KAM for the nonlinear Schrödinger equation

Abstract

We consider the $d$-dimensional nonlinear Schrödinger equation under periodic boundary conditions: \[ -i\dot u=-\Delta u+V(x)*u+\varepsilon \frac{\partial F}{\partial \bar u}(x,u,\bar u), \quad u=u(t,x),\;x\in\mathbb{T}^d \] where $V(x)=\sum \hat{V}(a)e^{i\langle a,x\rangle}$ is an analytic function with $\hat V$ real, and $F$ is a real analytic function in $\Re u$, $\Im u$ and $x$. (This equation is a popular model for the ‘real’ NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\varepsilon=0$ the equation is linear and has time–quasi-periodic solutions \[ u(t,x)=\sum_{a\in \mathcal{A}}\hat u(a)e^{i(|a|^2+\hat{V}(a))t}e^{i\langle a,x\rangle}, \quad |\hat u(a)|>0, \] where $\mathcal{A}$ is any finite subset of $\mathbb{Z}^d$. We shall treat $\omega_a=|a|^2+\hat V(a)$, $a\in\mathcal{A}$, as free parameters in some domain $U\subset\mathbb{R}^{\mathcal{A}}$.

This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, under general conditions, will have the following consequence:

If $|\varepsilon|$ is sufficiently small, then there is a large subset $U’$ of $U$ such that for all $\omega\in U’$ the solution $u$ persists as a time–quasi-periodic solution which has all Lyapounov exponents equal to zero and whose linearized equation is reducible to constant coefficients.

  • [Bo96] Go to document J. Bourgain, "Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations," Geom. Funct. Anal., vol. 6, iss. 2, pp. 201-230, 1996.
    @article {Bo96, MRKEY = {1384610},
      AUTHOR = {Bourgain, J.},
      TITLE = {Construction of approximative and almost periodic solutions of perturbed linear {S}chrödinger and wave equations},
      JOURNAL = {Geom. Funct. Anal.},
      FJOURNAL = {Geometric and Functional Analysis},
      VOLUME = {6},
      YEAR = {1996},
      NUMBER = {2},
      PAGES = {201--230},
      ISSN = {1016-443X},
      CODEN = {GFANFB},
      MRCLASS = {35B15 (35A35 35L70 35Q55)},
      MRNUMBER = {97f:35013},
      MRREVIEWER = {R. G. A{\u\i}rapetyan},
      DOI = {10.1007/BF02247885},
      ZBLNUMBER={0872.35007},
      }
  • [Bo98] Go to document J. Bourgain, "Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations," Ann. of Math., vol. 148, iss. 2, pp. 363-439, 1998.
    @article {Bo98, MRKEY = {1668547},
      AUTHOR = {Bourgain, J.},
      TITLE = {Quasi-periodic solutions of {H}amiltonian perturbations of 2{D} linear {S}chrödinger equations},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {148},
      YEAR = {1998},
      NUMBER = {2},
      PAGES = {363--439},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {37K55 (35B15 35J10 35Qxx 37J40)},
      MRNUMBER = {2000b:37087},
      MRREVIEWER = {C. Eugene Wayne},
      DOI = {10.2307/121001},
      ZBLNUMBER={0928.35161},
      }
  • [Bo04] J. Bourgain, Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Princeton: Princeton Univ. Press, 2004.
    @book{Bo04,
      author = {J. Bourgain},
      TITLE = {Green's Function Estimates for Lattice {S}chrödinger Operators and Applications},
      YEAR = {2004},
      series = {Annals of Math. Studies},
      PUBLISHER = {Princeton Univ. Press},
      address={Princeton},
      }
  • [Cr00] W. Craig, Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles, Paris: Société Mathématique de France, 2000.
    @book {Cr00, MRKEY = {1804420},
      AUTHOR = {Craig, Walter},
      TITLE = {Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles},
      SERIES = {Panoramas et Synthèses},
      NUMBER = {9},
      PUBLISHER = {Société Mathématique de France},
      ADDRESS = {Paris},
      YEAR = {2000},
      PAGES = {viii+120},
      ISBN = {2-85629-095-7},
      MRCLASS = {37K55 (35B10 35B15 35L70 35Q58)},
      MRNUMBER = {2002e:37121},
      MRREVIEWER = {C. Eugene Wayne},
      ZBLNUMBER = {0977.35014},
      }
  • [EK1] L. H. Eliasson and S. B. Kuksin, "Infinite Töplitz-Lipschitz matrices and operators," Z. Angew. Math. Phys., vol. 59, pp. 24-50, 2008.
    @article{EK1,
      author = {Eliasson, L. H. and Kuksin, S. B.},
      TITLE = {Infinite {T}öplitz-{L}ipschitz matrices and operators},
      YEAR = {2008},
      JOURNAL={Z. Angew. Math. Phys.},
      VOLUME={59},
      PAGES={24--50},
      ZBLNUMBER={1140.15025},
      }
  • [E85] L. H. Eliasson, "Perturbations of stable invariant tori," Inst. Mittag-Leffler, Report No 3 , 1985.
    @techreport{E85,
      author = {Eliasson, L. H.},
      TITLE = {Perturbations of stable invariant tori},
      YEAR = {1985},
      TYPE = {Report No 3},
      INSTITUTION={Inst. Mittag-Leffler},
      }
  • [E88] Go to document L. H. Eliasson, "Perturbations of stable invariant tori for Hamiltonian systems," Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 15, iss. 1, pp. 115-147 (1989), 1988.
    @article {E88, MRKEY = {1001032},
      AUTHOR = {Eliasson, L. H.},
      TITLE = {Perturbations of stable invariant tori for {H}amiltonian systems},
      JOURNAL = {Ann. Scuola Norm. Sup. Pisa Cl. Sci.},
      FJOURNAL = {Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV},
      VOLUME = {15},
      YEAR = {1988},
      NUMBER = {1},
      PAGES = {115--147 (1989)},
      ISSN = {0391-173X},
      CODEN = {PSNAAI},
      MRCLASS = {58F05 (58F30 70H05)},
      MRNUMBER = {91b:58060},
      MRREVIEWER = {J{ü}rgen P{ö}schel},
      URL = {http://www.numdam.org/item?id=ASNSP_1988_4_15_1_115_0},
      ZBLNUMBER = {0685.58024},
      }
  • [E01] L. H. Eliasson, "Almost reducibility of linear quasi-periodic systems," in Smooth Ergodic Theory and its Applications, Providence, RI: Amer. Math. Soc., 2001, pp. 679-705.
    @incollection {E01, MRKEY = {1858550},
      AUTHOR = {Eliasson, L. H.},
      TITLE = {Almost reducibility of linear quasi-periodic systems},
      BOOKTITLE = {Smooth Ergodic Theory and its Applications},
      VENUE={{S}eattle, {WA},
      1999},
      SERIES = {Proc. Sympos. Pure Math.},
      NUMBER = {69},
      PAGES = {679--705},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {2001},
      MRCLASS = {34C27 (34L40 37C55 37H99 37J40)},
      MRNUMBER = {2003a:34064},
      MRREVIEWER = {Russell A. Johnson},
      ZBLNUMBER = {1015.34028},
      }
  • [F] G. B. Folland, Introduction to Partial Differential Equations, Princeton, N.J.: Princeton Univ. Press, 1976.
    @book {F, MRKEY = {0599578},
      AUTHOR = {Folland, Gerald B.},
      TITLE = {Introduction to Partial Differential Equations},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, N.J.},
      YEAR = {1976},
      PAGES = {vi+349},
      MRCLASS = {35-01},
      MRNUMBER = {58 \#29031},
      MRREVIEWER = {R. Leis},
      ZBLNUMBER = {0325.35001},
      }
  • [FS83] Go to document J. Fröhlich and T. Spencer, "Absence of diffusion in the Anderson tight binding model for large disorder or low energy," Comm. Math. Phys., vol. 88, iss. 2, pp. 151-184, 1983.
    @article {FS83, MRKEY = {696803},
      AUTHOR = {Fr{ö}hlich, J{ü}rg and Spencer, Thomas},
      TITLE = {Absence of diffusion in the {A}nderson tight binding model for large disorder or low energy},
      JOURNAL = {Comm. Math. Phys.},
      FJOURNAL = {Communications in Mathematical Physics},
      VOLUME = {88},
      YEAR = {1983},
      NUMBER = {2},
      PAGES = {151--184},
      ISSN = {0010-3616},
      CODEN = {CMPHAY},
      MRCLASS = {82A05 (60H25 82A57)},
      MRNUMBER = {85c:82004},
      MRREVIEWER = {W. Kirsch},
      URL = {http://projecteuclid.org/getRecord?id=euclid.cmp/1103922279},
      ZBLNUMBER = {0519.60066},
      }
  • [GY05] Go to document J. Geng and J. You, "A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions," J. Differential Equations, vol. 209, iss. 1, pp. 1-56, 2005.
    @article {GY05, MRKEY = {2107467},
      AUTHOR = {Geng, Jiansheng and You, Jiangong},
      TITLE = {A {KAM} theorem for one dimensional {S}chrödinger equation with periodic boundary conditions},
      JOURNAL = {J. Differential Equations},
      FJOURNAL = {Journal of Differential Equations},
      VOLUME = {209},
      YEAR = {2005},
      NUMBER = {1},
      PAGES = {1--56},
      ISSN = {0022-0396},
      CODEN = {JDEQAK},
      MRCLASS = {37K55 (35B10 35J10 35Q40 35Q55)},
      MRNUMBER = {2005i:37089},
      MRREVIEWER = {Dario Bambusi},
      DOI = {10.1016/j.jde.2004.09.013},
      }
  • [GY06] J. Geng and J. You, "A KAM theorem for Hamiltonian partial differential equations in higher dimensional space," Commun. Math. Phys., vol. 262, pp. 343-372, 2006.
    @article{GY06,
      author = {J. Geng and J. You},
      TITLE = {A {KAM} theorem for {H}amiltonian partial differential equations in higher dimensional space},
      YEAR = {2006},
      JOURNAL={Commun. Math. Phys.},
      PAGES={343--372},
      VOLUME={262},
      ZBLNUMBER={1064.35186},
      }
  • [K99] R. Krikorian, Réductibilité des Systèmes Produits-Croisés à Valeurs dans des Groupes Compacts, Paris: Soc. Math. France, 1999, vol. 259.
    @book{K99, MRKEY = {1732061},
      AUTHOR = {Krikorian, Rapha{ë}l},
      TITLE = {Réductibilité des Systèmes Produits-Croisés à Valeurs dans des Groupes Compacts},
      SERIES = {Astérisque},
      VOLUME={259},
      PUBLISHER={Soc. Math. France},
      ADDRESS={Paris},
      FJOURNAL = {Astérisque},
      YEAR = {1999},
      PAGES = {vi+216},
      ISSN = {0303-1179},
      MRCLASS = {37C85 (34C27 37D25 37J40)},
      MRNUMBER = {2001f:37030},
      MRREVIEWER = {L. H{\aa}kan Eliasson},
      ZBLNUMBER = {0957.37016},
      }
  • [K88] S. B. Kuksin, "Perturbation of conditionally periodic solutions of infinite-dimensional Hamiltonian systems," Izv. Akad. Nauk SSSR Ser. Mat., vol. 52, iss. 1, pp. 41-63, 240, 1988.
    @article {K88, MRKEY = {936522},
      AUTHOR = {Kuksin, S. B.},
      TITLE = {Perturbation of conditionally periodic solutions of infinite-dimensional {H}amiltonian systems},
      JOURNAL = {Izv. Akad. Nauk SSSR Ser. Mat.},
      FJOURNAL = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      NOTE = {In Russian; translated in {\it Math. USSR Izv.} {\bf 32:1} (1989)},
      VOLUME = {52},
      YEAR = {1988},
      NUMBER = {1},
      PAGES = {41--63, 240},
      ISSN = {0373-2436},
      MRCLASS = {58F05 (58F27 58F30 70H05)},
      MRNUMBER = {90c:58057},
      ZBLNUMBER = {0662.58036},
      }
  • [K1] S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, New York: Springer-Verlag, 1993, vol. 1556.
    @BOOK{K1,
      author = {Kuksin, S. B.},
      TITLE= {Nearly Integrable Infinite-Dimensional {H}amiltonian Systems},
      SERIES={Lecture Notes in Math.},
      VOLUME={1556},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1993},
      ZBLNUMBER={10784.58028},
      }
  • [K2] S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford: Oxford Univ. Press, 2000.
    @BOOK{K2,
      author = {Kuksin, S. B.},
      TITLE = {Analysis of {H}amiltonian {PDEs}},
      PUBLISHER = {Oxford Univ. Press},
      ADDRESS = {Oxford},
      YEAR = {2000},
      }
  • [P96a] Go to document J. Pöschel, "A KAM-theorem for some nonlinear partial differential equations," Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 23, iss. 1, pp. 119-148, 1996.
    @article {P96a, MRKEY = {1401420},
      AUTHOR = {P{ö}schel, J{ü}rgen},
      TITLE = {A {KAM}-theorem for some nonlinear partial differential equations},
      JOURNAL = {Ann. Scuola Norm. Sup. Pisa Cl. Sci.},
      FJOURNAL = {Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV},
      VOLUME = {23},
      YEAR = {1996},
      NUMBER = {1},
      PAGES = {119--148},
      ISSN = {0391-173X},
      CODEN = {PSNAAI},
      MRCLASS = {58F27 (35Q58 58F39)},
      MRNUMBER = {97g:58146},
      MRREVIEWER = {Luigi Chierchia},
      URL = {http://www.numdam.org/item?id=ASNSP_1996_4_23_1_119_0},
      ZBLNUMBER = {0870.34060},
      }

Authors

L. Hakan Eliasson

University of Paris 7
Department of Mathematics
Case 7052, 2 place Jussieu
Paris, France

Sergei B. Kuksin

CMLS
Ecole Polytechnique
91128 Palaiseau
France