The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt 2}$

Abstract

We provide the first mathematical proof that the connective constant of the hexagonal lattice is equal to $\sqrt{2+\sqrt{2}}$. This value has been derived nonrigorously by B. Nienhuis in 1982, using Coulomb gas approach from theoretical physics. Our proof uses a parafermionic observable for the self-avoiding walk, which satisfies a half of the discrete Cauchy-Riemann relations. Establishing the other half of the relations (which conjecturally holds in the scaling limit) would also imply convergence of the self-avoiding walk to SLE($8/3$).

  • [BGG] N. Beaton, J. de Gier, and A. Guttmann, The critical fugacity for surface adsorption of SAW on the honeycomb lattice is $1+\sqrt{2}$, 2011.
    @misc{BGG,
      author={Beaton, N. and de Gier, J. and Guttmann, A.},
      TITLE={The critical fugacity for surface adsorption of {SAW} on the honeycomb lattice is $1+\sqrt{2}$},
      YEAR={2011},
      NOTE={13 pages},
      ARXIV={1109.0358},
     }
  • [CardyIkhlef] Go to document Y. Ikhlef and J. Cardy, "Discretely holomorphic parafermions and integrable loop models," J. Phys. A, vol. 42, iss. 10, p. 102001, 2009.
    @article {CardyIkhlef, MRKEY = {2485852},
      AUTHOR = {Ikhlef, Yacine and Cardy, John},
      TITLE = {Discretely holomorphic parafermions and integrable loop models},
      JOURNAL = {J. Phys. A},
      FJOURNAL = {Journal of Physics. A. Mathematical and Theoretical},
      VOLUME = {42},
      YEAR = {2009},
      NUMBER = {10},
      PAGES = {102001, 11},
      ISSN = {1751-8113},
      MRCLASS = {82B20 (81R12 81T40 82B23)},
      MRNUMBER = {2485852},
      MRREVIEWER = {Nenad Manojlovi{ć}},
      DOI = {10.1088/1751-8113/42/10/102001},
      ZBLNUMBER = {1159.81041},
      }
  • [chelkak-smirnov-iso] Go to document D. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, 2009.
    @misc{chelkak-smirnov-iso,
      author={Chelkak, D. and Smirnov, S.},
      TITLE={Universality in the 2{D} {I}sing model and conformal invariance of fermionic observables},
      NOTE={{\it Invent. Math.},
      to appear},
      YEAR={2009},
      DOI = {10.1007/s00222-011-0371-2},
     }
  • [Flory] P. A. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.
    @book{Flory,
      author={Flory, P. A.},
      TITLE={Principles of Polymer Chemistry},
      PUBLISHER={Cornell University Press},
      YEAR={1953},
      NOTE={{ISBN}: 0-8014-0134-8},
     }
  • [HammersleyWelsh] Go to document J. M. Hammersley and D. J. A. Welsh, "Further results on the rate of convergence to the connective constant of the hypercubical lattice," Quart. J. Math. Oxford Ser., vol. 13, pp. 108-110, 1962.
    @article {HammersleyWelsh, MRKEY = {0139535},
      AUTHOR = {Hammersley, J. M. and Welsh, D. J. A.},
      TITLE = {Further results on the rate of convergence to the connective constant of the hypercubical lattice},
      JOURNAL = {Quart. J. Math. Oxford Ser.},
      FJOURNAL = {The Quarterly Journal of Mathematics. Oxford. Second Series},
      VOLUME = {13},
      YEAR = {1962},
      PAGES = {108--110},
      ISSN = {0033-5606},
      MRCLASS = {05.10},
      MRNUMBER = {0139535},
      MRREVIEWER = {I. J. Good},
      DOI = {10.1093/qmath/13.1.108},
      ZBLNUMBER = {0123.00304},
      }
  • [KN] Go to document W. Kager and B. Nienhuis, "A guide to stochastic Löwner evolution and its applications," J. Statist. Phys., vol. 115, iss. 5-6, pp. 1149-1229, 2004.
    @article {KN, MRKEY = {2065722},
      AUTHOR = {Kager, Wouter and Nienhuis, Bernard},
      TITLE = {A guide to stochastic {L}öwner evolution and its applications},
      JOURNAL = {J. Statist. Phys.},
      FJOURNAL = {Journal of Statistical Physics},
      VOLUME = {115},
      YEAR = {2004},
      NUMBER = {5-6},
      PAGES = {1149--1229},
      ISSN = {0022-4715},
      CODEN = {JSTPSB},
      MRCLASS = {82B27 (30C55 60H10 60J65 60K35 81T40)},
      MRNUMBER = {2065722},
      MRREVIEWER = {Ren{é} L. Schilling},
      DOI = {10.1023/B:JOSS.0000028058.87266.be},
      ZBLNUMBER = {1157.82327},
      }
  • [LawlerSchrammWerner] G. F. Lawler, O. Schramm, and W. Werner, "On the scaling limit of planar self-avoiding walk," in Fractal Geometry and Applications: A Jubilee of Beno\^\i t Mandelbrot, Part 2, Providence, RI: Amer. Math. Soc., 2004, vol. 72, pp. 339-364.
    @incollection {LawlerSchrammWerner, MRKEY = {2112127},
      AUTHOR = {Lawler, Gregory F. and Schramm, Oded and Werner, Wendelin},
      TITLE = {On the scaling limit of planar self-avoiding walk},
      BOOKTITLE = {Fractal Geometry and Applications: A Jubilee of {B}eno\^\i t {M}andelbrot, {P}art 2},
      SERIES = {Proc. Sympos. Pure Math.},
      VOLUME = {72},
      PAGES = {339--364},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {2004},
      MRCLASS = {82B41 (60K35 82B24)},
      MRNUMBER = {2112127},
      MRREVIEWER = {Christophe Giraud},
      ZBLNUMBER = {1069.60089},
      }
  • [lsw-ust] Go to document G. F. Lawler, O. Schramm, and W. Werner, "Conformal invariance of planar loop-erased random walks and uniform spanning trees," Ann. Probab., vol. 32, iss. 1B, pp. 939-995, 2004.
    @article {lsw-ust, MRKEY = {2044671},
      AUTHOR = {Lawler, Gregory F. and Schramm, Oded and Werner, Wendelin},
      TITLE = {Conformal invariance of planar loop-erased random walks and uniform spanning trees},
      JOURNAL = {Ann. Probab.},
      FJOURNAL = {The Annals of Probability},
      VOLUME = {32},
      YEAR = {2004},
      NUMBER = {1B},
      PAGES = {939--995},
      ISSN = {0091-1798},
      CODEN = {APBYAE},
      MRCLASS = {82B41 (60G50)},
      MRNUMBER = {2044671},
      MRREVIEWER = {Olivier Raimond},
      DOI = {10.1214/aop/1079021469},
      ZBLNUMBER = {1126.82011},
      }
  • [MadrasSlade] N. Madras and G. Slade, The Self-Avoiding Walk, Boston, MA: Birkhäuser, 1993.
    @book {MadrasSlade, MRKEY = {1197356},
      AUTHOR = {Madras, Neal and Slade, Gordon},
      TITLE = {The Self-Avoiding Walk},
      SERIES = {Probab. Appl.},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {1993},
      PAGES = {xiv+425},
      ISBN = {0-8176-3589-0},
      MRCLASS = {82-02 (60K35 82B41 82C22 82D60)},
      MRNUMBER = {1197356},
      MRREVIEWER = {Cheng Xun Wu},
      ZBLNUMBER = {0780.60103},
      }
  • [Nienhuis] Go to document B. Nienhuis, "Exact critical point and critical exponents of ${ O}(n)$ models in two dimensions," Phys. Rev. Lett., vol. 49, iss. 15, pp. 1062-1065, 1982.
    @article {Nienhuis, MRKEY = {0675241},
      AUTHOR = {Nienhuis, Bernard},
      TITLE = {Exact critical point and critical exponents of {${\rm O}(n)$} models in two dimensions},
      JOURNAL = {Phys. Rev. Lett.},
      FJOURNAL = {Physical Review Letters},
      VOLUME = {49},
      YEAR = {1982},
      NUMBER = {15},
      PAGES = {1062--1065},
      ISSN = {0031-9007},
      CODEN = {PRLTAO},
      MRCLASS = {81E25 (82A68)},
      MRNUMBER = {0675241},
      DOI = {10.1103/PhysRevLett.49.1062},
      }
  • [Nienhuis-jsp] Go to document B. Nienhuis, "Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas," J. Statist. Phys., vol. 34, iss. 5-6, pp. 731-761, 1984.
    @article {Nienhuis-jsp, MRKEY = {0751711},
      AUTHOR = {Nienhuis, Bernard},
      TITLE = {Critical behavior of two-dimensional spin models and charge asymmetry in the {C}oulomb gas},
      JOURNAL = {J. Statist. Phys.},
      FJOURNAL = {Journal of Statistical Physics},
      VOLUME = {34},
      YEAR = {1984},
      NUMBER = {5-6},
      PAGES = {731--761},
      ISSN = {0022-4715},
      CODEN = {JSTPSB},
      MRCLASS = {82A68 (82A05 82A25)},
      MRNUMBER = {0751711},
      MRREVIEWER = {Vladimir Privman},
      DOI = {10.1007/BF01009437},
      ZBLNUMBER = {0595.76071},
      }
  • [Smirnov] S. Smirnov, "Towards conformal invariance of 2D lattice models," in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1421-1451.
    @incollection {Smirnov, MRKEY = {2275653},
      AUTHOR = {Smirnov, Stanislav},
      TITLE = {Towards conformal invariance of 2{D} lattice models},
      BOOKTITLE = {International {C}ongress of {M}athematicians. {V}ol. {II}},
      PAGES = {1421--1451},
      PUBLISHER = {Eur. Math. Soc., Zürich},
      YEAR = {2006},
      MRCLASS = {82B20 (30C35 60K35 81T40 82B43)},
      MRNUMBER = {2275653},
      MRREVIEWER = {Roland M. Friedrich},
      ZBLNUMBER = {1112.82014},
      }
  • [smirnov-icm2010] S. Smirnov, "Discrete complex analysis and probability," in Proceedings of the International Congress of Mathematicians. Volume I, New Delhi, 2010, pp. 595-621.
    @inproceedings {smirnov-icm2010, MRKEY = {2827906},
      AUTHOR = {Smirnov, Stanislav},
      TITLE = {Discrete complex analysis and probability},
      BOOKTITLE = {Proceedings of the {I}nternational {C}ongress of {M}athematicians. {V}olume {I}},
      PAGES = {595--621},
      PUBLISHER = {Hindustan Book Agency},
      ADDRESS = {New Delhi},
      YEAR = {2010},
      MRCLASS = {60J67 (30G25 60Kxx 82Bxx)},
      MRNUMBER = {2827906},
      ZBLCOMMENT = {BIBPROC: YEAR doesn't match found ZBLNUMBER},
      ZBLNUMBER = {05971075},
      }

Authors

Hugo Duminil-Copin

Section de mathématiques
Université de Genève
2-4 rue du Lièvre
case postale 64 1211
Genève 4
Switzerland

Stanislav Smirnov

Section de mathématiques
Université de Genève
2-4 rue du Lièvre
case postale 64 1211
Genève 4
Switzerland

and

Chebyshev Laboratory
St. Petersburg State University
Saint Petersburg 199178
Russia