Abstract
Let $F$ be a totally real field and $\chi$ an abelian totally odd character of $F$. In 1988, Gross stated a $p$-adic analogue of Stark’s conjecture that relates the value of the derivative of the $p$-adic $L$-function associated to $\chi$ and the $p$-adic logarithm of a $p$-unit in the extension of $F$ cut out by $\chi$. In this paper we prove Gross’s conjecture when $F$ is a real quadratic field and $\chi$ is a narrow ring class character. The main result also applies to general totally real fields for which Leopoldt’s conjecture holds, assuming that either there are at least two primes above $p$ in $F$, or that a certain condition relating the $\mathscr{L}$-invariants of $\chi$ and $\chi^{-1}$ holds. This condition on $\mathscr{L}$-invariants is always satisfied when $\chi$ is quadratic.
-
[coates-lichtenbaum]
J. Coates and S. Lichtenbaum, "On $l$-adic zeta functions," Ann. of Math., vol. 98, pp. 498-550, 1973.
@article {coates-lichtenbaum, MRKEY = {0330107},
AUTHOR = {Coates, J. and Lichtenbaum, S.},
TITLE = {On {$l$}-adic zeta functions},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {98},
YEAR = {1973},
PAGES = {498--550},
ISSN = {0003-486X},
MRCLASS = {12A70},
MRNUMBER = {0330107},
MRREVIEWER = {T. Kubota},
DOI = {10.2307/1970916},
ZBLNUMBER = {0279.12005},
} -
[colmez]
P. Colmez, "Résidu en $s=1$ des fonctions zêta $p$-adiques," Invent. Math., vol. 91, iss. 2, pp. 371-389, 1988.
@article {colmez, MRKEY = {0922806},
AUTHOR = {Colmez, Pierre},
TITLE = {Résidu en {$s=1$} des fonctions zêta {$p$}-adiques},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {91},
YEAR = {1988},
NUMBER = {2},
PAGES = {371--389},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {11R42 (11R80)},
MRNUMBER = {0922806},
MRREVIEWER = {Leslie Jane Federer},
DOI = {10.1007/BF01389373},
ZBLNUMBER = {0651.12010},
} -
[colmez-crelle]
P. Colmez, "Fonctions zêta $p$-adiques en $s=0$," J. Reine Angew. Math., vol. 467, pp. 89-107, 1995.
@article {colmez-crelle, MRKEY = {1355923},
AUTHOR = {Colmez, Pierre},
TITLE = {Fonctions zêta {$p$}-adiques en {$s=0$}},
JOURNAL = {J. Reine Angew. Math.},
FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
VOLUME = {467},
YEAR = {1995},
PAGES = {89--107},
ISSN = {0075-4102},
CODEN = {JRMAA8},
MRCLASS = {11R42 (11F33 11F67 11G40 11S40 19F15)},
MRNUMBER = {1355923},
MRREVIEWER = {Alexey A. Panchishkin},
DOI = {10.1515/crll.1995.467.89},
ZBLNUMBER = {0864.11062},
} -
[dr]
P. Deligne and K. A. Ribet, "Values of abelian $L$-functions at negative integers over totally real fields," Invent. Math., vol. 59, iss. 3, pp. 227-286, 1980.
@article {dr, MRKEY = {0579702},
AUTHOR = {Deligne, Pierre and Ribet, Kenneth A.},
TITLE = {Values of abelian {$L$}-functions at negative integers over totally real fields},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {59},
YEAR = {1980},
NUMBER = {3},
PAGES = {227--286},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {12A70 (10D21)},
MRNUMBER = {0579702},
MRREVIEWER = {Neal Koblitz},
DOI = {10.1007/BF01453237},
ZBLNUMBER = {0434.12009},
} -
[fg]
B. Ferrero and R. Greenberg, "On the behavior of $p$-adic $L$-functions at $s=0$," Invent. Math., vol. 50, iss. 1, pp. 91-102, 1978/79.
@article {fg, MRKEY = {0516606},
AUTHOR = {Ferrero, Bruce and Greenberg, Ralph},
TITLE = {On the behavior of {$p$}-adic {$L$}-functions at {$s=0$}},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {50},
YEAR = {1978/79},
NUMBER = {1},
PAGES = {91--102},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {12B30},
MRNUMBER = {0516606},
MRREVIEWER = {Daniel Barsky},
DOI = {10.1007/BF01406470},
ZBLCOMMENT = {BIBPROC: YEAR doesn't match found ZBLNUMBER},
ZBLNUMBER = {0441.12003},
} -
[greenberg-artin]
R. Greenberg, "On $p$-adic Artin $L$-functions," Nagoya Math. J., vol. 89, pp. 77-87, 1983.
@article {greenberg-artin, MRKEY = {0692344},
AUTHOR = {Greenberg, Ralph},
TITLE = {On {$p$}-adic {A}rtin {$L$}-functions},
JOURNAL = {Nagoya Math. J.},
FJOURNAL = {Nagoya Mathematical Journal},
VOLUME = {89},
YEAR = {1983},
PAGES = {77--87},
ISSN = {0027-7630},
CODEN = {NGMJA2},
MRCLASS = {11R42 (11R23)},
MRNUMBER = {0692344},
MRREVIEWER = {Leslie Jane Federer},
URL = {http://projecteuclid.org/getRecord?id=euclid.nmj/1118787106},
ZBLNUMBER = {0513.12012},
} -
[greenberg-bu] R. Greenberg, "Trivial zeros of $p$-adic $L$-functions," in $p$-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Providence, RI, 1994, pp. 149-174.
@inproceedings {greenberg-bu, MRKEY = {1279608},
AUTHOR = {Greenberg, Ralph},
TITLE = {Trivial zeros of {$p$}-adic {$L$}-functions},
BOOKTITLE = {{$p$}-adic Monodromy and the {B}irch and {S}winnerton-{D}yer Conjecture},
VENUE={{B}oston, {MA},
1991},
SERIES = {Contemp. Math.},
VOLUME = {165},
PAGES = {149--174},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {1994},
MRCLASS = {11G40 (11F67 11S40)},
MRNUMBER = {1279608},
MRREVIEWER = {K. Shiratani},
ZBLNUMBER = {0838.11070},
} -
[greenberg-park] R. Greenberg, "Introduction to Iwasawa theory for elliptic curves," in Arithmetic Algebraic Geometry, Providence, RI, 2001, pp. 407-464.
@inproceedings {greenberg-park,
author = {Greenberg, Ralph},
TITLE = {Introduction to {I}wasawa theory for elliptic curves},
BOOKTITLE = {Arithmetic Algebraic Geometry},
VENUE={{P}ark {C}ity, {UT},
1999},
SERIES = {IAS/Park City Math. Ser.},
VOLUME = {9},
PAGES = {407--464},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2001},
MRCLASS = {11G05 (11G40 11R23 11R34)},
MRNUMBER = {1860044},
ZBLNUMBER={1002.11048},
MRREVIEWER = {Massimo Bertolini},
} -
[gross] B. H. Gross, "$p$-adic $L$-series at $s=0$," J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 28, iss. 3, pp. 979-994 (1982), 1981.
@article {gross, MRKEY = {0656068},
AUTHOR = {Gross, Benedict H.},
TITLE = {{$p$}-adic {$L$}-series at {$s=0$}},
JOURNAL = {J. Fac. Sci. Univ. Tokyo Sect. IA Math.},
FJOURNAL = {Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics},
VOLUME = {28},
YEAR = {1981},
NUMBER = {3},
PAGES = {979--994 (1982)},
ISSN = {0040-8980},
CODEN = {JFTMAT},
MRCLASS = {12B30},
MRNUMBER = {0656068},
MRREVIEWER = {Lawrence Washington},
ZBLNUMBER = {0507.12010},
} -
[katz-cm]
N. M. Katz, "$p$-adic $L$-functions for CM fields," Invent. Math., vol. 49, iss. 3, pp. 199-297, 1978.
@article {katz-cm, MRKEY = {0513095},
AUTHOR = {Katz, Nicholas M.},
TITLE = {{$p$}-adic {$L$}-functions for {CM} fields},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {49},
YEAR = {1978},
NUMBER = {3},
PAGES = {199--297},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {10D25 (12A65 12A67 14K22)},
MRNUMBER = {0513095},
MRREVIEWER = {V. V. Shokurov},
DOI = {10.1007/BF01390187},
ZBLNUMBER = {0417.12003},
} -
[miyake] T. Miyake, Modular Forms, New York: Springer-Verlag, 1989.
@book {miyake, MRKEY = {1021004},
AUTHOR = {Miyake, Toshitsune},
TITLE = {Modular Forms},
NOTE = {translated from the Japanese by Yoshitaka Maeda},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1989},
PAGES = {x+335},
ISBN = {3-540-50268-8},
MRCLASS = {11F11 (11F25 11F72)},
MRNUMBER = {1021004},
MRREVIEWER = {Harvey Cohn},
ZBLNUMBER = {0701.11014},
} -
[ribet]
K. A. Ribet, "A modular construction of unramified $p$-extensions of $\mathbf{Q}(\mu_p)$," Invent. Math., vol. 34, iss. 3, pp. 151-162, 1976.
@article {ribet, MRKEY = {0419403},
AUTHOR = {Ribet, Kenneth A.},
TITLE = {A modular construction of unramified {$p$}-extensions of {$\mathbf{Q}(\mu_p)$}},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {34},
YEAR = {1976},
NUMBER = {3},
PAGES = {151--162},
ISSN = {0020-9910},
MRCLASS = {12A35 (10D05)},
MRNUMBER = {0419403},
MRREVIEWER = {V. V. Sokurov},
DOI = {10.1007/BF01403065},
ZBLNUMBER = {0338.12003},
} -
[shim]
G. Shimura, "The special values of the zeta functions associated with Hilbert modular forms," Duke Math. J., vol. 45, iss. 3, pp. 637-679, 1978.
@article {shim, MRKEY = {0507462},
AUTHOR = {Shimura, Goro},
TITLE = {The special values of the zeta functions associated with {H}ilbert modular forms},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {45},
YEAR = {1978},
NUMBER = {3},
PAGES = {637--679},
ISSN = {0012-7094},
CODEN = {DUMJAO},
MRCLASS = {10D20 (10H10)},
MRNUMBER = {0507462},
MRREVIEWER = {Hiroshi Saito},
URL = {http://projecteuclid.org/getRecord?id=euclid.dmj/1077312955},
ZBLNUMBER = {0394.10015},
} -
[siegel] C. L. Siegel, "Über die Fourierschen Koeffizienten von Modulformen," Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, vol. 1970, pp. 15-56, 1970.
@article {siegel, MRKEY = {0285488},
AUTHOR = {Siegel, Carl Ludwig},
TITLE = {Über die {F}ourierschen {K}oeffizienten von {M}odulformen},
JOURNAL = {Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II},
FJOURNAL = {Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse},
VOLUME = {1970},
YEAR = {1970},
PAGES = {15--56},
ISSN = {0065-5295},
MRCLASS = {10.20},
MRNUMBER = {0285488},
MRREVIEWER = {J. Spilker},
ZBLNUMBER = {0225.10031},
} -
[tate-book] J. Tate, Les Conjectures de Stark sur les Fonctions $L$ d’Artin en $s=0$, Lecture notes edited by Dominique Bernardi and Norbert Schappacher, Boston, MA: Birkhäuser Boston Inc., 1984, vol. 47.
@book {tate-book,
author = {Tate, John},
TITLE = {Les Conjectures de {S}tark sur les Fonctions {$L$} d'{A}rtin en {$s=0$},
{\rm Lecture notes edited by Dominique Bernardi and Norbert Schappacher}},
SERIES = {Progr. Math.},
VOLUME = {47},
PUBLISHER = {Birkhäuser Boston Inc.},
ADDRESS = {Boston, MA},
YEAR = {1984},
PAGES = {143},
ISBN = {0-8176-3188-7},
MRCLASS = {11R42},
MRNUMBER = {0782485},
ZBLNUMBER={0545.12009},
MRREVIEWER = {Leslie Jane Federer},
} -
[wiles-reps]
A. Wiles, "On $p$-adic representations for totally real fields," Ann. of Math., vol. 123, iss. 3, pp. 407-456, 1986.
@article {wiles-reps, MRKEY = {0840720},
AUTHOR = {Wiles, A.},
TITLE = {On {$p$}-adic representations for totally real fields},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {123},
YEAR = {1986},
NUMBER = {3},
PAGES = {407--456},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {11R23 (11F80 11R18)},
MRNUMBER = {0840720},
MRREVIEWER = {Jean-Fran{ç}ois Jaulent},
DOI = {10.2307/1971332},
ZBLNUMBER = {0613.12013},
} -
[wileslambda]
A. Wiles, "On ordinary $\lambda$-adic representations associated to modular forms," Invent. Math., vol. 94, iss. 3, pp. 529-573, 1988.
@article {wileslambda, MRKEY = {0969243},
AUTHOR = {Wiles, A.},
TITLE = {On ordinary {$\lambda$}-adic representations associated to modular forms},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {94},
YEAR = {1988},
NUMBER = {3},
PAGES = {529--573},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {11F41 (11F80 11R23 11R80)},
MRNUMBER = {0969243},
MRREVIEWER = {Sheldon Kamienny},
DOI = {10.1007/BF01394275},
ZBLNUMBER = {0664.10013},
} -
[wiles]
A. Wiles, "The Iwasawa conjecture for totally real fields," Ann. of Math., vol. 131, iss. 3, pp. 493-540, 1990.
@article {wiles, MRKEY = {1053488},
AUTHOR = {Wiles, A.},
TITLE = {The {I}wasawa conjecture for totally real fields},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {131},
YEAR = {1990},
NUMBER = {3},
PAGES = {493--540},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {11R42 (11F67 11R23)},
MRNUMBER = {1053488},
MRREVIEWER = {Alexey A. Panchishkin},
DOI = {10.2307/1971468},
ZBLNUMBER = {0719.11071},
}