, and R. Russo, "Steady Navier-Stokes system with nonhomogeneous boundary conditions in the axially symmetric case," Comptes Rendus — Mécanique, vol. 340, pp. 115-119, 2012.
    @article{kpr_a_crm,
      author = {Korobkov, Mikhail V. and Pileckas, Konstantin and Russo, Remigio},
      title = {Steady {N}avier-{S}tokes system with nonhomogeneous boundary conditions in the axially symmetric case},
      journal = {Comptes Rendus -- Mécanique},
      volume = {340},
      year = {2012},
      pages = {115--119},
      }
  • [kpr_a_arx] Go to document M. V. Korobkov, K. Pileckas, and R. Russo, Steady Navier-Stokes system with nonhomogeneous boundary conditions in the axially symmetric case.
    @misc{kpr_a_arx,
      author = {Korobkov, Mikhail V. and Pileckas, Konstantin and Russo, Remigio},
      title = {Steady {N}avier-{S}tokes system with nonhomogeneous boundary conditions in the axially symmetric case},
      arxiv = {1110.6301},
      note = {to appear in {\it Ann. Scuola Norm. Sup. Pisa Cl. Sci.} (2015)},
      doi = {10.2422/2036-2145.201204_003},
      }
  • [Kozono] Go to document H. Kozono and T. Yanagisawa, "Leray’s problem on the stationary Navier-Stokes equations with inhomogeneous boundary data," Math. Z., vol. 262, iss. 1, pp. 27-39, 2009.
    @article{Kozono, mrkey = {2491599},
      author = {Kozono, Hideo and Yanagisawa, Taku},
      title = {Leray's problem on the stationary {N}avier-{S}tokes equations with inhomogeneous boundary data},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {262},
      year = {2009},
      number = {1},
      pages = {27--39},
      issn = {0025-5874},
      coden = {MAZEAX},
      mrclass = {35Q30 (35A01 35B45 76D05)},
      mrnumber = {2491599},
      mrreviewer = {Pawe{\l}Konieczny},
      doi = {10.1007/s00209-008-0361-2},
      zblnumber = {1169.35045},
      }
  • [Kronrod] A. S. Kronrod, "On functions of two variables," Uspehi Matem. Nauk, vol. 5, iss. 1(35), pp. 24-134, 1950.
    @article{Kronrod, mrkey = {0034826},
      author = {Kronrod, A. S.},
      title = {On functions of two variables},
      journal = {Uspehi Matem. Nauk},
      fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {5},
      year = {1950},
      number = {1(35)},
      pages = {24--134},
      issn = {0042-1316},
      mrclass = {27.2X},
      mrnumber = {0034826},
      mrreviewer = {H. P. Mulholland},
      zblnumber = {0040.31603},
      }
  • [Lad1] O. A. Ladyzhenskaya, "Investigation of the Navier–Stokes equations in the case of stationary motion of an incompressible fluid," Uspekhi Mat. Nauk, vol. 3, pp. 75-97, 1959.
    @article{Lad1,
      author = {Ladyzhenskaya, O. A.},
      title = {Investigation of the {N}avier--{S}tokes equations in the case of stationary motion of an incompressible fluid},
      journal = {Uspekhi Mat. Nauk},
      volume = {3},
      year = {1959},
      pages = {75--97},
      note = {in Russian},
      zblnumber = {0100.09602},
      }
  • [Lad] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, New York: Gordon and Breach, Science Publishers, 1969, vol. 2.
    @book{Lad, mrkey = {0254401},
      author = {Ladyzhenskaya, O. A.},
      title = {The Mathematical Theory of Viscous Incompressible Flow},
      note = {Second English edition, revised and enlarged; translated from the Russian by Richard A. Silverman and John Chu},
      series = {Math. Appl.},
      volume = {2},
      publisher = {Gordon and Breach, Science Publishers},
      address = {New York},
      year = {1969},
      pages = {xviii+224},
      mrclass = {35.00 (76.00)},
      mrnumber = {0254401},
      zblnumber = {0184.52603},
      }
  • [Leray] J. Leray, "Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique," J. Math. Pures Appl., vol. 12, pp. 1-82, 1933.
    @article{Leray,
      author = {Leray, J.},
      title = {{É}tude de diverses équations intégrales non linéaire et de quelques problèmes que pose l'hydrodynamique},
      journal = {J. Math. Pures Appl.},
      volume = {12},
      year = {1933},
      pages = {1--82},
      zblnumber = {0006.16702},
      }
  • [Maly] Go to document J. Malý, D. Swanson, and W. P. Ziemer, "The co-area formula for Sobolev mappings," Trans. Amer. Math. Soc., vol. 355, iss. 2, pp. 477-492, 2003.
    @article{Maly, mrkey = {1932709},
      author = {Mal{ý},
      Jan and Swanson, David and Ziemer, William P.},
      title = {The co-area formula for {S}obolev mappings},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {355},
      year = {2003},
      number = {2},
      pages = {477--492},
      issn = {0002-9947},
      coden = {TAMTAM},
      mrclass = {46E35 (49Q15)},
      mrnumber = {1932709},
      mrreviewer = {Agnieszka Ka{\l}amajska},
      doi = {10.1090/S0002-9947-02-03091-X},
      zblnumber = {1034.46032},
      }
  • [Moore] R. L. Moore, "Concerning triods in the plane and the junction points of plane continua," Proc. Nat. Acad. Sci. USA, vol. 14, pp. 85-88, 1928.
    @article{Moore,
      author = {Moore, R. L.},
      title = {Concerning triods in the plane and the junction points of plane continua},
      journal = {Proc.~Nat.~Acad.~Sci. USA},
      volume = {14},
      year = {1928},
      pages = {85--88},
      jfmnumber = {1034.46032},
      }
  • [Morimoto] Go to document H. Morimoto, "A remark on the existence of 2-D steady Navier-Stokes flow in bounded symmetric domain under general outflow condition," J. Math. Fluid Mech., vol. 9, iss. 3, pp. 411-418, 2007.
    @article{Morimoto, mrkey = {2336076},
      author = {Morimoto, Hiroko},
      title = {A remark on the existence of 2-{D} steady {N}avier-{S}tokes flow in bounded symmetric domain under general outflow condition},
      journal = {J. Math. Fluid Mech.},
      fjournal = {Journal of Mathematical Fluid Mechanics},
      volume = {9},
      year = {2007},
      number = {3},
      pages = {411--418},
      issn = {1422-6928},
      mrclass = {35Q30 (35B05 76D03 76D05)},
      mrnumber = {2336076},
      doi = {10.1007/s00021-005-0206-2},
      }
  • [Pittman] Go to document C. R. Pittman, "An elementary proof of the triod theorem," Proc. Amer. Math. Soc., vol. 25, p. 919, 1970.
    @article{Pittman, mrkey = {0263049},
      author = {Pittman, C. R.},
      title = {An elementary proof of the triod theorem},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {25},
      year = {1970},
      pages = {919},
      issn = {0002-9939},
      mrclass = {54.75},
      mrnumber = {0263049},
      mrreviewer = {C. E. Burgess},
      doi = {10.2307/2036783},
      }
  • [Pukhnachev] Go to document V. V. Pukhnachev, "Viscous flows in domains with a multiply connected boundary," in New Directions in Mathematical Fluid Mechanics, Boston: Birkhäuser, 2010, pp. 333-348.
    @incollection{Pukhnachev, mrkey = {2732017},
      author = {Pukhnachev, V. V.},
      title = {Viscous flows in domains with a multiply connected boundary},
      booktitle = {New Directions in Mathematical Fluid Mechanics},
      series = {Adv. Math. Fluid Mech.},
      pages = {333--348},
      publisher = {Birkhäuser},
      address = {Boston},
      year = {2010},
      mrclass = {76D05 (35Q30)},
      mrnumber = {2732017},
      mrreviewer = {Maria Specovius-Neugebauer},
      doi = {10.1007/978-3-0346-0152-8},
      zblnumber = {1205.35208},
      }
  • [Pukhnachev1] V. V. Pukhnachev, The Leray problem and the Yudovich hypothesis.
    @misc{Pukhnachev1,
      author = {Pukhnachev, V. V.},
      title = {The {L}eray problem and the {Y}udovich hypothesis},
      NOTE = {{\it Izv. vuzov. Sev.-Kavk. region. Natural sciences}; the special issue {\em Actual Problems of Mathematical Hydrodynamics} (2009), 185--194 (in Russian)},
      SORTYEAR={2009},
      }
  • [Russo] R. Russo, "On the existence of solutions to the stationary Navier-Stokes equations," Ricerche Mat., vol. 52, iss. 2, pp. 285-348 (2004), 2003.
    @article{Russo, mrkey = {2091520},
      author = {Russo, Remigio},
      title = {On the existence of solutions to the stationary {N}avier-{S}tokes equations},
      journal = {Ricerche Mat.},
      fjournal = {Ricerche di Matematica},
      volume = {52},
      year = {2003},
      number = {2},
      pages = {285--348 (2004)},
      issn = {0035-5038},
      coden = {RCMTAE},
      mrclass = {35Q30 (35D05 76D03 76D05)},
      mrnumber = {2091520},
      mrreviewer = {Isabelle Gruais},
      zblnumber = {1121.35104},
      }
  • [RussoA] Go to document A. Russo, "A note on the exterior two-dimensional steady-state Navier-Stokes problem," J. Math. Fluid Mech., vol. 11, iss. 3, pp. 407-414, 2009.
    @article{RussoA, mrkey = {2557860},
      author = {Russo, Antonio},
      title = {A note on the exterior two-dimensional steady-state {N}avier-{S}tokes problem},
      journal = {J. Math. Fluid Mech.},
      fjournal = {Journal of Mathematical Fluid Mechanics},
      volume = {11},
      year = {2009},
      number = {3},
      pages = {407--414},
      issn = {1422-6928},
      mrclass = {35Q30 (35A01 76D03 76D05)},
      mrnumber = {2557860},
      doi = {10.1007/s00021-007-0264-8},
      zblnumber = {1186.35148},
      }
  • [Sazonov] Go to document L. I. Sazonov, "On the existence of a stationary symmetric solution of a two-dimensional fluid flow problem," Mat. Zametki, vol. 54, iss. 6, pp. 138-141, 1993.
    @article{Sazonov, mrkey = {1268380},
      author = {Sazonov, L. I.},
      title = {On the existence of a stationary symmetric solution of a two-dimensional fluid flow problem},
      journal = {Mat. Zametki},
      fjournal = {Rossiĭskaya Akademiya Nauk. Matematicheskie Zametki},
      volume = {54},
      year = {1993},
      number = {6},
      pages = {138--141},
      issn = {0025-567X},
      mrclass = {76D05 (35Q35)},
      mrnumber = {1268380},
      doi = {10.1007/BF01209092},
      zblnumber = {0829.35100},
      }
  • [Temam] R. Temam, Navier-Stokes Equations, Revised ed., New York: North-Holland Publishing Co., 1979, vol. 2.
    @book{Temam, mrkey = {0603444},
      author = {Temam, Roger},
      title = {Navier-{S}tokes Equations},
      series = {Stud. Math. Appl.},
      volume = {2},
      edition = {Revised},
      publisher = {North-Holland Publishing Co.},
      address = {New York},
      year = {1979},
      pages = {x+519},
      isbn = {0-444-85307-3; 0-444-85308-1},
      mrclass = {35Q10 (49D99 65P05 76D05)},
      mrnumber = {0603444},
      zblnumber = {0426.35003},
      }
  • [VorJud] Go to document I. I. Vorovich and V. I. Yudovich, "Steady flows of a viscous incompressible fluid," Mat. Sbornik (N.S.), vol. 53, pp. 393-428, 1961.
    @article{VorJud,
      author = {Vorovich, I. I. and Yudovich, V. I.},
      title = {Steady flows of a viscous incompressible fluid},
      journal = {Mat. Sbornik (N.S.)},
      volume = {53},
      year = {1961},
      pages = {393--428},
      note = {in Russian},
      mrnumber = {136206},
      url = {http://mi.mathnet.ru/eng/msb/v95/i4/p393},
      }

Authors

Mikhail V. Korobkov

Sobolev Institute of Mathematics Novosibirsk State University, Novosibirsk, Russia

Konstantin Pileckas

Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania

Remigio Russo

Department of Mathematics and Physics, Second University of Naples, Italy