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The connective constant of the
honeycomb lattice equals

…
2 +
√
2

By Hugo Duminil-Copin and Stanislav Smirnov

Abstract

We provide the first mathematical proof that the connective constant

of the hexagonal lattice is equal to
√

2 +
√

2. This value has been de-

rived nonrigorously by B. Nienhuis in 1982, using Coulomb gas approach

from theoretical physics. Our proof uses a parafermionic observable for the

self-avoiding walk, which satisfies a half of the discrete Cauchy-Riemann

relations. Establishing the other half of the relations (which conjecturally

holds in the scaling limit) would also imply convergence of the self-avoiding

walk to SLE(8/3).

1. Introduction

A famous chemist P. Flory [3] proposed to consider self-avoiding (i.e.,

visiting every vertex at most once) walks on a lattice as a model for spatial

position of polymer chains. Self-avoiding walks turned out to be a very inter-

esting mathematical object, leading to rich theories and challenging questions;

see [9].

Denote by cn the number of n-step self-avoiding walks on the hexagonal

lattice H started from some fixed vertex, e.g., the origin. Elementary bounds

on cn (for instance
√

2
n ≤ cn ≤ 3 ·2n−1) guarantee that cn grows exponentially

fast. Since an (n+m)-step self-avoiding walk can be uniquely cut into an n-step

self-avoiding walk and a parallel translation of an m-step self-avoiding walk,

we infer that

cn+m ≤ cncm,
from which it follows that there exists µ ∈ (0,+∞) such that

µ := lim
n→∞

c
1
n
n .

The positive real number µ is called the connective constant of the hexagonal

lattice.

Using Coulomb gas formalism, B. Nienhuis [10], [11] proposed physical ar-

guments for µ to have the value
»

2 +
√

2. We rigorously prove this statement.
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While our methods are different from those applied by Nienhuis, they are sim-

ilarly motivated by considerations of vertex operators in the O(n) model.

Theorem 1. For the hexagonal lattice,

µ =
»

2 +
√

2.

It will be convenient to consider walks between mid-edges of H, i.e., centers

of edges of H (the set of mid-edges will be denoted by H). We will write

γ : a→ E if a walk γ starts at a and ends at some mid-edge in E ⊂ H. In the

case E = {b}, we simply write γ : a → b. The length `(γ) of the walk is the

number of vertices visited by γ.

We will work with the partition function

Z(x) =
∑

γ : a→H
x`(γ) ∈ (0,+∞].

This sum does not depend on the choice of a, and is increasing in x. Establish-

ing the identity µ =
»

2 +
√

2 is equivalent to showing that Z(x) = +∞ for

x > 1/
»

2 +
√

2 and Z(x) < +∞ for x < 1/
»

2 +
√

2. To this end, we analyze

walks restricted to bounded domains and weighted depending on their wind-

ing. The modified sum can be defined as a parafermionic observable arising

from a disorder operator. Such observables exist for other models; see [5], [2],

[13].

Let us mention that after this paper was circulated, its methods were

used by Beaton, de Gier and Guttmann [1] to show that the critical fugacity

for surface absorption of the self-avoiding walk on the hexagonal lattice is equal

to 1 +
√

2. Their argument uses a generalization of our identity (2).

The paper is organized as follows. In Section 2, the parafermionic ob-

servable is introduced and its key property is derived. Section 3 contains the

proof of Theorem 1. Section 4 discusses conformal invariance conjectures for

self-avoiding walks. To simplify formulae, below we set xc := 1/
»

2 +
√

2 and

j = ei2π/3.

2. Parafermionic observable

A (hexagonal lattice) domain Ω ⊂ H is a union of all mid-edges emanating

from a given collection of vertices V (Ω) (see Figure 1). A mid-edge z belongs

to Ω if at least one end-point of its associated edge is in Ω; it belongs to ∂Ω

if only one of them is in Ω. We further assume Ω to be simply connected, i.e.,

having a connected complement.

For a self-avoiding walk γ between mid-edges a and b (not necessarily the

start and the end), we define its winding Wγ(a, b) as the total rotation of the

direction in radians when γ is traversed from a to b; see Figure 1.
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Figure 1. Left. A domain Ω with boundary mid-edges labeled

by small black squares, and vertices of V (Ω) labeled by circles.

Right. Winding of a curve γ.

Our main tool is given by the following

Definition 1. The parafermionic observable for a ∈ ∂Ω, z ∈ Ω, is defined

by

F (z) = FΩ(a, z, x, σ) =
∑

γ⊂Ω: a→z
e−iσWγ(a,z)x`(γ).

Lemma 1. If x = xc and σ = 5
8 , then F satisfies the following relation

for every vertex v ∈ V (Ω):

(1) (p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0,

where p, q, r are the mid-edges of the three edges adjacent to v.

Note that with σ = 5/8, the complex weight e−iσWγ(a,z) can be interpreted

as a product of terms λ or λ̄ per left or right turn of γ drawn from a to z, with

λ = exp

Å
−i

5

8
· π

3

ã
= exp

Å
−i

5π

24

ã
.

Proof. We start by choosing notation so that p, q and r follow counter-

clockwise around v. Note that the left-hand side of (1) can be expanded into

the sum of contributions c(γ) of all possible walks γ finishing at p, q or r. For

instance, if a walk ends at the mid-edge p, its contribution will be given by

c(γ) = (p− v) · e−iσWγ(a,p) x`(γ)
c .

One can partition the set of walks γ finishing at p, q or r into pairs and triplets

of walks in the following way (see Figure 2):

• If a walk γ1 visits all three mid-edges p, q, r, it means that the edges

belonging to γ1 form a disjoint self-avoiding path plus (up to a half-

edge) a self-avoiding loop from v to v. One can associate to γ1 the walk

passing through the same edges, but exploring the loop from v to v in
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the other direction. Hence, walks visiting the three mid-edges can be

grouped in pairs.

• If a walk γ1 visits only one mid-edge, it can be associated to two walks

γ2 and γ3 that visit exactly two mid-edges by prolonging the walk

one step further. (There are two possible choices.) The reverse is

true: a walk visiting exactly two mid-edges is naturally associated to a

walk visiting only one mid-edge by erasing the last step. Hence, walks

visiting one or two mid-edges can be grouped in triplets.

If one can prove that the sum of contributions to (1) of each pair or triplet

vanishes, then their total sum is zero and (1) holds.

Let γ1 and γ2 be two associated walks as in the first case. Without loss

of generality, we may assume that γ1 ends at q and γ2 ends at r. Note that γ1

and γ2 coincide up to the mid-edge p and then follow an almost complete loop

in two opposite directions. It follows that

`(γ1) = `(γ2) and

ß
Wγ1 (a,q)=Wγ1 (a,p)+Wγ1 (p,q)=Wγ1 (a,p)− 4π

3
,

Wγ2 (a,r)=Wγ2 (a,p)+Wγ2 (p,r)=Wγ1 (a,p)+ 4π
3
.

In order to evaluate the winding of γ1 between p and q above, we used the fact

that a is on the boundary and Ω is simply connected. We conclude that

c(γ1) + c(γ2) = (q − v)e−iσWγ1 (a,q)x`(γ1)
c + (r − v)e−iσWγ2 (a,r)x`(γ2)

c

= (p− v)e−iσWγ1 (a,p)x`(γ1)
c

Ä
jλ̄4 + j̄λ4

ä
= 0,

where the last equality holds since jλ̄4 = −i by our choice of λ = exp(−i5π/24).

Let γ1, γ2, γ3 be three walks matched as in the second case. Without loss

of generality, we assume that γ1 ends at p and that γ2 and γ3 extend γ1 to q

and r respectively. As before, we easily find that

`(γ2) = `(γ3) = `(γ1) + 1 and

ß
Wγ2 (a,r)=Wγ2 (a,p)+Wγ2 (p,q)=Wγ1 (a,p)−π

3
,

Wγ3 (a,r)=Wγ3 (a,p)+Wγ3 (p,r)=Wγ1 (a,p)+π
3
.

Plugging these values into the respective contributions, we obtain

c(γ1) + c(γ2) + c(γ3) = (p− v)e−iσWγ1 (a,p)x`(γ1)
c

(
1 + xcjλ̄+ xcj̄λ

)
= 0.

Above is the only place where we use that x takes its critical value, i.e. x−1
c =»

2 +
√

2 = 2 cos π8 .

The claim of the lemma follows readily by summing over all pairs and

triplets. �

Remark 1. Coefficients in (1) are three cube roots of unity multiplied

by p − v, so its left-hand side can be seen as a discrete dz-integral along

an elementary contour on the dual lattice. The fact that the integral of the

parafermionic observable along discrete contours vanishes suggests that it is

discrete holomorphic and that self-avoiding walks have a conformally invariant

scaling limit; see Section 4.



THE HONEYCOMB LATTICE 1657

γ1 γ2 γ1 γ2 γ3

Figure 2. Left : a pair of walks visiting all the three mid-edges

emanating from v and differing by rearranged connections at v.

Right : a triplet of walks, one visiting one mid-edge, the two

others visiting two mid-edges, and obtained by prolonging the

first one through v.

3. Proof of Theorem 1

Counting argument in a strip domain. We consider a vertical strip domain

ST composed of T strips of hexagons and its finite version ST,L cut at heights

±L at angles ±π/3; see Figure 3. Namely, position a hexagonal lattice H of

meshsize 1 in C so that there exists a horizontal edge e with mid-edge a being 0.

Then

V (ST ) =

ß
z ∈ V (H) : 0 ≤ Re(z) ≤ 3T + 1

2

™
,

V (ST,L) = {z ∈ V (ST ) : |
√

3 Im(z)− Re(z)| ≤ 3L}.

Denote by α the left boundary of ST , by β the right one. Symbols ε and

ε̄ denote the top and bottom boundaries of ST,L. Introduce the following

(positive) partition functions:

AxT,L :=
∑

γ⊂ST,L: a→α\{a}
x`(γ), Bx

T,L :=
∑

γ⊂ST,L: a→β
x`(γ),

ExT,L :=
∑

γ⊂ST,L: a→ε∪ε̄
x`(γ).

In the next lemma, we deduce from relation (1) a global identity without the

complex weights.

Lemma 2. For critical x = xc, the following identity holds :

(2) 1 = cαA
xc
T,L +Bxc

T,L + cεE
xc
T,L,

with positive coefficients cα = cos
Ä

3π
8

ä
= 1

2

»
2−
√

2 and cε = cos
(π

4

)
= 1/

√
2.

Proof. Sum the relation (1) over all vertices in V (ST,L). Values at interior

mid-edges cancel out, and we arrive at the identity

(3) 0 = −
∑
z∈α

F (z) +
∑
z∈β

F (z) + j
∑
z∈ε

F (z) + j̄
∑
z∈ε̄

F (z).
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Figure 3. Domain ST,L and boundary intervals α, β, ε and ε̄.

The symmetry of our domain implies that F (z̄) = F̄ (z), where x̄ denotes the

complex conjugate of x. Observe that the winding of any self-avoiding walk

from a to the bottom part of α is −π while the winding to the top part is π.

Thus∑
z∈α

F (z) = F (a) +
∑

z∈α\{a}
F (z) = F (a) +

1

2

∑
z∈α\{a}

(F (z) + F (z̄))

= 1 +
e−iσπ + eiσπ

2
AxT,L = 1− cos

Å
3π

8

ã
AxT,L = 1− cαAxT,L.

Above we have used the fact that the only walk from a to a is a trivial one of

length 0, and so F (a) = 1. Similarly, the winding from a to any half-edge in β

(resp. ε and ε̄) is 0 (resp. 2π
3 and −2π

3 ), therefore∑
z∈β

F (z) = Bx
T,L and j

∑
z∈ε

F (z) + j̄
∑
z∈ε̄

F (z) = cos

Å
π

4

ã
ExT,L = cεE

x
T,L.

The lemma follows readily by plugging the last three formulæ into (3). �

Observe that sequences (AxT,L)L>0 and (Bx
T,L)L>0 are increasing in L and

are bounded for x ≤ xc thanks to (2) and their monotonicity in x. Thus they

have limits

AxT := lim
L→∞

AxT,L =
∑

γ⊂ST : a→α\{a}
x`(γ), Bx

T := lim
L→∞

Bx
T,L =

∑
γ⊂ST : a→β

x`(γ).

Identity (2) then implies that (ExcT,L)L>0 decreases and converges to a limit

ExcT = limL→∞E
xc
T,L. Passing to a limit in (2), we arrive at

(4) 1 = cαA
xc
T +Bxc

T + cεE
xc
T .
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Proof of Theorem 1. We start by proving that Z(xc) = +∞, and hence

µ ≥
»

2 +
√

2. Suppose that for some T , ExcT > 0. Actually, this quantity

vanishes, but rather than proving this, it is simpler to work out the case of it

being positive. As noted before, ExcT,L decreases in L and so

Z(xc) ≥
∑
L>0

ExcT,L ≥
∑
L>0

ExcT = +∞,

which completes the proof.

Assuming on the contrary that ExcT = 0 for all T , we simplify (4) to

(5) 1 = cαA
xc
T +Bxc

T .

Observe that a walk γ entering into the count of AxcT+1 and not into AxcT has

to visit some vertex adjacent to the right edge of ST+1. Cutting γ at the first

such point (and adding half-edges to the two halves), we uniquely decompose

it into two walks crossing ST+1 (these walks are usually called bridges), which

together are one step longer than γ. We conclude that

(6) AxcT+1 −A
xc
T ≤ xc

Ä
Bxc
T+1

ä2
.

Combining (5) for two consecutive values of T with (6), we can write

0 = 1− 1 = (cαA
xc
T+1 +Bxc

T+1)− (cαA
xc
T +Bxc

T )

= cα(AxcT+1 −A
xc
T ) +Bxc

T+1 −B
xc
T ≤ cαxc

Ä
Bxc
T+1

ä2
+Bxc

T+1 −B
xc
T ,

and so

cαxc
Ä
Bxc
T+1

ä2
+Bxc

T+1 ≥ B
xc
T .

It follows easily by induction that

Bxc
T ≥ min[Bxc

1 , 1/(cαxc)] / T

for every T ≥ 1, and therefore

Z(xc) ≥
∑
T>0

Bxc
T = +∞.

This completes the proof of the estimate µ ≥ x−1
c =

»
2 +
√

2.

It remains to prove the opposite inequality µ ≤ x−1
c . To estimate the par-

tition function from above, we will decompose self-avoiding walks into bridges.

A bridge of width T is a self-avoiding walk in ST from one side to the opposite

side, defined up to vertical translation. The partition function of bridges of

width T is Bx
T , which is at most 1 by (4). Noting that a bridge of width T has

length at least T , we obtain for x < xc

Bx
T ≤

Å
x

xc

ãT
Bxc
T ≤

Å
x

xc

ãT
.
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Figure 4. Left : Decomposition of a half-plane walk into four

bridges with widths 8 > 3 > 1 > 0. The first bridge corre-

sponds to the maximal bridge containing the origin. Note that

the decomposition contains one bridge of width 0. Right : The

reverse procedure. If the starting mid-edge and the first vertex

are fixed, the decomposition is unambiguous.

Thus, for x < xc, the series
∑
T>0B

x
T converges and so does the product∏

T>0(1 + Bx
T ). Let us assume for the moment the following fact: any self-

avoiding walk can be canonically decomposed into a sequence of bridges of

widths T−i < · · · < T−1 and T0 > · · · > Tj , and, if one fixes the starting

mid-edge and the first vertex visited, the decomposition uniquely determines

the walk. Applying the decomposition to walks starting at a (the first visited

vertex is 0 or -1), we can estimate

Z(x) ≤ 2
∑

T−i<···<T−1

Tj<···<T0

Ñ
j∏

k=−i
Bx
Tk

é
= 2

∏
T>0

(1 +Bx
T )2 <∞.

The factor 2 is due to the fact that there are two possibilities for the first

vertex once we fix the starting mid-edge. Therefore, Z(x) < +∞ whenever

x < xc and µ ≤ x−1
c =

»
2 +
√

2. To complete the proof of the theorem

it only remains to prove that such a decomposition into bridges does exist.

Such decomposition was first introduced by Hammersley and Welsh in [4].

(For a modern treatment, see Section 3.1 of [9].) We include the proof for

completeness.

First assume that γ̃ is a half-plane self-avoiding walk, meaning that the

start of γ̃ has extremal real part. We prove by induction on the width T0 that

the walk admits a canonical decomposition into bridges of widths T0 > · · · > Tj .

Without loss of generality, we assume that the start has minimal real part. Out

of the vertices having the maximal real part, choose the one visited last, say

after n steps. The n first vertices of the walk form a bridge γ̃1 of width T0,
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which is the first bridge of our decomposition when prolonged to the mid-edge

on the right of the last vertex. We forget about the (n + 1)-th vertex, since

there is no ambiguity in its position. The consequent steps form a half-plane

walk γ̃2 of width T1 < T0. Using the induction hypothesis, we know that γ̃2 ad-

mits a decomposition into bridges of widths T1 > · · · > Tj . The decomposition

of γ̃ is created by adding γ̃1 before the decomposition of γ̃2.

If the walk is a reverse half-plane self-avoiding walk, meaning that the end

has extremal real part, we set the decomposition to be the decomposition of the

reverse walk in the reverse order. If γ is a self-avoiding walk in the plane, one

can cut the trajectory into two pieces γ1 and γ2: the vertices of γ up to the first

vertex of maximal real part, and the remaining vertices. The decomposition

of γ is given by the decomposition of γ1 (with widths T−i < · · · < T−1) plus

the decomposition of γ2 (with widths T0 > · · · > Tj).

Once the starting mid-edge and the first vertex are given, it is easy to

check that the decomposition uniquely determines the walk by exhibiting the

reverse procedure; see Figure 4 for the case of half-plane walks. �

4. Remarks and conjectures

Partition function of self-avoiding bridges. Our proof provides bounds for

the partition function for bridges from a to the right side of the strip of width

T , namely,
c

T
≤ Bxc

T ≤ 1.

In [8, §§3.3.1 and 3.4.3], precise behaviors are conjectured for the number of

self-avoiding walks between two points on the boundary of a domain, which

yields the following (conjectured) estimate:∑
γ⊂ST :0→T+iyT

x`(γ)
c ≈ T−5/4H(0, 1 + iy)5/4,

where H is the boundary derivative of the Poisson kernel. Integrating with

respect to y, we obtain the following conjecture: Bxc
T decays as T−1/4, when

T →∞. Similar estimates are conjectured for walks in ST from 0 to iyT .

Counting self-avoiding walks. In [10], [11], Nienhuis proposed a more pre-

cise asymptotical behavior for the number of self-avoiding walks:

(7) cn ∼ A nγ−1
»

2 +
√

2
n

,

with γ = 43/32. Here the symbol ∼ means that the ratio of two sides is of

the order no(1), or perhaps even tends to a constant. Self-avoiding bridges and

loops are expected to have γ = 9/16 and γ = −1/2, correspondingly, and the

same connective constant µ.
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Moreover, Nienhuis gave arguments in support of Flory’s prediction that

the mean-square displacement 〈|γ(n)|2〉 satisfies

(8) 〈|γ(n)|2〉 =
1

cn

∑
γ n−step SAW

|γ(n)|2 = n2ν+o(1) ,

with ν = 3/4. Despite the very precise statement of the predictions (7) and

(8), the best rigorously known bounds are very far apart and almost 50 years

old (see [9] for an exposition). The derivation of these exponents seems to be

one of the most challenging problems in probability.

Conformally invariant scaling limit. In [8, Predictions 2 and 5, §4], it was

shown by G. Lawler, O. Schramm and W. Werner that γ and ν could be proven

to have the predicted values if the self-avoiding walk would posses a conformally

invariant scaling limit. More precisely, let Ω 6= C be a simply connected

domain in the complex plane C with two points a and b on the boundary.

For δ > 0, we consider the discrete approximation given by the largest finite

domain Ωδ of δH included in Ω, and aδ and bδ to be the vertices of Ωδ closest

to a and b respectively. A probability measure Px,δ is defined on the set of self-

avoiding trajectories γ joining aδ and bδ inside Ωδ, by assigning to γ a weight

proportional to x`(γ). We obtain a random curve denoted γδ. Conjectured

conformal invariance of self-avoiding walks can be stated as follows; see [8,

Prediction 1,§4].

Conjecture 1. Let Ω be a simply connected domain (not equal to C)

with two distinct points a, b on its boundary. For x = xc, the law of γδ in

(Ωδ, aδ, bδ) converges when δ → 0 to a (chordal) Schramm-Loewner Evolution

with parameter κ = 8/3 in Ω from a to b.

As discussed in [7], [12], to prove convergence of a random curve to SLE it

is sufficient to find a discrete observable with a conformally covariant scaling

limit.

Thus it would suffice to show that a normalized version of Fδ has a con-

formally invariant scaling limit, which can be achieved by showing that it is

holomorphic and has prescribed boundary values.

The winding of an interface leading to a boundary edge z is uniquely

determined, and coincides with the winding of the boundary itself, as pointed

out in [13]. Thus one can say that Fδ satisfies a discrete version of the following

Riemann boundary value problem (a homogeneous version of the Riemann-

Hilbert-Privalov BVP):

(9) Im
Ä
F (z) · (tangent to ∂Ω)5/8

ä
= 0 , z ∈ ∂Ω ,

with a singularity at a. Note that the problem above has conformally covariant

solutions (as (dz)5/8-forms) and so is well defined even in domains with fractal

boundaries.
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As noted in Remark 1, relation (1) amounts to saying that discrete contour

integrals of Fδ vanish. So any (subsequential) scaling limit of Fδ would have

to be holomorphic. Unfortunately, relation (1) alone is unsufficient to deduce

the existence of such a limit, unlike in the Ising case [2]. The reason is that

for a domain with E edges, (1) imposes ≈ 2
3E relations (one per vertice) for E

values of Fδ, making it impossible to reconstruct Fδ from its boundary values.

So Fδ is not exactly holomorphic; it can be rather thought of as a divergence-

free vector field, which seems to have nontrivial curl. However, we expect that

in the limit the curl vanishes, which is equivalent to Fδ(z) having the same

limit regardless of the orientation of the edge z.

The Riemann BVP (9) is easily solved, and we arrive at the following

conjecture.

Conjecture 2. Let Ω be a simply connected domain (not equal to C),

let z ∈ Ω, and let a, b be two distinct points on the boundary of Ω. We assume

that the boundary of Ω is smooth near b. For δ > 0, let Fδ be the holomorphic

observable in the domain (Ωδ, aδ) approximating (Ω, a), and let zδ be the closest

point in Ωδ to z. Then

(10) lim
δ→0

Fδ(zδ)

Fδ(bδ)
=

Ç
φ′(z)

φ′(b)

å5/8

,

where Φ is a conformal map from Ω to the upper half-plane mapping a to ∞
and b to 0.

The right-hand side of (10) is well defined, since the conformal map φ is

unique up to multiplication by a real factor. Proving this conjecture would be

a major step toward Conjecture 1 and the derivation of critical exponents.

Other loop models. The self-avoiding walk model is a special case of the

representation of loop O(n)-model (see, e.g., [6], [10]). A configuration ω of

the loop model on a finite subdomain of H is a family of nonintersection loops

together with one self-avoiding interface. The probability of a configuration

is proportional to x# edges n# loops. The self-avoiding walk corresponds to the

case n = 0. In [10], Nienhuis conjectured that the model undergoes a phase

transition at the value xc = 1/
»

2 +
√

2− n. A parafermionic observable can

also be defined in the O(n)-models for n ∈ [−2, 2] (see [12]) and equations (1)

and (2) have natural counterparts in this case. Unfortunately, the presence of

loops in the model prevents us from deriving the critical value rigorously for

general values of n. Let us mention that the n = 1 case corresponds to the

Ising model, where much more detailed studies are possible [2].

Conjecture 2 generalizes to interfaces in O(n) models (see, e.g., [6]). We

refer to [12] for details on the question.
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Square lattice. Our argument does not directly apply to the self-avoiding

walk on the square lattice, for which the value of the connective constant is

different and currently unknown. Instead, it applies to the integrable param-

eters of the O(n) model, but on the square lattice with n = 0, those do not

lead to self-avoiding walks (neither for vertex, nor for edge definition). Rather

one obtains walks that visit every edge at most oncebut are allowed to visit

vertices twice at a multiplicative penalty.
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E-mail : hugo.duminil@unige.ch
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