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Abstract

We consider the d -dimensional nonlinear Schrödinger equation under periodic
boundary conditions:

�i PuD��uCV.x/�uC "
@F

@ Nu
.x; u; Nu/; uD u.t; x/; x 2 Td

where V.x/D
P
yV .a/eiha;xi is an analytic function with yV real, and F is a real

analytic function in <u, =u and x. (This equation is a popular model for the ‘real’
NLS equation, where instead of the convolution term V �u we have the potential
term V u.) For "D 0 the equation is linear and has time–quasi-periodic solutions

u.t; x/D
X
a2A

Ou.a/ei.jaj
2CyV .a//teiha;xi; j Ou.a/j> 0;

where A is any finite subset of Zd . We shall treat !a D jaj2C yV .a/, a 2A, as free
parameters in some domain U � RA.

This is a Hamiltonian system in infinite degrees of freedom, degenerate but with
external parameters, and we shall describe a KAM-theory which, under general
conditions, will have the following consequence:

If j"j is sufficiently small, then there is a large subset U 0 of U such that for
all ! 2 U 0 the solution u persists as a time–quasi-periodic solution which has all
Lyapounov exponents equal to zero and whose linearized equation is reducible to
constant coefficients.
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1. Introduction

We consider the d -dimensional nonlinear Schrödinger equation

.�/ �i PuD��uCV.x/�uC "
@F

@ Nu
.x; u; Nu/; uD u.t; x/

under the periodic boundary condition x 2 Td . The convolution potential V W
Td ! C must have real Fourier coefficients yV .a/; a 2 Zd , and we shall suppose
it is analytic. F is a real analytic function in <u, =u and x.
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The nonlinear Schrödinger as an1-dimensional Hamiltonian system. If we
write �

u.x/D
P
a2Zd uae

iha;xi

u.x/D
P
a2Zd vae

ih�a;xi .va D Nua/

and let

�a D

�
�a
�a

�
D

0@ 1p
2
.uaC va/

�ip
2
.ua � va/

1A ;
then, in the symplectic space

f.�a; �a/ W a 2 Zd g D CZd
�CZd ;

X
a2Zd

d�a ^ d�a;

the equation becomes a real Hamiltonian system with an integrable part

1

2

X
a2Zd

.jaj2C yV .a//.�2a C �
2
a/

plus a perturbation.
Let A be a finite subset of Zd and fix

0 < pa; a 2A:

The .#A/-dimensional torus

1
2
.�2a C �

2
a/D pa; a 2A;

�a D �a D 0; a 2 LD Zd nA

is invariant for the Hamiltonian flow when " D 0. Near this torus we introduce
action-angle variables .'a; ra/, a 2A,

�a D
p
2.paC ra/ cos.'a/; �a D

p
2.paC ra/ sin.'a/:

The integrable Hamiltonian now becomes (modulo a constant)

hD
X
a2A

!araC
1

2

X
a2L

�a.�
2
a C �

2
a/;

where

!a D jaj
2
C yV .a/; a 2A

are the basic frequencies, and

�a D jaj
2
C yV .a/; a 2 L

are the normal frequencies (of the invariant torus). The perturbation "f .�; �; '; r/
will be a function of all variables (under the assumption, of course, that the torus
lies in the domain of F ).
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This is a standard form for the perturbation theory of lower-dimensional (iso-
tropic) tori with one exception: it is strongly degenerate. We therefore need exter-
nal parameters to control the basic frequencies and the simplest choice is to let the
basic frequencies (i.e., the potential itself) be our free parameters.

The parameters will belong to a set U � f! 2 RA W j!j � C g. The normal
frequencies will be assumed to verify

j�aj � C
0 > 0 8 a 2 L ;

j�aC�bj � C
0
8 a; b 2 L ;

j�a ��bj � C
0
8 a; b 2 L; jaj ¤ jbj:

This will be fulfilled, for example, if A is sufficiently large, or if V is small and
A 3= 0.

We define the complex domain

O0.�; �; �/D

8<:
k�k0 D

pP
a2L.j�aj

2Cj�aj2/hai2m� < �

j='j< �

jr j< �;

hai D max.jaj; 1/. We assume m� > d
2

because in this space hC "f is analytic
and the Hamiltonian equations have a well-defined local flow.

By h ; i we denote the usual paring h�; �0i D
P
�a�
0
aC �a�

0
a.

THEOREM A. Under the above assumptions, for " sufficiently small there ex-
ist a subset U 0 � U , which is large in the sense that Leb .U nU 0/ � cte:"exp, and
for each ! 2 U 0, a real analytic symplectic diffeomorphism ˆ

O0
��
2
;
�

2
;
�

2

�
! O0.�; �; �/

and a vector !0 such that .h!0 C "f / ıˆ equals (modulo a constant)

h!; riC
1

2
h�;Q1�iC h�;Q2�iC

1

2
h�;Q1�iC "f

0 ;

where
f 0 2 O.jr j2 ; jr j k�k0 ; k�k

3
0/

andQDQ1CiQ2 is a Hermitian and block-diagonal matrix with finite-dimensional
blocks.

Moreover ˆD .ˆ� ; ˆ' ; ˆr/ verifies, for all .�; '; r/ 2 O0.�
2
; �
2
; �
2
/,

ˆ� � �

0C ˇ̌ˆ' �' ˇ̌Cjˆr � r j � ˇ";

and the mapping ! 7! !0.!/ verifiesˇ̌
!0� id

ˇ̌
C1.U 0/

� ˇ":

ˇ is a constant that depends on the dimensions d; #A, on m�, on the constants
C;C 0 and on V and F .
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The consequences of the theorem are well-known. The dynamics of the Hamil-
tonian vector field of h!0 C "f on ˆ.f0g �Td � f0g/ is the same as that of

h!; riC
1

2
h�;Q1�iC h�;Q2�iC

1

2
h�;Q1�i :

The torus f� D r D 0g is invariant, since the Hamiltonian system on it is8<:
P� D 0

P' D !

Pr D 0;

and the flow on the torus is linear t 7! 'C t!.
Moreover, the linearized equation on this torus becomes8̂̂̂̂

<̂
ˆ̂̂:

d
dt
y� D J

 
Q1.!/ Q2.!/

tQ2.!/ Q1.!/

!
y�CJa.'C t!; !/ Or

d
dt
y' D ha.'C t!; !/; y�iC b.'C t!; !/ Or

d
dt
Or D 0;

where a D "@r@�f
0 and b D "@2rf

0. Since Q1 C iQ2 is Hermitian and block
diagonal the eigenvalues of the �-linear part are purely imaginary ˙i�0a, a 2 L.

The linearized equation is reducible to constant coefficients if the imaginary
part �0a of the eigenvalues are nonresonant with respect to !, something which
can be assumed if we restrict the set U 0 arbitrarily little. Then the y�-component
(and of course also the Or-component) will have only quasi-periodic (in particular
bounded) solutions. The y'-component may have a linear growth in t , the growth
factor (the “twist”) being linear in Or .

Reducibility. Reducibility is not only an important outcome of KAM but also
an essential ingredient in the proof. It simplifies the iteration since it makes it
possible to reduce all approximate linear equations to constant coefficients. But it
does not come for free. It requires a lower bound on small divisors of the form

.��/
ˇ̌
hk; !iC�0a ��

0
b

ˇ̌
; k 2 ZA; a; b 2 L:

The basic frequencies ! will be kept fixed during the iteration – that is what the
parameters are there for – but the normal frequencies will vary. Indeed �0a.!/
and �0

b
.!/ are perturbations of �a and �b which are not known a priori but are

determined by the approximation process.1

These are a lot of conditions for a few parameters !. It is usually possible
to make a (scale dependent) restriction of .��/ to jkj ; ja� bj � �D �" which
improves the situation a bit. Indeed, in one space-dimension (d D 1) it improves

1A lower bound on .��/, often known as the second Melnikov condition, is strictly speaking not
necessary for reducibility. It is necessary, however, for reducibility with a reducing transformation
close to the identity.



376 L. HAKAN ELIASSON and SERGEI B. KUKSIN

a lot, and .��/ reduces to only finitely many conditions. Not so however when
d � 2, in which case the number of conditions in .��/ remains infinite.

To cope with this problem we shall exploit the Töplitz-Lipschitz property
which allows for a sort of compactification of the dimensions and reduces the
infinitely many conditions .��/ to finitely many. These can then be controlled
by an appropriate choice of !.

The Töplitz-Lipschitz property. The Töplitz-Lipschitz property is defined for
infinite-dimensional matrices with exponential decay. We say that a matrix

A W L�L! C

is Töplitz at1 if, for all a; b; c 2 Zd , the limit

lim
t!1

AbCtcaCtc 9 DW Aba.c/:

The Töplitz limit A.c/ is a new matrix which is c-invariant: AbCcaCc.c/DA
b
a.c/. So

it is a simpler object because it is “more constant”.
The approach to the Töplitz limit in direction c is controlled by a Lipschitz-

condition. This control does not take place everywhere, but on a certain subset

Dƒ.c/� L�L

— the Lipschitz domain. ƒ is a parameter which, together with jcj, determines the
size of the domain.

The Töplitz-Lipschitz property permits us to verify certain bounds of the
matrix-coefficients or functions of these, like determinants of sub-matrices, in the
Töplitz limit and then recover these bounds for the matrix restricted to the Lipschitz
domain.

The matrices we shall consider will not be scalar-valued but gl.2;C/-valued:

A W L�L! gl.2;C/

and we shall define a Töplitz-Lipschitz property for such matrices also. These
matrices constitute an algebra: one can multiply them and solve linear differential
equations. A function f is said to have the Töplitz-Lipschitz property if its Hessian
(with respect to �) is Töplitz-Lipschitz. If this is the case, as it is for the perturbation
f of the nonlinear Schrödinger, then this is also true for the linear part of our
KAM–transformations and for the transformed Hamiltonian. This will permit us
to formulate an inductive statement which, as usual in KAM, gives Theorem A.

Some references. For finite-dimensional Hamiltonian systems the first proof of
persistence of stable (i.e., vanishing of all Lyapounov exponents) lower-dimensional
invariant tori was obtained in [Eli85], [Eli88] and there are now many works on
this subjects. There are also many works on reducibility (see for example [Kri99],
[Eli01]) and the situation in finite dimension is now pretty well understood in the
perturbative setting. Not so, however, in infinite dimension.
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If d D 1 and the space-variable x belongs to a finite segment supplemented
by Dirichlet or Neumann boundary conditions, this result was obtained in [Kuk88]
(also see [Kuk93], [Pös96]). The case of periodic boundary conditions was treated
in [Bou96], using another multi-scale scheme, suggested by Fröhlich-Spencer in
their work on the Anderson localization [FS83]. This approach, often referred
to as the Craig-Wayne scheme, is different from KAM. It avoids the, sometimes,
cumbersome condition .��/ but to a high cost: the approximate linear equations
are not of constant coefficients. Moreover, it gives persistence of the invariant tori
but no reducibility and no information on the linear stability. A KAM-theorem for
periodic boundary conditions has recently been proved in [GY05] (with a perturba-
tion F independent of x) and the perturbation theory for quasi-periodic solutions
of one-dimensional Hamiltonian PDE is now sufficiently well developed (see for
example [Kuk93], [Cra00], [Kuk00]).

The study of the corresponding problems for d � 2 is at its early stage. Devel-
oping further the scheme, suggested by Fröhlich-Spencer, Bourgain proved persis-
tence for the case d D 2 [Bou98]. More recently, the new techniques developed by
him and collaborators in their work on the linear problem has allowed him to prove
persistence in any dimension d [Bou04]. (In this work he also treats the nonlinear
wave equation.)

Description of the paper. The paper is divided into three parts. The first part
deals with linear algebra of Töplitz-Lipschitz matrices and the analysis of functions
with the Töplitz-Lipschitz property. In Section 2 we introduce Töplitz-Lipschitz
matrices and prove a product formula. This part is treated in greater generality in
[EK08]. In Section 3 we analyze functions with the Töplitz-Lipschitz property.

The second part deals with the bounds on the small divisors .��/ which occur
in the solution of the homological equation. In Section 4 we analyze the block
decomposition of the lattice Zd and in Section 5 we study the small divisors. In
Section 6 we solve the homological equations. This part is independent of the first
part except for basic definitions and properties given in Sections 2.3 and 2.4.

The third part treats KAM-theory with the Töplitz-Lipschitz property and
contains a general KAM-theorem, Theorem 7.1. This theorem is applied to the
nonlinear Schrödinger to give Theorem 7.2 of which the theorem above is a variant.

Notation. h ; i is the standard scalar product in Rd . k k is an operator-norm
or l2-norm. j j will in general denote a supremum norm, with a notable exception:
for a lattice vector a 2 Zd we use jaj for the l2-norm.

A is a finite subset of Zd and L is the complement of a finite subset of Zd .
For the nonlinear Schrödinger equation, L will be the complement of A, but this
not assumed in general.

A matrix on L is just a mappingA WL�L! C or gl.2;C/. Its components
will be denoted Aba.

The dimension d will be fixed and m� will be a fixed constant > d
2

.
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. means � modulo a multiplicative constant that only, unless otherwise spec-
ified, depends on d;m� and #A.

The points in the lattice Zd will be denoted a; b; c; : : : . Also d will some-
times be used, without confusion, we hope.

For a vector c 2 Zd , c? will denote the ? complement of c in Zd or in Rd ,
depending on the context. If c 6D 0, for any a 2 Zd we let ac 2 .aCRc/\ Zd

be the lattice point b on the line aCRc with smallest norm, i.e., that minimizes
jhb; cij; if there are two such b’s we choose the one with hb; ci � 0. It is the “?
projection of a to c?”.

Greek letter ˛; ˇ; : : : will mostly be used for bounds. Exceptions are ' which
will denote an element in the torus – an angle – and !;�.

For two subsets X and Y of a metric space,

dist.X; Y /D inf
x2X;y2Y

d.x; y/:

(This is not a metric.) X" is the "-neighborhood of X ; i.e., fy W dist.y;X/ < "g.
Let B".x/ be the ball fy W d.x; y/ < "g: Then X" is the union, over x 2 X , of all
B".x/.

If X and Y are subsets of Rd or Zd we let

X �Y D fx�y W x 2X; y 2 Y g

— not to be confused with the set theoretical difference X nY .

Part I. The Töplitz-Lipschitz property

In this part we consider L� Zd and matrices A W L�L! gl.2;C/. We de-
fine: the sup-norms j � j
 ; the notion of being Töplitz at1; the Lipschitz-domains
D˙� .c/; the Lipschitz- norm h � iƒ;
 and the notion of being Töplitz-Lipschitz. (For
a more general exposition see [EK08].) We define the Töplitz-Lipschitz property
for functions and the norms Œ � �ƒ;
;� .

2. Töplitz-Lipschitz matrices

2.1. Spaces and matrices. We denote by l2
 .L;C
2/; 
 � 0, the following

weighted l2-spaces:

l2
 .L;C
2/D f� D .�; �/ 2 CL

�CL
W k�k
 <1g;

where

k�k2
 D
X
a2L

.j�aj
2
Cj�aj

2/e2
 jajhai2m� ; hai Dmax.jaj; 1/:

We provide l2
 .L;C
2/ with the symplectic formX

a2L

d�a ^ d�a:



KAM FOR THE NONLINEAR SCHRÖDINGER EQUATION 379

Using the pairing
h�; �0i D

X
a2L

.�a�
0
aC �a�

0
a/

we can write the symplectic form as h�; J �i where J W l2
 .L;C
2/! l2
 .L;C

2/ is the
standard involution, given by the component-wise application of the matrix

J D

�
0 1

�1 0

�
:

We consider the space gl.2;C/ of all complex 2� 2-matrices provided with
the scalar product Tr.t NAB/; and consider the orthogonal projection

� W gl.2;C/!M ; M D CI CCJ:

It is easy to verify that �
M �M;M? �M? �M

M �M?;M? �M �M?

and �
�.AB/D �A�BC .I ��/A.I ��/B

.I ��/.AB/D .I ��/A�BC�A.I ��/B:

If AD .Aji /
2
i;jD1 B D .B

j
i /
2
i;jD1 we define

ŒA�D .jA
j
i j/

2
i;jD1;

and
A� B() jA

j
i j � B

j
i ; 8i; j:

Since any Euclidean space E is naturally isomorphic to its dual E�, the canon-
ical relations

E˝E 'E�˝E� ' Hom.E;E�/' Hom.E;E/

permits the identification of the tensor product �˝ �0 with a 2� 2-matrix

.�˝ �0/
j
i D �i�

0
j :

2.2. Matrices with exponential decay. Consider now an infinite-dimensional
gl.2;C/-valued matrix

A W L�L! gl.2;C/; .a; b/ 7! Aba:

We define matrix multiplication through

.AB/ba D
X
d

AdaB
b
d ;

and, for any subset D of L�L, the semi-norms

jAjD D sup
.a;b/2D

kAbak

(here k k is the operator-norm).
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We define �A through .�A/ba D �A
b
a, for all a; b. Clearly we have

�.ACB/D �AC�B

�.AB/D �A�BC .I ��/A.I ��/B(1)

.I ��/.AB/D .I ��/A�BC�A.I ��/B:

We define
A� B() Aba � B

b
a ;8a; b;

and
.E˙
 A/

b
a D ŒA

b
a�e


 ja�bj;8a; b:

All operators E˙
 commute and we have(
Ex
 .ACB/ � Ex
ACEx
B; x 2 fC;�g

E
xy

 .AB/ � .E

x

A/.E

y

B/; x; y 2 fC;�g:

2

We define the norm

jAj
 Dmax.jEC
 �A
b
ajL�L; jE

�

 .1��/A

b
ajL�L/:

We have, by Young’s inequality (see [Fol76]), that

(2) kA�k
 0 .
�

1


�
 0

�dCm�
jAj
 k�k
 0 ; 8


0 < 
:

(Take for example AD �A and apply Young’s inequality to the matrix zA defined
by

zAba D e

 0jaj
haim�Abahbi

�m�e�

0jbj:/

Thus, if jAj
 <1, then A defines a bounded operator on any l2
 0.L;C
2/; 
 0 < 
 .

Truncations. Let

.T˙�/A
b
a D

�
Aba if ja� bj ��
0 if not;

and
T�AD TC��ACT��.I ��/A:

It is clear that

(3) jT�Aj
 � jAj
 and jA�T�Aj
 0 � e
��.
�
 0/

jAj
 :

Tensor products. For any two elements �; �0 2 l2
 .L;C
2/, their tensor product

�˝ �0 is a matrix on L�L, and it is easy to verify that

(4)
ˇ̌
�˝ �0

ˇ̌


. k�k




�0




:

2We use the sign convention that xy DC whenever x and y are equal and xy D� whenever they
are different.
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Multiplication. We have

(5) jABj
 0 CjBAj
 0 .
�

1


�
 0

�d
jAj
 jBj
 0 ; 8


0 < 
:

Linear differential equation. Consider the linear system�
X 0 D A.t/X

X.0/D I:

It follows from (5) that the series

I C

1X
nD1

Z t0

0

Z t1

0

: : :

Z tn�1

0

A.t1/A.t2/ : : : A.tn/dtn : : : dt2dt1;

as well as its derivative with respect to t0, converges to a solution which verifies,
for 
 0 < 
 ,

(6) jX.t/� I j
 0 . .
 � 
 0/d
�

exp
�

cte:
� 1


 � 
 0

�d
jt j˛.t/

�
� 1

�
;

where ˛.t/D sup0�jsj�jt j jA.s/j
 .

2.3. Töplitz-Lipschitz matrices .d D 2/. A matrix A W L�L! gl.2;C/ is
said to be Töplitz at1 if, for all a; b; c, the two limits

lim
t!C1

Ab˙tcaCtc 9 D A
b
a.˙; c/:

It is easy to verify that if jAj
 <1 and jBj
 <1, then

.�A/.�; c/D .I ��/A.C; c/D 0

and

(7)

�.AB/.C; c/D �A.C; c/�B.C; c/

C .I ��/A.�; c/.I ��/B.�;�c/;

.I ��/.AB/.�; c/D .I ��/A.�; c/�B.C;�c/

C �A.C; c/.I ��/B.�; c/:

In the rest of this section we assume that c ¤ 0. We define

.McA/
b
a D

�
max

�
jaj

jcj
;
jbj

jcj

�
C 1

�
ŒAba�; 8a; b:

The operators Mc and E˙
 all commute and Mc.AB/� .McA/.McB/.

Lipschitz domains. For a nonnegative constant ƒ, let DCƒ.c/� L�L be the
set of all .a; b/ such that there exist a0; b0 2 Zd and t � 0 such that�

jaD a0C tcj � ƒ.ja0jC jcj/ jcj

jb D b0C tcj � ƒ.jb0jC jcj/ jcj
and

jaj

jcj
;
jbj

jcj
� 2ƒ2:
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We give here some elementary properties of the Lipschitz domains. They will
be studied further in Section 4.

LEMMA 2.1. Let t � 0.

(i) For ƒ� 1, we have t �ƒ jcj �ƒ if jaD a0C tcj �ƒ.ja0jC jcj/ jcj.

(ii) For ƒ> 1,(
ja0j � t

ƒ�1
� jcj if jaD a0C tcj �ƒ.ja0jC jcj/ jcj ;

ja0j � t
ƒC1
� jcj if not:

(iii) For ƒ> 1, ˇ̌̌̌
jaj

jcj
� t

ˇ̌̌̌
�

t

ƒ� 1
and

ˇ̌̌̌
ha; ci

jcj2
� t

ˇ̌̌̌
�

t

ƒ� 1
;

if jaD a0C tcj �ƒ.ja0jC jcj/ jcj.

(iv) For � � .ƒC 1/.ja� bj C 1/, we have jb D b0C tcj �ƒ.jb0j C jcj/jcj with
b0 D a0C b� a, if jaD a0C tcj ��.ja0jC jcj/ jcj.

Proof. This is a direct computation. �

COROLLARY 2.2. Let ƒ� 3.

(i) .a; b/ 2DCƒ.c/H)
jaj

jcj
�
jbj

jcj
�
ha; ci

jcj2
�
hb; ci

jcj2
&ƒ jcj :

(ii) .a; b/ 2DCƒ.c/H) .aC tc; bC tc/ 2DCƒ.c/ 8t � 0:

(iii) .a; b/ 2DCƒ.c/ H) . Qa; Qb/ 2DC�.c/; where

�Dƒ�max.j Qa� aj; j Qb� bj/� 2:

(iv) .a; b/ 2DCƒC3.c/; .a; d/ …D
C

ƒ.c/H) ja� d j ; jb� d j&
1

ƒ2
jaj

jcj
:

Proof. (i) follows from Lemma 2.1, (i) and (iii), if we just observe that

t � t C
t

ƒ� 1
� t �

t

ƒ� 1
:

In order to see (ii) we write a D a0C sc; s � 0; with jaj �ƒ.ja0j C jcj/ jcj.
Then

jaC tcj2 D jaj2C t2jcj2C 2tha; cijaj2C t2jcj2C 2tsjcj2C 2tha0; ci:

By Lemma 2.1(ii)

2tsjcj2C 2tha0; ci � 2ts
�
1�

1

ƒ�1

�
jcj2 � 0:

Hence
jaC tcj2 � jaj2C t2jcj2 � jaj2 �ƒ.

ˇ̌
a0
ˇ̌
Cjcj/ jcj :
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Moreover, for all t � 0
jaC tcj

jcj
�
jaj

jcj
� 2ƒ2:

The same argument applies to b.
To see (iii), let � D max.j Qa � aj; j Qb � bj/C 2 and write a D a0 C tc with

jaj �ƒ.ja0jCjcj/jcj. Then QaD a0C Qa�aC tc, and if j Qaj<�.ja0C Qa�ajCjcj/jcj
then by Lemma 2.1(ii),

j Qa� aj �
t�

.�C 1/.ƒ� 1/
:

This implies that t � .�C 1/.ƒ� 1/ and, hence, jaj
jcj
< 2ƒ2 which is impossible.

Therefore j Qaj ��.ja0C Qa� ajC jcj/jcj. Moreover

j Qaj

jcj
�
jaj

jcj
�
�

jcj
� 2ƒ2��� 2�2:

The same argument applies to b.
To see (iv), assume that jd j

jcj
< 2ƒ2. As jbj

jcj
� 2.ƒC 3/2 it follows that

jb� d j

jcj
� 12ƒ:

So jb � d j � ƒ�2 jaj
jcj

, unless jaj
jcj
� 12ƒ3jcj. In this case, due to Lemma 2.1(iii),

jbj
jcj
�
ƒC1
ƒC3

jaj
jbj
� 12ƒ2. So we must have

jd j

jcj
� 2ƒ2 �

1

6

jbj

jcj

which implies that
jb� d j

jcj
�
5

6

jbj

jcj
�

1

ƒ2
jaj

jcj
:

Therefore we can assume that jd j
jcj
� 2ƒ2. Since .a; b/ 2 DƒC3.c/, then

bD b0C tc, where jbj � .ƒC3/.jb0jCjcj/jcj. Let us write d as d D bC.d�b/D
d 0Ctc, d 0D b0C.d�b/. Since .a; d/…DCƒ.c/ while .a; b/2DCƒC3.c/�D

C

ƒ.c/

and jd j
jcj
� 2ƒ2, then jd j<ƒ.jd 0jC jcj/Cjcj. Applying Lemma 2.1(ii) we get that

jb0j �
t

ƒC 2
� jcj; jd 0j �

t

ƒC 1
� jcj:

Hence, jb� d j D jd 0� b0j � t
ƒC1
�

t
ƒC2
& t
ƒ2
& 1
ƒ2
jaj
jcj

, where we used Lemma
2.1(iii).

Now the required estimate for jb� d j is established. Similar arguments apply
to ja� d j. �

Lipschitz constants and norms. Define the Lipschitz constants

Lipxƒ;
AD sup
c
jEx
Mc.A�A.x; c//jDxƒ.c/; x 2 fC;�g;
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(see the notation of ��2.2, 2.3) and the Lipschitz norm

hAiƒ;
 Dmax.LipCƒ;
�A;Lip�ƒ;
 .1��/A/CjAj
 :

Here we have defined .a; b/ 2 D�ƒ.c/() .a;�b/ 2 DCƒ.c/. The matrix A is
Töplitz-Lipschitz if it is Töplitz at1 and hAiƒ;
 <1 for some ƒ; 
 .

Truncations. It is easy to see that

(8) hT�Aiƒ;
 � hAiƒ;
 ; hA�T�Aiƒ;
 0 � e
��.
�
 0/

hAiƒ;
 :

Tensor products. We can now verify that

(9) h�˝ �0iƒ;
 . k�k



�0





:

Multiplications and differential equations are more delicate and we shall need
the following proposition.

PROPOSITION 2.3. For all x; y 2 fC;�g, all 
 0 < 
 and any c ¤ 0ˇ̌̌
E
xy

 0 Mc.AB/

ˇ̌̌
D
xy
ƒC3

.c/
.
�

1


�
 0

�d ˇ̌
Ex
1Mc.A/

ˇ̌
Dxƒ.c/

ˇ̌
Ey
2B

ˇ̌
L�L

(i)

C ƒ2
�

1


�
 0

�dC1 ˇ̌
Ex
1A

ˇ̌
L�L

ˇ̌
Ey
2B

ˇ̌
L�L

;

where one of 
1; 
2 isD 
 and the other one isD 
 0. The same bound holds
for BA.ˇ̌̌

E
xyz

 0 Mc.ABC/

ˇ̌̌
D
xyz
ƒC6

.c/
(ii)

.
�

1


�
 0

�2d ˇ̌
Ex
1A

ˇ̌
L�L

ˇ̌
Ey
2Mc.B/

ˇ̌
D
y
ƒ.c/

ˇ̌
Ez
3C

ˇ̌
L�L

C ƒ2
�

1


�
 0

�2dC1 ˇ̌
Ex
1A

ˇ̌
L�L

ˇ̌
Ey
2B

ˇ̌
L�L

ˇ̌
Ez
3C

ˇ̌
L�L

;

where two of 
1; 
2; 
3 are D 
 and the third one is D 
 0. The same bound
holds if we permute the factors A;B and C .

Proof. To prove (i), let first x D y DC. We shall only prove the estimate for
AB – the estimate for BA being the same. Notice that for .a; b/ 2DCƒC3.c/ we
have, by Corollary 2.2(i), that

Mc.a; b/Dmax
�
jaj

jcj
;
jbj

jcj

�
C 1�

jaj

jcj
C 1:

Now, for .a; b/ 2DCƒC3.c/ we have

.EC
 0Mc.AB//
b
a �

X
d

Mc.a; b/ŒA
d
a �ŒB

b
d �e


 0ja�bj

D

X
.a;d/2D

C

ƒ .c/

: : :C
X

.a;d/…D
C

ƒ .c/

: : :D .I/C .II/:
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In the domain of (I) we have, by Corollary 2.2(i), that

Mc.a; b/�
jaj

jcj
C 1�Mc.a; d/;

so that

.I/.
ˇ̌
EC
1McA

ˇ̌
D
C

ƒ .c/

ˇ̌
EC
2B

ˇ̌
L�L

X
d

e�.
1�

0/ja�d j�.
2�


0/jd�bj:

Since one of 
1� 
 0 and 
2� 
 0 is 
 � 
 0 the sum is . . 1

�
 0

/d .
In the domain of (II) we have, by Corollary 2.2(iv), that

ja� d j; jb� d j&
1

ƒ2
jaj

jcj
;

so (II) is

.
ˇ̌
EC
1A

ˇ̌
L�L

ˇ̌
EC
2B

ˇ̌
L�L

�

X
ja�d j;jd�bj& 1

ƒ2
jaj
jcj

�
jaj

jcj
C 1

�
e�.
1�


0/ja�d j�.
2�

0/jd�bj:

Since one of 
1� 
 0 and 
2� 
 0 is 
 � 
 0 the sum is .ƒ2
�

1

�
 0

�dC1. The three
other cases of (i) are treated in the same way.

To prove (ii), let first x D y D z DC. Notice that for .a; b/ 2DCƒC6.c/ we
have, by Corollary 2.2(i), that

Mc.a; b/Dmax
�
jaj

jcj
;
jbj

jcj

�
C 1�

jaj

jcj
C 1:

Now

.EC
 0Mc.ABC//
b
a �

X
d;e

Mc.a; b/ŒA
d
a �ŒB

e
d �ŒC

b
e �e


 0ja�bj
�

X
jd j�jej

: : :C
X
jej�jd j

: : : :

We shall only consider the first of these sums – the second one being analogous.
We decompose this sum asX
.a;d/2D

C

ƒC3
.c/

.d;e/2D
C

ƒ .c/

: : :C
X

.a;d/2D
C

ƒC3
.c/

.d;e/…D
C

ƒ .c/

: : :C
X

.a;d/…D
C

ƒC3
.c/

: : :D .I/C .II/C .III/:

In the domain of (I) we have, by Corollary 2.2(i), that Mc.d; e/�Mc.a; b/,
so (I) is

.
ˇ̌
EC
1A

ˇ̌
L�L

ˇ̌
EC
2McB

ˇ̌
D
C

ƒ .c/

ˇ̌
EC
3C

ˇ̌
L�L

�

X
d;e

e�.
1�

0/ja�d j�.
2�


0/jd�ej�.
3�

0/je�bj:

Since two of 
1� 
 0, 
2� 
 0 and 
3� 
 0 are 
 � 
 0 the sum is . . 1

�
 0

/2d .
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By Corollary 2.2(iv) we have, in the domain of (II),

ja� d j; jd � ej&
1

ƒ2
jaj

jcj
:

and, in the domain of (III),

ja� d j; jd � bj&
1

ƒ2
jaj

jcj
:

Hence in both these domains we have

s.d; e/Dmax.ja� d j; jd � ej; je� bj/&
1

ƒ2
jaj

jcj
;

so .II/C .III/ is

.
ˇ̌
EC
1A

ˇ̌
L�L

ˇ̌
EC
2B

ˇ̌
L�L

ˇ̌
EC
3C

ˇ̌
L�L

�

X
s.d;e/& 1

ƒ2
jaj
jcj

.
jaj

jcj
C 1/e�.
1�


0/ja�d j�.
2�

0/jd�ej�.
3�


0/je�bj:

Since two of 
1� 
 0, 
2� 
 0 and 
3� 
 0 are 
 � 
 0 the sum is .ƒ2. 1

�
 0

/2dC1.
The seven other cases of (ii) are treated in the same way, as well as the case

when the factors A;B and C are permuted. �

We give a more compact and slightly weaker formulation of this result.

COROLLARY 2.4. For all x; y 2 fC;�g, all 
 0 < 
 and any c ¤ 0ˇ̌̌
E
xy

 0 Mc.AB/

ˇ̌̌
D
xy
ƒC3

.c/
.ƒ2

�
1


�
 0

�dC1� ˇ̌
Ex
1A

ˇ̌
L�L

(i)

C
ˇ̌
Ex
1Mc.A/

ˇ̌
Dxƒ.c/

� ˇ̌
Ey
2B

ˇ̌
L�L

;

where one of 
1; 
2 isD 
 and the other one isD 
 0. The same bound holds
for BA.

ˇ̌̌
E
xyz

 0 Mc.ABC/

ˇ̌̌
D
xyz
ƒC6

.c/
.ƒ2

�
1


�
 0

�2dC1 ˇ̌
Ex
1A

ˇ̌
L�L

Œ
ˇ̌
Ey
2Mc.B/

ˇ̌
D
y
ƒ.c/

(ii)

C
ˇ̌
Ey
2B

ˇ̌
L�L

�
ˇ̌
Ez
3C

ˇ̌
L�L

;

where two of 
1; 
2; 
3 are D 
 and the third one is D 
 0. The same bound
holds when the factors A;B and C are permuted.

Multiplication. Using relations (1) and (7) we obtain from Corollary 2.4(i)
that a product of two Töplitz-Lipschitz matrices is again Töplitz-Lipschitz and for
all 
 0 < 


(10) hABiƒC3;
 0 .ƒ2
�

1


�
 0

�dC1�
hAiƒ;
1 jBj
2 CjAj
1 hBiƒ;
2

�
;

where one of 
1; 
2 is D 
 and the other one is D 
 0.
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This formula cannot be iterated without consecutive loss of the Lipschitz do-
main. However Corollary 2.4(ii) together with (5) gives for all 
 0 < 


(11) hA1 � � �AniƒC6;
 0

� .cte:/nƒ2
�

1


�
 0

�.n�1/dC1� X
1�k�n

Y
1�j�n
j 6Dk

ˇ̌
Aj
ˇ̌

j
hAkiƒ;
k

�
;

where all 
1; : : : ; 
n are D 
 except one which is D 
 0.

Linear differential equation. Consider the linear system(
d
dt
X D A.t/X

X.0/ D I;

where A.t/ is Töplitz-Lipschitz with exponential decay. The solution verifies

X.t0/D I C

1X
nD1

Z t0

0

Z t1

0

: : :

Z tn�1

0

A.t1/A.t2/ : : : A.tn/dtn : : : dt2dt1:

Using (11) we get for 
 0 < 


(12) hX.t/� I iƒC6;
 0

.ƒ2
�

1


�
 0

�
jt j exp

�
cte:

�
1


�
 0

�d
jt j˛.t/

�
sup
jsj�jt j

hA.s/iƒ;
 ;

where ˛.t/D sup0�jsj�jt j jA.s/j
 .

2.4. Töplitz-Lipschitz matrices .d � 2/. Let A W L�L! gl.2;C/ be a ma-
trix. We say that A is 1-Töplitz if all Töplitz limits A.˙; c/ exist, and we define,
inductively, that A is n-Töplitz if all Töplitz limits A.˙; c/ are .n�1/-Töplitz. We
say that A is Töplitz if it is .d � 1/-Töplitz.

In Section 2.3 we have defined hAiƒ;
 which we shall now denote by 1hAiƒ;
 .
We define, inductively,

n
hAiƒ;
 D sup

c2Zd

�
n�1
hA.C; c/iƒ;
 ;

n�1
hA.�; c/iƒ;


�
(c D 0 is allowed and A.˙; 0/ D A) and we denote hAiƒ;
 D d�1hAiƒ;
 . The
matrix A is Töplitz-Lipschitz if it is Töplitz at1 and hAiƒ;
 <1 for some ƒ; 
 .

Proposition 2.3, Corollary 2.4 and (9)–(12) remain valid with this norm in any
dimension d .

3. Functions with Töplitz-Lipschitz property

3.1. Töplitz-Lipschitz property. Let O
 .�/ be the set of vectors in the com-
plex space l2
 .L;C

2/ of norm less than � , i.e.,

O
 .�/D f� 2 CL
�CL

W k�k
 < �g:
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Our functions f W O0.�/ ! C will be defined and real analytic on the domain
O0.�/.3

Its first differential

l20 .L;C
2/ 3 O� 7! h O�; @�f .�/i

defines a unique vector @�f .�/ (the gradient with respect to the paring h ; i), and
its second differential

l20 .L;C
2/ 3 O� 7! h O�; @2�f .�/

O�i

defines a unique symmetric matrix @2
�
f .�/ W L�L! gl.2;C/ (the Hessian with

respect to the paring h ; i). A matrix A WL�L! gl.2;C/ is symmetric if tAbaDA
a
b

.
We say that f is Töplitz at 1 if the matrix @2

�
f .�/ is Töplitz at 1 for all

� 2 O0.�/. We define the norm Œf �ƒ;
;� to be the smallest C such that8̂<̂
:
jf .�/j � C 8� 2 O0.�/;

@�f .�/


 0 � 1

�
C 8� 2 O


0

.�/; 8
 0 � 
;

h@2
�
f .�/iƒ;
 0 �

1
�2
C 8� 2 O


0

.�/; 8
 0 � 
:

PROPOSITION 3.1. (i) Œfg�ƒ;
;� . Œf �ƒ;
;� Œg�ƒ;
;� :

(ii) If g.�/D hc; @�f .�/i, then Œg�ƒ;
;� 0 . 1
��� 0 kck
 Œf �ƒ;
;� for � 0 < � .

(iii) If g.�/D hC�; @�f .�/i, then, for � 0 < � and 
 0 < 
 ,

Œg�ƒC3;
 0;� 0 .
��
1C

� 0

� � � 0

�� 1


 � 
 0

�dCm�
jC j


Cƒ2
� 1


 � 
 0

�dC1
hC iƒ;


�
Œf �ƒ;
;� :

Proof. We have

fg.�/D f .�/g.�/;

@�fg.�/D f .�/@�g.�/C @�f .�/g.�/;

@2�fg.�/D f .�/@
2
�g.�/C @

2
�f .�/g.�/C 2.@�f .�/˝ @�g.�//:

(i) now follows from (9).
For � 2 O0.� 0/ we have

jg.�/j � kck0


@�f .�/

0 � kck0 1� ˛;

where ˛ D Œf �ƒ;
;� .

3The space l2
 .L;C
2/ is the complexification of the space l2
 .L;R/ of real sequences. Now, “real

analytic” means that l2
 .L;C
2/ is a holomorphic function which is real on O0.�/\ l2
 .L;R/.
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Let � 2 O

0

.� 0/ and h.z/D @�f .�C zc/. Then, h is a holomorphic function
(with values in the Hilbert-space l2
 0.L;C

2/) in the disk jzj< ��� 0

kck
0
and

kh.z/k
 0 �
1

�
˛:

Since @�g.�/D @zh.0/, we get by a Cauchy estimate that

@�g.�/


 0 � 1

� 0

�
� 0

�

1

��� 0
kck
 0 ˛

�
:

Let � 2 O

0

.� 0/ and k.z/D @2
�
f .�C zc/. Now, k is a holomorphic function

(with values in the Banach-space of matrices with the norm h�iƒ;
 0) in the disk
jzj < ��� 0

kck
0
and hk.z/iƒ;
 0 � 1

�2
˛. Since @2

�
g.�/ D @�k.0/, we get by a Cauchy

estimate that

h@�g.�/iƒ;
 0 �
�
1

� 0

�2��� 0
�

�2 1

� � � 0
kck
 0 ˛

�
:

This proves (ii).
To see (iii) we replace c by C� and notice that

@�g.�/D @zh.0/C
tC@�f .�/

and
@2�g.�/D @zk.0/C

tC@2�f .�/C
t@2�f .�/C:

Also, @zh.0/ and @zk.0/ are estimated as above and kC�k
 0 is estimated with
Young’s inequality (2). The matrix products are estimated by (10). �

3.2. Truncations. Let Tf be the Taylor polynomial of order 2 of f at � D 0.

PROPOSITION 3.2. (i) ŒTf �ƒ;
;� . Œf �ƒ;
;� :

(ii) Œf �Tf �ƒ;
;� 0 . .�
0

�
/3 �
��� 0

Œf �ƒ;
;� :

Proof. Let � 2 O0.� 0/ and let g.z/ D f .z�/. Then g is a real holomorphic
function in the disk of radius �

� 0
and is bounded by ˛ D Œf �ƒ;
;� . Since Tf .z�/D

g.0/Cg0.0/zC 1
2
g00.0/z2 we get by a Cauchy estimate that

j.f �Tf /0�/j D
ˇ̌̌
g.1/�g.0/�g0.0/�

1

2
g00.0/

ˇ̌̌
�

�
� 0

�

�3 �

� � � 0
˛:

Let � 2 O

0

.� 0/ and let h.z/D @�f .z�/. Then h is a holomorphic function in
the disk of radius �

� 0
and bounded by ˛

�
. Since @�Tf .�/D h.0/C h0.0/z we get

by a Cauchy estimate that

@� .f �Tf /.�/


 0 � �� 0� �2 �

� � � 0
˛

�
:

Let � 2 O

0

.� 0/ and let k.z/ D @2
�
f .z�/. Then k is a holomorphic function

in the disk of radius �
� 0

and bounded by ˛
�2

. Since @2
�
Tf .�/ D k.0/ we get by a
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Cauchy estimate that

h@2� .f �Tf /.�/iƒ;
 0 �
�
� 0

�

� �

� � � 0
˛

�2
:

This gives (ii).
The first statement is obtained by taking � 0 D 1

2
� . Since f is a quadratic

polynomial it satisfies the same (modulo a constant) estimate on � as on 1
2
� . �

3.3. Poisson brackets. The Poisson bracket of two functions f and g is de-
fined by ff; gg.�/D h@�f .�/; J @�g.�/i.

PROPOSITION 3.3. (i) If g is a quadratic polynomial, then

Œff; gg�ƒC3;
 0;� 0 .
�

1

�1�2
Cƒ2

�
1


�
 0

�dC1� � 0

�1�2

�2�
Œf �ƒ;
;�1 Œg�ƒ;
;�2 ;

for 0 < �1� � 0 � �1; 0 < �2� � 0 � �2 and 
 0 < 
 .

(ii) If g is a quadratic polynomial and f .�/D h�; A�i, then

Œff; gg�ƒC3;
 0;� 0

.
��

1


�
 0

�dCm� 1
�21
Cƒ2

�
1


�
 0

�dC1 1
�21

�
Œf �ƒ;
;�1 Œg�ƒ;
;�2 ;

for 0 < �1� � 0 � �1; 0 < �2� � 0 � �2 and 
 0 < 
 .

Proof. We have

@�ff; gg.�/D @
2
�f .�/J @�g.�/� @

2
�g.�/J @�f .�/

and @2
�
ff; gg.�/ is the symmetrization of the infinite matrix

@3�f .�/J @�g.�/� @
3
�g.�/J @�f .�/C @

2
�f .�/J @

2
�g.�/C @

2
�f .�/J @

2
�g.�/:

For � 2 O0.� 0/ we get, by Cauchy-Schwartz, that

jff; gg.�/j �


@�f .�/

0 

@�g.�/

0 � � ˛ˇ

�1�2

�
;

where ˛ D Œf �ƒ;
;�1 and ˇ D Œg�ƒ;
;�2 .
For � 2 O


0

.� 0/, let h.z/D @�f .�CzJ @�g.�//. For jzj< �1��
0

k@�g.�/k
0
we have

kh.z/k
 0 �
˛

�1
:

Since @zh.0/D @2�f .�/J @�g.�/ and �1 � � 0 � �1, we get by a Cauchy estimate
that 


@2�f .�/J @�g.�/





 0
.

1

�21�2
˛ˇ:

The same estimate holds with f and g interchanged.
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For � 2 O

0

.� 0/, let k.z/ D @2
�
f .� C zJ @�g.�//. By a Cauchy estimate we

get as above that h@3
�
f .�/J @�g.�/iƒ;
 0 . 1

�31�2
˛ˇ. The same estimate holds with

f and g interchanged.
Finally, for � 2 O


0

.� 0/ we get by (10) that

h@2�f .�/J @
2
�g.�/iƒC3;
 0 .ƒ

2.
 � 
 0/�d�1h@2�f .�/iƒ;
 0h@
2
�g.�/iƒ;
 :

By hypothesis we have h@2
�
g.�/iƒ;
 �

ˇ

�22
for � only in O
 .� 0/. But since g is

quadratic, @2
�
g.�/ is independent of � and, hence, this also holds in the larger

domain � 2 O

0

.� 0/. The symmetrized matrices satisfy the same estimates, and (i)
is established.

The second part follows directly from Proposition 3.1(iii). �

3.4. The flow map. Consider the linear system

P� D J@�ft .�/

where ft .�/ D h�; at i C 1
2
h�; At�i, and let ˛.t/ D supjsj�jt j jAsj
 and ˇ.t/ D

supjsj�jt j kask
 0 . Consider the nonlinear system Pz D g.�; z/ where g.�; z/ is real
analytic in O0.�/�D.�/. D.�/ is the disk of radius � in C. Let 0 < �0 < �.

PROPOSITION 3.4. (i) The flow map of the linear system has the form

�t W � 7! �C bt CBt�;

and for 
 0 < 


k�t .�/� �k
 0 .
�

1


�
 0

�m�h
e

cte:. 1

�
0

/d jt j˛.t/
jt jˇ.t/

C

h
e

cte:. 1

�
0

/d jt j˛.t/
� 1

i
k�k
 0

i
and

hBt iƒC6;
 0 .ƒ2
�

1


�
 0

�
jt je

cte:. 1

�
0

/d jt j˛.t/ sup
jsj�jt j

hAsiƒ;
 :

(ii) For jzj< �0, the flow of the nonlinear system is defined for jt j � ���0

2"
and

Œzt .�; z/� z�ƒ;
;� .
�
1C

���0

"

�
e

cte:jt j 1
���0

"
� 1

��2
" ;

where "D supz2D.�/Œg.�; z/�ƒ;
;� � 1.

Proof. (i) We have

bt D

1X
nD1

Z t

0

: : :

Z tn�1

0

JAt1 : : : JAtn�1Jatndtndtn�1 : : : dt1
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and

Bt D

1X
nD1

Z t

0

: : :

Z tn�1

0

JAt1 : : : JAtndtn : : : dt1:

By (5),

jBt j
 0 . .
 � 
 0/d .ı.t/� 1/; ı.t/D exp.cte:.
 � 
 0/�d jt j˛.t//

and by (2) we have

kBt�k
 0 .
�

1


�
 0

�m�
.ı.t/� 1/ k�k
 0 :

By (2) and (5),

kbtk
 0 .
�

1


�
 0

�m�
ı.t/jt jˇ.t/:

By (12) we have

hBt iƒC6;
 0 .ƒ2.
 � 
 0/�1ı.t/ sup
jsj�jt j

hAsiƒ;
 :

The proof of (ii) is easier. Now, @� Pzt D @�g.: : :/C@zg.: : :/@�zt which implies
that

@�zt D

Z t

0

e
R t
s @zg.�;zr /dr@�g.�; zs/ds:

This is easy to estimate. We also have

@2� Pzt D @
2
�g.: : :/C @z@�g.: : :/˝ @�zt C @zg.: : :/@

2
�zt

which is treated in the same way. �

Remark. This result holds for zD .z1; : : : ; zn/2D.�/n and gD .g1; : : : ; gn/.

Remark. If jt j � 1 and supjsj�jt j jAsj
 . .
 � 
 0/d ; then

k�t .�/� �k
 0 .
�

1


�
 0

�m�
sup
jsj�jt j

kask
 0 C
�

1


�
 0

�m�Cd
sup
jsj�jt j

jAsj
 k�k
 0

and
hBt iƒC6;
 0 .ƒ2

�
1


�
 0

�
sup
jsj�jt j

hAsiƒ;
 :

If jt j � 1 and "D supz2D.�/Œg.�; z/�ƒ;
;� .���0; then Œzt .�; z/�z�ƒ;
;� . ":

3.5. Compositions. Let f .�; z/ be a real analytic function on O0.�/�D.�/

and supz2D.�/Œf .�; z/�ƒ;
;� < 1: Let 0 < � 0 < � , 0 < �0 < � and ˆ.�; z/ D
�C b.z/CB.z/� with

kb.z/CB.z/�k
 0 < � � �
0; 8.�; z/ 2 O


0

.� 0/�D.�0/

for all 
 0 � 
 . This implies that

ˆ.�; z/ W O

0

.� 0/! O

0

.�/; 8 
 0 � 
; 8z 2 D.�0/:
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Let g.�; z/ be a real holomorphic function on O0.� 0/ � D.�0/ such that jgj �
1
2
.���0/:

PROPOSITION 3.5. For all z 2 D.�0/ and 
 0 < 
 ,

Œf .ˆ.�; z/; zCg.�; z//�ƒC6;
 0;� 0

.max
�
1; ˛;ƒ2

�
1


�
 0

�
˛2
�

sup
z2D.�/

Œf .�; z/�ƒ;
;� ;

where

˛ D
1

���0
sup

z2D.�/

Œg.�; z/�ƒ;
;� 0 C
�

1


�
 0

�dCm�
sup

z2D.�/

hBiƒ;
 :

Proof. Let "D supz2D.�/Œf .�; z/�ƒ;
;� and ˇD supz2D.�0/Œg.�; z/�ƒ;
;� 0 . Let
h.�; z/D f .ˆ.�; z/; zCg.�; z//. Then

@�hD @zf .: : :/@�gC
tB@�f .: : :/

and

@2�hD @
2
zf .: : :/.@�g˝ @�g/C @zf .: : :/@

2
�g

C 2 tB.@�@zf .: : :/˝ @�g/C
tB@2�f .: : :/B:

For .�; z/ 2 O0.� 0/�D.�0/ we get: jh.�/j � ". For .�; z/ 2 O

0

.� 0/�D.�0/,

@zf .: : :/@�g


 0 j@zf .: : :/j 

@�g


 0 . � 1

���0

�
"
ˇ

� 0
I

tB@�f .: : :/


 0 . � 1


�
 0

�dCm�
jBj


"

�

by Young’s inequality (2).
For .�; z/ 2 O


0

.� 0/�D.�0/,

h@2zf .: : :/@�g˝ @�giƒ;
 0 .
�

1

���0

�2
"
�
ˇ

� 0

�2
by (9);

h@zf .: : :/@
2
�giƒ;
 0 .

�
1

���0

�
"
�
ˇ

.� 0/2

�
I

h
tB.@�@zf .: : :/˝ @�g/iƒC3;
 0 .ƒ2

�
1


�
 0

�dC1
hBiƒ;


�
1

���0

�
"
ˇ

�� 0

by (9)–(10);

h
tB@2�f .: : :/BiƒC6;
 0 .ƒ

2
�

1


�
 0

�2dC1
hBi2ƒ;


"

�2

by (11). �

Remark. This result holds for zD .z1; : : : ; zn/2D.�/n and gD .g1; : : : ; gn/.
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Part II. The homological equations

In this part we consider scalar-valued matrices Q W L �L! C which we
identify with gl.2;C/-valued matrices through the identification Qba DQ

b
aI .

We will only consider the Lipschitz domains DCƒ.c/ which we denote by
Dƒ.c/.

We define the block decomposition E� together with the blocks Œ � �� and the
bound d� of the block diameter. We consider parameters U � RA, AD Zd nL,
and define the norms j � jn


U

o and h � inƒ;

U

o.
4. Decomposition of L

In this section d � 2. For a nonnegative integer � we define an equivalence
relation on L generated by the pre-equivalence relation

a � b()

�
jaj2 D jbj2

ja� bj ��:

Let Œa�� denote the equivalence class (block) of a, and let E� be the set of equiva-
lence classes. It is trivial that each block Œa�� is finite with cardinality . jajd�1 that
depends on a. But there is also a uniform �-dependent bound. Indeed, let d� be
the supremum of all block diameters. We will see (Proposition 4.1) d� .�

.dC1/Š
2 .

� will be fixed in this section and we will write Œ � � for Œ � ��.

4.1. Blocks. For any X � Zd we define its rank to be the dimension of the
smallest affine subspace in Rd containing X .

PROPOSITION 4.1. Let c 2 Zd and rankŒc� D k, k D 1; : : : ; d . Then the
diameter of Œc� is . �

.kC1/Š
2 .

Proof. Let �j ; j � 1 be an increasing sequence of numbers. Assume that for
any 1� l � k,

.�/l rank.B�l .c/\ Œc�/� l 8c 2 Œc�;

where Br.c/ is the ball of radius r centered at c. This means that for any c 2 Œc�,
there exist linearly independent vectors a1; : : : ; al in Zd such that cCaj 2 Œc� andˇ̌
aj
ˇ̌
��l , 1� j � l .
.�/l implies that the ? projection Qc of c onto

P
Raj verifies

.��/ j Qcj.
�
�l l D 1

�lC1
l

l � 2:

Proof. In order to see this we observe that, since jcC aj j2 D jcj2 for each j ,
the (row) vector c verifies cM D�1

2
.ja1j

2 : : : jal j
2/; where M is the d � l-matrix
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whose columns are ta1; : : : tal . Now there exists an orthogonal matrix Q such that

QM D

�
B

0

�
;

whereB is an invertible l�l-matrix. We have .detB/2Ddet.tBB/Ddet.tMM/�1;

and (the absolute values of) the entries of B are bounded by .�l .
Define x now by�

.x1 : : : xl/D�
1
2
.ja1j

2 : : : jal j
2/B�1

xlC1 D � � � D xd D 0;

and y D xQ. Then c �y ?
P

Raj , so that j Qcj � jyj. An easy computation gives
jyj D jxj.�lC1

l
and .�1 .if l D 1/: �

We shall now determine �l so that .�/l holds. This will be done by induction
on l . For l D 1, �1D� works, so let us assume that .�/l holds for some 1� l < k.
If .�/lC1 does not hold, it is violated for some c. Let us fix this c 2 Œc�, and let X
be the real subspace generated by .B�lC1.c//\ Œc�/� c. Now, X has rank D l .

For any b 2 Œc� with jb� cj ��lC1��l we have

B�l .b/\ Œc�� B�lC1.c/\ Œc�:

By the induction assumption the ? projection Qb of b onto X verifies .��/.
Take now b 2 Œc� such that �lC1��l ��� jb� cj � .�lC1��l/; such a

b exists since the rank of Œc� is � l C 1. Since b� c is parallel to X we have

�lC1��l ��� jb� cj D j Qb� Qcj.
�
�l l D 1

�lC1
l

l � 2:

So if we take �lC1 � the RHS, then the assumption that .�/lC1 does not hold
leads to a contradiction. Hence with this choice .�/l holds for all l � k.

To conclude we observe now that Œc� � c C X where X is a subspace of
dimension k. Clearly the diameter of Œc� is the same as the diameter of its ?
projection onto X , and, by .��/, the diameter of the projection is ��k . �

We say that Œa� and Œb� have the same block-type if there are a0 2 Œa� and
b0 2 Œb� such that Œa�� a0 D Œb�� b0: It follows from the proposition that there are
only finitely many block-types. We say that the block type of Œa� is orthogonal to
c if Œa�� a ? c:

Description of blocks when d D 2; 3. Outside fjaj W� d� � �3g, for d D 2
we have

? rankŒa� D 1 if, and only if, a 2 b
2
C b? for some 0 < jbj � �; then Œa� D

fa; a� bg;

? rankŒa�D 0; then Œa�D fag.

For d D 3, we have outside fjaj W� d� ��12g
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? rankŒa�D 2 if, and only if, a 2 b
2
C b?\ c

2
C c? for some 0 < jbj ; jcj � 2�

linearly independent; then Œa�� fa; a� b; a� cg;

? rankŒa� D 1 if, and only if, a 2 b
2
C b? for some 0 < jbj � �; then Œa� D

fa; a� bg;

? rankŒa�D 0; then Œa�D fag.

4.2. Neighborhood at1.

PROPOSITION 4.2. For any jaj&ƒ2d�1, there exists c 2Zd , 0 < jcj.ƒd�1,
such that

jaj �ƒ.jacjC jcj/ jcj ; ha; ci � 0:

(ac is the lattice element on aCRc closest to the origin.)

Proof. For all K & 1 there is a c 2 Zd \fjxj �Kg such that

ı D dist.c;Ra/� C1
�
1

K

� 1
d�1

where C1 only depends on d .
To see this we consider the segment � D Œ0; K

jaj
a� in Rd and a tubular neigh-

borhood �" of radius ":
vol.�"/�K"d�1:

The projection of Rd onto Td is locally injective and locally volume-preserving.
If "& . 1

K
/
1
d�1 , then the projection of �" cannot be injective (for volume reasons),

so there are two different points x; x0 2 �" such that x � x0 D c 2 Zd n 0. Then
jacj. jaj

jcj
ı. Now,

ƒ.jacjC jcj/ jcj �ƒK
2
CC2

ƒ

K
1
d�1

jaj :

If we choose K D .2C2ƒ/d�1, then this is � jaj. �

COROLLARY 4.3. For any ƒ;N > 1, the subset

fjajC jbj&ƒ2d�1g\ fja� bj �N g � Zd �Zd

is contained in [
0<jcj.ƒd�1

D�.c/

for any �� ƒ
NC1

� 1.

Proof. Let jaj & ƒ2d�1. Then there exists 0 < jcj . ƒd�1 such that jaj �
ƒ.jacjC jcj/ jcj. Clearly (because d � 2)

jaj

jcj
� 2ƒ2 � 2�2:
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If we write aD acC tc then bD acCb�aC tc: According to Lemma 2.1(iv)

jbj ��.jac C b� ajC jcj/jcj;

and moreover
jbj

jcj
�
jaj

jcj
�N � 2ƒ2�N � 2�2: �

Remark. This corollary is essential. It says that any neighborhood

f.a; b/ W ja� bj �N g � Zd �Zd

of the diagonal, outside some finite set, is covered by finitely many Lipschitz do-
mains.

4.3. Lines .aCRc/\Zd .

PROPOSITION 4.4. (i) If ŒaC tc�D ŒbC tc� for all t � 1, then ŒaC tc�D
ŒbC tc� for all t ;

(ii) ŒaC tc�� .aC tc/ is constant and ? to c for all t such that

jaC tcj � d2�.jacjC jcj/ jcj :

Proof. To prove (i) we observe that jaC tcj D jbC tcj for all t � 1, which
clearly implies that jaC tcj D jbC tcj for all t . If ja� bj � � then this implies
that ŒaC tc�D ŒbC tc� for all t . Otherwise, for all t� 1 there is a dt … fa; bg such
that Œdt C tc�D ŒaC tc�: Since the diameter of each block is � d�, it follows that
jdt � aj � d�. Since there are infinitely many t ’s and only finitely many dt ’s, there
is some d such that d D dt for at least three different t ’s. Then jd C tcj D jaC tcj
for all t:

If now ja� d j � � and jd � bj � �, then Œa C tc� D Œb C tc� for all t .
Otherwise, for all t � 1 there is an et … fa; b; dg such that Œet C tc�D ŒaC tc�;
and the statement follows by a finite induction.

To prove (ii) it is enough to consider aD ac . Let b 2 ŒaC tc�� .aC tc/ for
some tD t0, such that jaC tcj�d2�.jacjCjcj/ jcj. Then jaC tcC bj2DjaC tcj2;
i.e., 2thb; ciC 2hb; aiC jbj2 D 0.

If hb; ci 6D 0, then

jaC tcj � jajC jthb; cij jcj � jajC
�
jhb; aijC

1

2
jbj2

�
jcj

which is less than �
.d�C 1/ jajC

1

2
d2�

�
jcj :

But this is impossible under the assumption on aC tc. Therefore hb; ci D 0, i.e.,
ŒaC tc�� .aC tc/ ? to c.

Moreover it follows that jaC tcC bj D jaC tcj for all t . If jbj �� it follows
that ŒaC bC tc�D ŒaC tc� for all t . If not, there is a sequence of points 0D b1,
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b2; : : : ; bk D b in ŒaC t0c�� .aC t0c/ such that
ˇ̌
bjC1� bj

ˇ̌
�� for all j . By a

finite induction it follows that ŒaC bC tc�D ŒaC tc� for all t . Hence

ŒaC tc�D .t � t0/cC ŒaC t0c�

for all t � t0. �

More on Töplitz-Lipschitz matrices. For a matrix Q W L�L! C we denote
by Q.tc/ the matrix whose components are

Qba.tc/DWQ.tc/
b
a DQ

bCtc
aCtc :

4

Clearly for any subset I; J of L

QJI .tc/DWQ.tc/
J
I DQ

JCtc
ICtc

in an obvious sense.

COROLLARY 4.5. Let ƒ� d2�. If .a; b/ 2Dƒ.c/, then

Q
Œb��
Œa��

.tc/DQ
ŒbCtc��
ŒaCtc��

for all t � 0. In particular, if Q is Töplitz at1, then

lim
t!1




QŒb��Œa��
.tc/�Q

Œb��
Œa��

.1c/



D 0:

Proof. This follows immediately from Proposition 4.4(ii). �

5. Small divisor estimates

Let ! 2 U � RA be a set contained in

(13) fj!j � C1g; C1 � 1:

If A W L�L! gl.2;C/ depends on the parameters ! 2 U we define

jAjn

U

o D sup
!2U

.jA.!/j
 ; j@!A.!/j
 /;

where the derivative should be understood in the sense of Whitney.5 If the matrices
A.!/ and @!A.!/ are Töplitz at1 for all ! 2 U , then we can define

hAinƒ;

U

o D sup
!2U

.hA.!/iƒ;
 ; h@!A.!/iƒ;
 /:

(This Lipschitz norm is defined in ��2.3, 2.4.) When 
 D 0 we denote these norms
by jAjU and hAinƒ

U

o.
It is clear that if hAinƒ;


U

o is finite, then the convergence to the Töplitz limit

is uniform in ! both for A and @!A.

4Notice the abuse of notation. In order to avoid confusion we shall sometimes denote the Töplitz
limit in the direction c by Q.1c/.

5This implies that hAin

U

o bounds a C1-extension of A.!/ to a ball containing U .
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5.1. Normal form matrices. A matrix A WL�L! gl.2;C/ is on normal form
– denoted NF� – if

(i) A is real valued;

(ii) A is symmetric, i.e., Aa
b
D t .Aba/;

(iii) �AD A (� is defined in �2.1);

(iv) A is block-diagonal over E�, i.e., Aba D 0 for all Œa�� 6D Œb��.

For a normal form matrix A the quadratic form 1
2
h�; A�i takes the form

1

2
h�; A1�iC h�; A2�iC

1

2
h�;A1�i

where A1C iA2 is a Hermitian (scalar-valued) matrix.
Let

w D

�
ua
va

�
D C�1

�
�a
�a

�
; C D

 
1p
2

1p
2

�ip
2

ip
2

!
and define tCAC W L�L! gl.2;C/ through .tCAC/ba D

tCAbaC .
Then A is on normal form if, and only if,

1

2
hw; tCACwi D

1

2
hu;Qvi;

where Q W L�L! C is

(i) Hermitian, i.e., Qa
b
DQba,

(ii) block-diagonal over E�.

We say that a scalar-valued matrix Q with this property is on normal form, denoted
NF�.

Remark. Notice that a scalar valued normal form matrix Q will in general
not become a gl.2;R/-valued normal form matrix through the identification Qba D
QbaI , because the identification with tCAC is different. However, the Töplitz prop-
erties are the same and the two Lipschitz norms (obtained by these two different
identifications) are equivalent.

We denote for any subset I of L

QI DQ
I
I DQjI�I :

5.2. Small divisor estimates. Let �D�.!/ WL�L! R be a real scalar val-
ued diagonal matrix with diagonal elements �a.!/, ! 2U: Consider the conditions

(14)
� ˇ̌
@�!.�a.!/� jaj

2/
ˇ̌
� C2e

�C3jaj; C3 > 0

.a; !/ 2 L�U; � D 0; 1;
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and

(15)

8̂̂̂<̂
ˆ̂:
h@!.hk; !iC�a.!//;

k
jkj
i � C4 > 0;

h@!.hk; !iC�a.!/C�b.!//;
k
jkj
i � C4;

h@!.hk; !iC�a.!/��b.!//;
k
jkj
i � C4;

a; b 2 L; k 2 ZA n 0; ! 2 U:

Let H DH.!/ W L�L! C and consider

(16) k@!H.!/k �
C4

4
; ! 2 U:

(Here k k is the operator norm.)
Let us first formulate and prove the easy case.

PROPOSITION 5.1. Let �0 > 1 and 1 > � > 0. Assume that U verifies (13),
that � is real diagonal and verifies (14) and (15), and that H verifies (16). Assume
also that H.!/ is NF� for all ! 2 U .

Then there exists a closed set U 0 � U ,

Leb.U nU 0/� cte:max.�0; d2�/
2dC#A�1.C1C sup

U

kH.!/k/d�C #A�1
1

such that for all ! 2 U 0, all 0 < jkj ��0 and for all

(17) Œa��; Œb��

we have

jhk; !ij � �;(18)

jhk; !iC˛.!/j � � 8 ˛.!/ 2 �..�CH/.!/Œa��/(19)

and

(20) jhk; !iC˛.!/Cˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!/Œa��/

ˇ.!/ 2 �..�CH/.!/Œb��/:

Moreover the �-neighborhood of U 0 � U satisfies the same estimate. The constant
cte: depends on the dimensions d and #A and on C2; C4.

Proof. It is enough to prove the statement for �0 � d2�. Let us prove the esti-
mate (20), the other two being the same, but easier. Let C5 D supU kH.!/k. Since
jkj � �0, jhk; !ij . C1�0.6 If the block I intersects fjcj &

p
C1�0CC5g, then

any eigenvalue ˛ of .�CH/.!/I verifies ˛ &C1�0: Hence jhk; !iC˛Cˇj& 1:
So it suffices to consider a pair of eigenvalues ˛ 2 �..�CH/.!/I / and

ˇ 2 �..�CH/.!/J / with blocks I; J � fjcj.
p
C1�0CC5g: These are at most

. .C1�0CC5/d many possibilities.
Now, .hk; !iC˛Cˇ/ is an eigenvalue of the Hermitian operator

H.!/ WX 7! hk; !iX C .�CH/.!/IX C .�CH/.!/JX

6In this proof . depends on d , #A and on C2; C4.
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which extends C1 to a ball around U in fj!j<C1g: Assumptions (15) and (16), via
Proposition 9.3 (Appendix), now imply that the inverse of H.!/ is bounded from
above by 1

�
(this gives a lower bound for its eigenvalues) outside a set of Lebesgue

measure . dd�
�
jkj
C #A�1
1 :

Summing now over all these blocks I; J and all jkj ��0 gives the result. �
We now turn to the main problem.

PROPOSITION 5.2. Let �0 > 1 and 0 < � . 1. Assume that U verifies (13),
that � is real diagonal and verifies (14) and (15), and that H verifies (16). Assume
also that H.!/ and @!H.!/ are Töplitz at1 and NF� for all ! 2 U .

Then there exists a subset U 0 � U ,

Leb.U nU 0/� cte:max.�0; d2�; ƒ/
expC#A�1

�
C1ChH i

n
ƒ
U

o�d�. 1
dC1

/dC #A�1
1 ;

such that, for all ! 2 U 0, 0 < jkj ��0 and all

(21) dist.Œa��; Œb��/��0

we have

(22) jhk; !iC˛.!/�ˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!/Œa��/

ˇ.!/ 2 �..�CH/.!/Œb��/:

Moreover the �-neighborhood of U nU 0 satisfies the same estimate.
The exponent exp depends only on d . The constant cte: depends on the dimen-

sions d and #A and on C2; C3; C4.

Proof. The proof goes in the following way: first we prove an estimate in
a large finite part of L (this requires parameter restriction); then we assume an
estimate “at1” of L and we prove, using the Lipschitz property, that this estimate
propagates from “1” down to the finite part (this requires no parameter restriction);
in a third step we have to prove the assumption at1. This will be done by a finite
induction on the “Töplitz-invariance” of H . Notice that it is enough to prove the
statement for �0 �max.ƒ; d2�/ and let Œ � denote Œ ��. Let N � .�0/2.

1. Finite part. For the finite part, let us suppose a belongs to

(23) fa 2 L W jaj. .C1C
1

�1
dd�hH i

n
ƒ
U

o/N 2d�1
g; 7

where �1 D �
1

dC1 . There are finitely many possibilities and (22)� is fulfilled, for
all Œa� satisfying (23), all Œb� with ja� bj.�0 and all 0 < jkj ��0, outside a set
of Lebesgue measure

(24) . dd�.C1C d
d
�hH i

n
ƒ
U

o/dN d.2d�1/.�0/dC#A�1 �

�d1
C #A�1
1 :

(This is the same argument as in Proposition 5.1.)

7In this proof . depends on d; #A and on C2; C3; C4.
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We now get rid of the diagonal terms yV .a; !/ D �a.!/ � jaj
2 which, by

(14), are � C2e
�jajC3 : We include them into H . Since they are diagonal, H will

remain on normal form. Due to the exponential decay of yV , H and @!H will
remain Töplitz at1. The Lipschitz norm gets worse but this is innocent in view
of the estimates. Also the estimate of @!H.!/ gets larger, but if a is outside (23)
then condition (16) remains true with a slightly larger bound, say

k@!H.!/k �
3C4

8
; ! 2 U:

So from now on, a is outside (23) and �a D jaj2:

2. Condition at1. For each vector c 2 Zd such that 0 < jcj . N d�1, we
suppose that the Töplitz limit H.c; !/ verifies (22)�1 for (21) and for

(25) .Œa�� Œb�/? c:

It will become clear in the next part why we only need (22)�1 and .21/ under the
supplementary restriction (25).

3. Propagation of the condition at1. We must now prove that for jb� aj.�0
and an a 2 L outside (23), (22)� is fulfilled.

By Corollary 4.3 we get

.a; b/ 2
[

0<jcj.Nd�1

DN 0.c/; N 0 �
N

�0
:

Fix now 0 < jcj.N d�1 and .a; b/ 2DN 0.c/.
By Corollary 2.2(iii)

Œa�� Œa�; Œa�� Œb�; Œb�� Œb��DN 0.c/�Dƒ.c/

if we replace N 0 by N 0� d�� 2 — still denoted N 0.
By Proposition 4.4(ii) (notice that N 0� d2�), ŒaC tc�D Œa�C tc and ŒbC tc�D

Œb�C tc for t � 0 and Œa�� a; Œb�� b ? c: It follows (Corollary 4.5) that

lim
t!1

H.!/ŒaCtc� DH.c; !/Œa� and lim
t!1

H.!/ŒbCtc� DH.c; !/Œb�:

The matrices �ŒaCtc� and �ŒbCtc� do not have limits as t !1. However,
for any .#Œa�� #Œb�/-matrix X,

�ŒaCtc�X �X�ŒbCtc� D �Œa�X �X�Œb�C 2tha� b; ciX

for t � 0, and we must discuss two different cases according to if hc; b� ai D 0 or
not.

Consider for t � 0 a pair of continuous eigenvalues�
˛t 2 �..�CH.!//ŒaCtc�/

ˇt 2 �..�CH.!//ŒbCtc�/:
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Case I: hc; b� ai D 0. Here

.�CH.!//ŒaCtc�X �X.�CH.!//ŒbCtc�

equals

.jaj2CH.!//ŒaCtc�X �X.jbj
2
CH.!//ŒbCtc�:

The linear and quadratic terms in t cancel!
By continuity of eigenvalues, limt!1.˛t �ˇt /D .˛1�ˇ1/; where�

˛1 2 �..jaj
2
CH.c; !//Œa�/

ˇ1 2 �..jbj
2
CH.c; !//Œb�/:

Since Œa� and Œb� verify (25), our assumption on H.c; !/ implies that .˛1�ˇ1/
verifies (22)�1 .

For any two a; a0 2 Œa� we have jaj D ja0j. Hence

H.!/Œa��H.c; !/Œa�

 jaj
jcj
. dd�hH i

n
ƒ
U

o;
and the same for Œb�. Recalling that a and, hence, b violate (23) this implies

H.!/Œd��H.c; !/Œd�

 � �1

4
; d D a; b:

By Lipschitz-dependence of eigenvalues (of Hermitian operators) on parameters,
this implies that

j.˛0�ˇ0/� .˛1�ˇ1/j �
�1

2

and we are done.

Case II: hc; b�ai 6D 0. We write aD acC �c. Since jaj �N 0.jacjC jcj/ jcj,
it follows that jacj � 1

N 0
jaj
jcj
:

Now, ˛0�ˇ0 differs from jaj2�jbj2 by at most 2 kH.!/k. dd�hH i
n
ƒ
U

o; and

jaj2� jbj2 D�2�hc; b� ai � 2hac ; b� ai � jb� aj
2 :

Since jhc; b� aij � 1 it follows that

� . j˛0�ˇ0jC jacj�0C .�0/2C dd�hH inƒ
U

o:
If now j˛0�ˇ0j. C1�

0 then jaj � jacjC j� cj is

� cte:.jacj�0 jcjCC1.�0/2 jcjC dd�hH i
n
ƒ
U

ojcj/
�
1

2
jajC cte:.C1.�0/2 jcjC dd�hH i

n
ƒ
U

ojcj/:
Since a violates (23) this is impossible. Therefore j˛0�ˇ0j & C1�

0 and (22)�
holds.
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Hence, we have proved that (22)� holds for any�
a 2 .23/�1
.a; b/ 2 .21/

[

�
.a; b/ 2

S
0<jcj.Nd�1 DN 0.c/

.a; b/ 2 .21/

under the condition at1. Therefore (22)� holds for any .a; b/ 2 .21/.

4. Proof of condition at 1 — induction. Let c1 be a primitive vector in
0 < jc1j . N d�1, and let G be the Töplitz limit H.c1/. Then G verifies (16),
G.!/ and @!G.!/ are Töplitz at1 and

hGinƒ
U

o � hH inƒ
U

o:
Clearly G.!/ is Hermitian and, by Proposition 4.4(i), G.!/ and @!G.!/ are block
diagonal over E�, i.e., G.!/ and @!G.!/ are NF�. Moreover G is Töplitz in
the direction c1, GbCtc1aCtc1

D Gba , for all a; b; tc1. Now, �a D jaj2 for all a, so �
verifies (14) and (15) .

We want to prove that G verifies (22)�1 for all .a; b/ 2 .21/C .25/c1 , i.e., for
all ja � bj . �0 and .Œa�� Œb�/ ? c1: Since G is Töplitz in the direction c1 it is
enough to show this for

(26)
ˇ̌
projLin.c1/a

ˇ̌
.N d�1:

To prove this we repeat the previous arguments.

Finite part. In the set .23/�2 , �2 D �
1

dC1

1 , there are only finitely many possi-
bilities and .22/�1 will be fulfilled outside a set of ! of Lebesgue measure .24/ �1

�d
2

.

A second condition at1. For each vector c 2 Zd such that 0 < jcj.N d�1

with c and c1 being linearly independent, we suppose that the Töplitz limit G.c; !/
verifies (22)�2 for all .a; b/ 2 .21/C .25/c1 C .25/c , i.e., for all ja� bj.�0 and
.Œa�� Œb�/? c1; c.

Propagation of condition at 1. The same argument as before shows that
(22)�1 holds for any�

a 2 .23/�2
.a; b/ 2 .21/

[

8<: .a; b/ 2
S
0<jcj.Nd�1

c 6kc1

DN 0.c/

.a; b/ 2 .21/C .25/c1

under the condition at1.
Since a verifies (26), it follows that a 2 .23/�2 or .a; b/ …DN 0.c1/. Indeed,

if .a; b/ 2DN 0.c1/, then (Corollary 2.2(i))

jaj �
jha; c1ij

jc1j
.N d�1

which implies that a2 .23/�2 . Therefore (22)�1 holds for any .a; b/2 .21/C.25/c1 .
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5. The last inductive step. Suppose we have a matrix G verifying (16) and
such that G.!/ and @!G.!/ are Töplitz at 1 and NF� and hGinƒ

U

o � hH inƒ
U

o.
Suppose also that there are primitive and linearly independent vectors c1; : : : ; cd�1
of norm .N d�1, such that G is Töplitz in these directions, i.e.,

G
bCtcj
aCtcj

DGba ; 8a; b; tcj ; j D 1; : : : ; d � 1:

We want to prove that G verifies .22/�d�1 , �d�1 D �
1

dC1

d�2
, for all .a; b/ 2

.21/C .25/c1 C � � �C .25/cd�1 . Since G is Töplitz in the directions c1; : : : ; cd�1
it suffices to prove this for a 2 .26/c1;:::;cd�1 ; i.e.,

ˇ̌
projLin.c1;:::;cd�1/a

ˇ̌
.N d�1.

If a 2 .23/�d , �d D �
1

dC1

d�1
, then .22/�d�1 will be fulfilled outside a set of

! of Lebesgue measure .24/�d�1=�dd . By assumptions .25/c1 C � � � C .25/cd�1 ,
Œa� and Œb� are contained in one and the same affine line, so #Œa�; #Œb� � 2. If
now a 62 .23/�d , then jaj &

ˇ̌
projLin.c1;:::;cd�1/a

ˇ̌
, and the same for b. Therefore

#Œa�D #Œb�D 1 and

jaC bj& .C1C sup
U

kG.!/k/N 2d�1:

It follows that
jjaj2� jbj2j& .C1C sup

U

kG.!/k/N 2d�1;

unless Œa�D Œb�D fag. In the first case we are done because jhk; !ij. C1�0 and
in the second case condition .22/�d�1 reduces to jhk; !ij> �.

This completes the proof of the last inductive step and, hence, of the proposi-
tion. �

6. The homological equations

6.1. A first equation. For k 2 Zn consider the equation

(27) ihk; !iS C i.�.!/CH.!//S D F.!/;

where F.!/ and @!F.!/ are elements in l2
 .L;C/D f� D .�a/a2L W k�k
 <1g,

k�k
 D

sX
a2L

j�aj
2 e2
 jajhai2m�

(hai Dmax.1; jaj/). Denote

kF kn

U

o D sup
!2U

.kF.!/k
 ; k@!F.!/k
 /:

Let U 0 � U be a set such that for all ! 2 U 0� the small divisor condition .19/
holds for all a, i.e.,

jhk; !iC˛.!/j � �; 8 ˛.!/ 2 �..�CH/.!//:
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PROPOSITION 6.1. Let 0 < � < 1. Assume that � is real diagonal and verifies
(14) and that H verifies (16). Assume also that H.!/ and @!H.!/ are NF� for
all ! 2 U .

Then equation (27) has for all ! 2 U 0 a unique solution S.!/ such that

kSkn

U 0

o � cte:
1

�2
d
2m�
� e2
d�.1Cjkj/ kF kn


U 0

o :
The constant cte: only depends on d; #A; m� and C2; C3; C4.

Proof. This is a standard result. Equation (27) has a unique solution verifying

kS.!/k
 .
1

�
d
m�
� e
d� kF.!/k
 :

The factor dm�� e
d� comes in because the block-diagonal character of �.!/C
H.!/ interferes with the polynomial and exponential decay.

If we differentiate equation (27) with respect to ! we get

ihk; !i@!S C i.�.!/CH.!//@!S

D @!F.!/� i.@!hk; !i/S � i@!.�.!/CH.!//S:

If we apply the same estimate to this equation we get the result on U 0.
In order to extend S from U 0 to a ball we take a C1 cut-off function � which

is 1 on U 0 and 0 outside U 0� . We now first solve the equation on U 0� as above to
get a solution zS and then we define S D � zS . �

6.2. Truncations. For a matrix Q W L�L! C consider three truncations

T�0QDQ restricted to f.a; b/ W ja� bj ��0g;

PcQDQ restricted to f.a; b/ W .a� b/? cg;

D�0QDQ restricted to f.a; b/ W ja� bj ��0 and jaj D jbjg:

These truncations all commute. Moreover,

LEMMA 6.2. (i) 8<: jT�0Qjn

U

o � jQjn

U

o ;
hT�0Qinƒ;


U

o � hQinƒ;

U

o
and .T�0Q/.c/D T�0.Q.c// for all c.

(ii) The same result holds for Pc .

(iii) For any ƒ� .d�0/2,8<: jD�0Qjn

U

o � jQjn

U

o ;
hD�0Qinƒ;


U

o � hQinƒ;

U

o:
Moreover .PcD�0Q/.c/D .PcD�0/.Q.c// for all c.
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Proof. (i) and (ii) are obvious. Let us consider (iii). We have that .D�0Q/ba.c/
is DQba.c/ if ja� bj ��0, jaj D jbj, .a�b/? c, and is D 0 otherwise. This gives
immediately the last statement.

If ja� bj � �0, then jaj D jbj H) Œa��0 D Œb��0 . Hence, if .a; b/ 2Dƒ.c/
and ja� bj � �0, then jaj D jbj H) .a � b/ ? c. From this we derive that
.D�0Q/

b
a � .D�0Q/

b
a.c/ is DQba �Q

b
a.c/ or D 0. �

6.3. A second equation, k 6D 0. For k 2 Zn n f0g consider the equation

(28) ihk; !iS C i Œ�.!/CH.!/; S�D T�0F.!/

where F.!/ W L�L! C and @!F.!/ are Töplitz at1.
Let U 0 � U be a set such that for all ! 2 U 0� the small divisor condition

.21/�0C2d� C .22/ holds; i.e.,

jhk; !iC˛.!/�ˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!/Œa��/

ˇ.!/ 2 �..�CH/.!/Œb��/

for dist.Œa��; Œb��/��0C 2d�.

PROPOSITION 6.3. Let �0 > 1 and 0 < � < 1. Assume that U verifies (13),
that � is real diagonal and verifies (14), and that H verifies (16). Assume also
that H.!/ and @!H.!/ are Töplitz at1 and NF� for all ! 2 U .

Then equation (28), under the condition that S D T�0C2d�S , have for all
! 2 U 0, a unique solution S.!/ verifying

(i) jS jn

U 0

o � cte: 1
�2
d2d� e2
d�.1Cjkj/ jF jn


U 0

o;
(ii) S.!/ and @!S.!/ are Töplitz at1 and the Töplitz limits verify�

ihk; !iS C i Œ�.!/CH.c; !/; S�D T�0PcF.c; !/

S D T�0C2d�S I

(iii) For any ƒ0 &max.ƒ; d2�; �
0; supU kH.!/k/,

hSinƒ0Cd�C2;

U 0

o � cte:
1

�3
d2d� e2
d�.1CjkjC hH inƒ

U 0

o/hF inƒ0;

U 0

o:
The constant cte: only depends on the dimensions d and #A and on C1; C2; C3; C4.

Proof. We first eliminate the diagonal terms yV .a; !/D�a.!/� jaj2 which
by (14) are . C2e

�jajC3 .8We include them into H ; in view of the estimates of
the proposition this is innocent. Let us also notice that it is enough to prove the
statement for ƒ� d2�. We first assume that F D T�0F .

So from now on we assume �a D jaj2 and ƒ � d2�: We shall denote the
blocks Œ �� by Œ �.

8In this proof . depends on d; #A and on C1; C2; C3; C4.
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We first block decompose equation (28) over E� taking into account the trun-
cation of S and the small divisor condition which becomes

(29)

(
Lk.!/S

Œb�

Œa�
D F

Œb�

Œa�
.!/ if dist.Œa�; Œb�/��0

S
Œb�

Œa�
D 0 if not;

where

Lk.!/S
Œb�

Œa�
D ihk; !iS

Œb�

Œa�
C i.�CH.!//Œa�S

Œb�

Œa�
� iS

Œb�

Œa�
.�CH.!//Œb�:

Since �CH is Hermitian, under the small divisor condition, equation (29) has a
unique solution which is C1 in ! and verifiesˇ̌̌

Sba

ˇ̌̌
�




S Œb�Œa�


� 1� 


F Œb�Œa� 


 :
(Here, k k is the operator norm.) Hence

(30) jS j
 �
1

�
dd�e

2
d� jF j
 :

The factor dd� comes from the two different matrix norms used here, and the ex-
ponential factor occurs because the block character of �CH interferes with the
exponential decay.

In order to estimate the derivatives in ! we just differentiate (29) with respect
to !:

(31) .ihk; !iC i.�CH.!//Œa�/@!S
Œb�

Œa�
� i@!S

Œb�

Œa�
.�CH.!//Œb�

D @!F
Œb�

Œa�
.!/� i

�
@!hk; !iC @!H.!/Œa�

�
S
Œb�

Œa�
�S

Œb�

Œa�
@!H.!/Œb�:

If GŒb�
Œa�

is the matrix on RHS, then


GŒb�Œa�


� 


@!F Œb�Œa� 


C .jkjC 

@!HŒa�

C 

@!HŒb�

/ 


S Œb�Œa�



and @!S

Œb�

Œa�
is now estimated like S Œb�

Œa�
.

We repeat the same thing on U 0� and then extend S from U 0 to be 0 outside
U 0� by a C1 cut-off. This gives (i).

Töplitz at1. Let Q be a matrix on L and denote by Q.tc/ the matrix whose
elements are Qba.tc/DQ

bCtc
aCtc .9

By Proposition 4.4(ii), for .a; b/ 2Dƒ0.c/ (notice that ƒ0 � d2�), ŒaC tc�D
Œa�C tc and ŒbC tc�D Œb�C tc for t � 0 and Œa�� a, Œb�� b ? c. It follows that

(32) ihk; !iS
Œb�

Œa�
.tc/C i.�CH/Œa�.tc/S

Œb�

Œa�
.tc/

�iS
Œb�

Œa�
.tc/.�CH/Œb�.tc/D F

Œb�

Œa�
.tc/

for all t � 0.

9In order to avoid confusion we shall denote the Töplitz limit in the direction c by Q.1c/.
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Moreover HŒa�.tc/; HŒb�.tc/ and F Œb�
Œa�
.tc/ have limits as t !1 (Corollary

4.5). �Œa�.tc/ and �Œb�.tc/ do not have limits, and we must analyze two different
cases according to whether hc; a� bi D 0 or not.

Case I: hc; a� bi D 0. We have that �Œa�.tc/X �X�Œb�.tc/ (for any .#Œa��
#Œb�/-matrix X ) equals jaj2X �X jbj2. The linear and quadratic terms in t cancel!
Therefore equation (32) has a limit as t !1:

ihk; !iX C i.�Œa�CHŒa�.1c//X � iX.�Œb�CHŒb�.1c//D F
Œb�

Œa�
.1c/:

Since eigenvalues are continuous in parameters we have

jhk; !iC˛�ˇj � � 8

�
˛ 2 �.jaj2CHŒa�.1c//

ˇ 2 �.jbj2CHŒb�.1c//:

Therefore the limit equation has a unique solution X which is C1 in ! and verifies

kXk �
1

�




F Œb�Œa� .1c/


 :
Since S Œb�

Œa�
.tc/ is bounded, it follows from uniqueness that S Œb�

Œa�
.tc/! S

Œb�

Œa�
.1c/

DX as t !1.

Case II: hc; a� bi 6D 0. We have �Œa�.tc/X �X�Œb�.tc/ equals

.2tha; ciC jaj2/X �X.2thb; ci jbj2/I

only the quadratic terms in t cancel! Dividing (32) by t and letting t !1, the
limit equation becomes 2hc; a� biX D 0. It has the unique solution X D 0. For
the same reason as in the previous case we have that S Œb�

Œa�
.tc/! S

Œb�

Œa�
.1c/D 0 as

t !1.
We have thus shown that, for any c, the solution S has a Töplitz limit S.1c/

which verifies, for .a; b/ 2Dƒ0.c/,

(33)

(
Lk.!/S

Œb�

Œa�
D F

Œb�

Œa�
.1c; !/ if dist.Œa�; Œb�/��0 and .a� b/? c

S
Œb�

Œa�
D 0 if not;

where

Lk.!/S
Œb�

Œa�
D ihk; !iS

Œb�

Œa�
C i.�CH.1c; !//Œa�S

Œb�

Œa�
� iS

Œb�

Œa�
.�CH.1c; !//Œb�:

Since S.1c/ is invariant under c-translations, this implies that S.1c/ verifies the
equation in (ii). Moreover jS.1c/j
 �

1
�
dd�e

2
d� jF.1c/j
 .

Estimate of Lipschitz norm. Consider the “derivative” @c :

@cQ
Œb�

Œa�
.tc/D .Q

Œb�

Œa�
.tc/�Q

Œb�

Œa�
.1c//max

�
jaj

jcj
;
jbj

jcj

�
:

(Notice that the definition does not depend on the choice of representatives a and b
in Œa� and Œb� respectively.) We shall “differentiate” equation (32) and estimate the
solution of the “differentiated” equation over Œa�� Œb��Dƒ0.c/ which is �Dƒ.c/
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because ƒ0 �ƒ. By Corollary 2.2(iii) this will provide us with an estimate of the
Lipschitz constant LipC

ƒ0Cd�C2;

.

So we take Œa�� Œb��Dƒ0.c/. Since S is 0 at distances &�0C d� from the
diagonal we only need to treat ja� bj . �0C d�. Again we must consider two
cases.

Case I: hc; a� bi D 0. Subtracting equation (33) for S Œb�
Œa�
.1c/ from equation

(29) for S Œb�
Œa�

and multiplying by max
�
jaj
jcj
; jbj
jcj

�
gives

ihk; !i@cS
Œb�

Œa�
C i.�CH/Œa�@cS

Œb�

Œa�
� @cS

Œb�

Œa�
.�CH/Œb�

D @cF
Œb�

Œa�
� @cHŒa�S

Œb�

Œa�
.1c/CS

Œb�

Œa�
.1c/@cHŒb�:

Now we get as for equation (29) that


@cS Œb�Œa�


� 1� �


@cF Œb�Œa� 


C �

@cHŒa�

C 

@cHŒb�

� 


S Œb�Œa� .1c/


� :
Case II: hc; a� bi 6D 0. Then

j jaj2� jbj2 j �
jaj

jcj
jhc; a� bij �

jbj

jcj
jhc; a� bij&ƒ0:

Indeed jaj2� jbj2 can be writtenˇ̌
a0C �c

ˇ̌2
�
ˇ̌
b0C �c

ˇ̌2 ˇ̌
a0
ˇ̌2
�
ˇ̌
b0
ˇ̌2
C 2�hc; a� bi;

and (recalling Lemma 2.1(ii))ˇ̌̌ˇ̌
a0
ˇ̌2
�
ˇ̌
b0
ˇ̌2 ˇ̌̌
� ja� bj .

ˇ̌
a0
ˇ̌
C
ˇ̌
b0
ˇ̌
/� cte:.�0C d�/

�

ƒ0

and this is � 1
2
� , since ƒ0 � 2cte:.�0C d�/. Moreover (Lemma 2.1(i) and (iii))

jaj

jcj
�
jbj

jcj
� � �ƒ0:

Since ƒ0 & kHk, assuring that kHk is small compared with jaj2� jbj2 j, we
have

j˛�ˇj � 2 jha� b; cij � 2 8

�
˛ 2 �.1

�
.�CH/Œa�/

ˇ 2 �.1
�
.�CH/Œb�/:

Since S Œb�
Œa�
.1c/D 0, multiplying (28) by 1

�
max

�
jaj
jcj
; jbj
jcj

�
gives,

i

�
hk; !i@cS

Œb�

Œa�
C
i

�
.�CH/Œa�@cS

Œb�

Œa�
� @cS

Œb�

Œa�

i

�
.�CH/Œb�

D F
Œb�

Œa�

1

�
max

�
jaj

jcj
;
jbj

jcj

�
� F

Œb�

Œa�
:

Since ƒ0 � C1�0, the absolute value of the eigenvalues of the LHS-operator is � 1
and it follows that



@cS Œb�Œa�

. 

F Œb�Œa� 

:
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If .a; b/2Dƒ0Cd�C2.c/, then both .a; a/ and .b; b/ belong toDƒ0Cd�C2.c/
and, by Corollary 2.2(iii),

Œa�� Œb�; Œa�� Œa�; Œb�� Œb��Dƒ0.c/�Dƒ.c/:

Therefore 

@cHŒa�

C 

@cHŒb�

� dd�hH iƒ:
Using this, the estimates (in Cases I and II) for



@cS Œb�Œa�

 and the estimate (30) we
obtain

1
hSiƒ0Cd�C2;
 . d

2d
� e2
d�

�
1

�
hF iƒ0;
 C

1

�2
hH iƒ jF j


�
:

(This norm is defined in �2.4.) The estimate of hSiƒ0Cd�C2;
 is obtained by a
finite induction using this estimate and the equation (ii) for the Töplitz limits.

Estimate of !-derivatives. In order to estimate the derivatives in ! we con-
sider the differentiated equation (31). The RHS GŒb�

Œa�
verifies


@cGŒb�Œa�


� 


@c@!F Œb�Œa� 


C �jkjC 

@!HŒa�

C 

@!HŒb�

� 


S Œb�Œa�


(34)

C
�

@c@!HŒa�

C 

@c@!HŒb�

� 


S Œb�Œa�




and @c@!S
Œb�

Œa�
is now estimated like @cS

Œb�

Œa�
but with G instead of F . Combining

these estimates now gives the result when F D T�0F . By Lemma 6.2(i) we get
the result for a general F . �

6.4. A second equation, k D 0. Consider the equation

(35) i Œ�.!/CH.!/; S�D .T�0 �D�0/F.!/

where F.!/ W L�L! C and @!F.!/ are Töplitz at1.
Let U 0 � U be a set such that for all ! 2 U 0� the small divisor condition

(36)

8<: j˛.!/�ˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!/Œa��/

ˇ.!/ 2 �..�CH/.!/Œb��/

dist.Œa��; Œb��/��0C 2d� and jaj 6D jbj:

holds.

PROPOSITION 6.4. Let �0 > 1 and 0 < � < 1. Assume that U verifies (13),
that � is real diagonal and verifies (14), and that H verifies (16). Assume also
that H.!/ and @!H.!/ are Töplitz at1 and NF� for all ! 2 U .

Then equation (35), under the condition that S �T�0C2d�S D D�0S D 0

have, for all ! 2 U 0, a unique solution S.!/ verifying

(i) jS jn

U 0

o � cte: 1
�2
d2d� e2
� jF jn


U 0

o;
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(ii) S.!/ and @!S.!/ are Töplitz at1 and the Töplitz limits verify�
ihk; !iS C i Œ�.!/CH.c; !/; S�D .T�0 �D�0/PcF.c; !/

S �T�0C2d�S D D�0S D 0I

(iii) For any ƒ0 &max.ƒ; d2�; .d�0/
2, supU kH.!/k/,

hSinƒ0Cd�C2;

U 0

o � cte:
1

�3
d2d� e2
�.1ChH inƒ

U 0

o/hF inƒ0;

U 0

o:
The constant cte: only depends on the dimensions d and #A and on C1; C2; C3; C4.

Proof. We first assume that F D .T�0 �D�0/F . The proof is the same as in
Proposition 6.3, with k D 0. Notice that the limit equation in (ii) is invariant under
c-translations, due to Lemma 6.2(iii).

The proof gives that ƒ0 &max.ƒ; d2�; �
0; supU kH.!/k/: In order to get the

result we need to estimate .T�0 �D�0/F in terms of F . This is done by Lemma
6.2(i) and (iii) and requires a larger ƒ0. �

6.5. A third equation. Consider the equation

(37) ihk; !iS C i.�.!/CH.!//S C iSI.�.!/C tH.!//D F.!/

where F.!/ W L �L! C and @!F.!/ are Töplitz at 1 and IQ is defined by
.IQ/ba DQ

�b
�a. (This equation will be motivated in the proof of Proposition 6.7.)

Let U 0 � U be a set such that for all ! 2 U 0� the small divisor condition (20)
holds for all a; b; i.e.,

jhk; !iC˛.!/Cˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!//

ˇ.!/ 2 �..�CH/.!///:

PROPOSITION 6.5. Let 0 < � < 1. Assume that U verifies (13), that � is real
diagonal and verifies (14), and that H verifies (16). Assume also that H.!/ and
@!H.!/ are Töplitz at1 and NF� for all ! 2 U .

Then equation (37) has for all ! 2 U 0 a unique solution S.!/ verifying

(i) jS jn

U 0

o � cte: 1
�2
d2d� e2
�.1Cjkj/ jF jn


U 0

o;
(ii) S.!/ and @!S.!/ are Töplitz at1 and all Töplitz limits S.c; !/; c 6D 0, are
D 0;

(iii) For any ƒ0 &max.ƒ; d2�; �
0, supU kH.!/k/,

hSinƒ0Cd�C2;

U 0

o � cte:
1

�3
d2d� e2
�

�
1CjkjC hH inƒ

U 0

o�hF inƒ0;

U 0

o:
The constant cte: only depends on the dimensions d and #A and on C1; C2; C3; C4.

Proof. As before we reduce to �a D jaj2 and we block decompose the equa-
tion over E�:

ihk; !iS
Œb�

Œa�
C i.�CH/Œa�S

Œb�

Œa�
C iS

Œb�

Œa�
.�C tH/�Œb�F

Œb�

Œa�
:
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We then repeat the proof as for Proposition 6.3. There is a difference in the com-
putation of the Töplitz limits. Equation (32) becomes

ihk; !iS
Œb�

Œa�
.tc/C i.�CH/Œa�.tc/S

Œb�

Œa�
.tc/

CiS
Œb�

Œa�
.tc/.�C tH/Œ�b�.�tc/D F

Œb�

Œa�
.tc/

and now �Œa�.tc/X CX�Œ�b�.�tc/ equals

.t2 jcj2C 2tha; ciC jaj2/X CX.t2 jcj2C 2thb; ciC jbj2/:

The quadratic terms in t do not cancel! Dividing the equation by t2 and letting
t !1, the limit equation becomes 2 jcj2X D 0, which has the unique solution
X D 0. Therefore S Œb�

Œa�
.tc/! S

Œb�

Œa�
.1c/D 0 as t !1; i.e., the Töplitz limits are

always 0.
In order to estimate the Lipschitz norm we only need to consider the analogue

of Case II (even when hc; a� bi D 0). We have for Œa�� Œb��Dƒ0.c/

jaj2Cjbj2 &
�
jaj

jcj

�2
�

�
jbj

jcj

�2
& .ƒ0/2:

To avoid any problems with hk; !i and H it is sufficient that .ƒ0/2 be & C1�0 and
& kHk. �

6.6. The homological equations. Let �.!/ WL�L! gl.2;C/ be a real diag-
onal matrix; i.e.,

�ba.!/D

�
�a.!/I aD b

0 a 6D b:

Consider

(38)

8̂̂<̂
:̂
j�a.!/j � C5 > 0;

j�a.!/C�b.!/j � C5;

j�a.!/��b.!/j � C5; jaj 6D jbj;

a; b 2 L; ! 2 U:

Let H.!/ WL�L! gl.2;C/ and @!H.!/ be Töplitz at1 for all ! 2U and
consider

(39)

(
kH.!/k � C5

4
; ! 2 U;

hH inƒ
U

o � C6:
(Here k k is the operator norm.)

PROPOSITION 6.6. Let �0 > 0 and 0 < � < C5
2

. Assume that U verifies (13),
that � is real diagonal and verifies (14), (15), and (38), and that H verifies (16)
and (39). Assume also that H.!/ and @!H.!/ are NF� for all ! 2 U . Then there
is a subset U 0 � U ,

Leb.U nU 0/ � cte:max.�0; d2�/
2dC#A�1�;



414 L. HAKAN ELIASSON and SERGEI B. KUKSIN

such that for all ! 2 U 0 the following hold:

(i) For any 0 < jkj ��0, jhk; !ij � �:

(ii) For any jkj ��0 and for any vector F.!/ 2 l2
 .L;C
2/ there exists a unique

vector S.!/2 l2
 .L;C
2/ such that ihk; !iSCJ.�CH/S DF and satisfying

kSkn

U 0

o � cte:
1

�2
�0d

2m�
� e2
d� kF kn


U 0

o :
The constants cte: only depend on d; #A; m� and on C1; : : : ; C6.

Proof. (i) holds outside a set of ! of Lebesgue measure . .�0/#A�, so that it
suffices to consider (ii). Let

C D

 
1p
2

1p
2

�ip
2

ip
2

!
and define tCAC W L�L! gl.2;C/ through .tCAC/ba D

tCAbaC .
We change to complex coordinates zS D C�1S and zF D C�1F: Then the

equation becomes

ihk; !i zS � iJ

�
0 �CH

�C tH 0

�
zS D zF

where �;H W L! C are the scalar-valued normal form matrices associated to
�;H (see �5.1), � is real symmetric and H is Hermitian.

This equation decouples into two equations for (scalar-valued) matrices of
type ihk; !iR˙ i.�CQ/R D G, where Q DH or tH . By Proposition 6.1 we
can solve these equations uniquely for all ! 2 U 0 such that

jhk; !iC˛.!/j � � 8˛.!/ 2 �..�CH/.!//; jkj ��0:

If k D 0 this follows from (38) and (39) since � � C5
2

. If k 6D 0 this follows from
Proposition 5.1. �

PROPOSITION 6.7. Let �0 > 0 and 0 < � < C5
2

. Assume that U verifies (13),
that � is real diagonal and verifies (14), (15), and (38), and that H verifies (16)
and (39). Assume also that H.!/ and @!H.!/ are NF� for all ! 2 U .

Then there is a subset U 0�U , Leb.U �U 0/� cte:max.ƒ;�;�0/exp�.
1

dC1
/d ;

such that for all ! 2 U 0 the following hold:
For any jkj ��0 and for any matrix8<:

F.!/ W L�L! gl.2;C/
F.!/ symmetric, i.e., F ba D

tF a
b

.�F /ba D 0 when ja� bj>�0;

there exist symmetric matrices S.!/ and H 0.!/ such that

ihk; !iS C .�CH/JS �SJ.�CH/D F �H 0
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and satisfying, for any ƒ0 � cte:max.ƒ; d2�; .d�0/
2/,

(i) hSinƒ0Cd�C2;

U 0

o � cte: 1
�3
�0d2d� e2
d�hF inƒ0;


U 0

o.
(ii) For k 6D 0 H 0.!/D 0 and for k D 0, H 0.!/ and @!H 0.!/ are block diagonal

over E�0 and
hH 0inƒ0Cd�C2

U 0

o � hF inƒ0
U 0

o:
Moreover, if F is real then H 0.!/ and @!H 0.!/ are NF�0 .

The exponent exp only depends on d; #A and the constants cte: also depend
on C1; : : : ; C6.

Proof. We change to complex coordinates zS D tCSC and zF D tCFC: Then
the equation becomes

zF � zH 0 D ihk; !i zS � i

�
0 �CH

�C tH 0

�
J zS � i zSJ

�
0 �CH

�C tH 0

�
where �;H W L! C are the scalar-valued normal form matrices associated to
�;H (see �5.1) – � is real symmetric and H is Hermitian.

If we write

F D

�
F1 F2
tF2 F3

�
;

then

zF D
1

2

�
.F1�F3/� i.F2C

tF2/ .F1CF3/C i.F2�
tF2/

.F1CF3/� i.F2�
tF2/ .F1�F3/C i.F2C

tF2/

�
;

the diagonal parts coming from .I ��/F and the off-diagonal parts from �F .
The equation decouples into four (scalar-valued) matrices of the types

ihk; !iR˙ i..�CQ/R�R.�CQ//DG �P;

for the off-diagonal terms, and

ihk; !iR˙ i..�CQ/RCR.�C tQ//DG �P;

for the diagonal terms. Here QDH or tH .
Let us first consider the off-diagonal equations. By the assumption on F ,

T�0G DG, G is Töplitz at1 and

hGinƒ0;

U 0

o � hF inƒ0;

U 0

o:
Moreover, G is Hermitian if F is real.

If k 6D 0 we take P D 0 and we can solve the equation by Proposition 6.3 for
all ! such that

jhk; !iC˛.!/�ˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!/Œa��/

ˇ.!/ 2 �..�CH/.!/Œb��/;
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for dist.Œa��; Œb��/��0C 2d�. The set of such ! is estimated in Proposition 5.2.
The solution is unique if we impose T�0C2d�R�RD 0.

If k D 0 we take P D D�0G and we can solve the equation by Proposition
6.4 for all ! such that

j˛.!/�ˇ.!/j � � 8

�
˛.!/ 2 �..�CH/.!/Œa��/

ˇ.!/ 2 �..�CH/.!/Œb��/

for dist.Œa��; Œb��/ � �0 C 2d� and jaj 6D jbj. This condition on ! holds by
assumptions (38) and (39) since � � C5

2
. The solution is unique if we impose

T�0C2d�R�RD D�0RD 0. P is estimated by Lemma 6.2(iii).
To treat the diagonal equations let us consider the operators .RG/ba D G

�b
a

and .IG/ba DG
�b
�a . Now RG, G coming from .I ��/F , is Töplitz at1 and

hRGinƒ0;

U 0

o � hF inƒ0;

U 0

o:
With T DRR the equation takes the form

ihk; !iT ˙ i..�CQ/T CTI.�C tQ//DRG �RP:

We take RP D 0 and then the result follows from Proposition 6.5 under the as-
sumption (20) on !. This assumption holds for k D 0 by (38) and (39) and for
k 6D 0 on a set U 0 which is estimated in Proposition 5.1.

By construction H 0 is symmetric. Moreover, for k D 0, .�S/ba D 0 when
ja� bj>�0C2d� or Œa��D Œb��; and for k 6D 0, .�S/baD 0 when ja� bj>�0C
2d�. These conditions determine S uniquely and symmetry follows from this. �

Part III. KAM

7. A KAM theorem

7.1. Statement of the theorem. Let

O
 .�; �; �/D O
 .�/�TA
� �D.�/A

be the set of all �; '; r such that

� D .�; �/ 2 O
 .�/; j='aj< �; jraj< � 8a 2A:

Let

h!.�; r/D h.�; r; !/D h!; riC
1

2
h�; .�.!/CH.!//�i

where �.!/ is a real diagonal matrix with diagonal elements �a.!/I and H.!/
and @!H.!/ are Töplitz at 1 and NF� for all ! 2 U . We recall (�5.1) that a
matrix H W L�L! gl.2;C/ is NF� if it is real, symmetric and can be written

H D

�
Q1 Q2
tQ2 Q1

�
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with Q D Q1C iQ2 Hermitian and block-diagonal over the decomposition E�
of L.

We assume (13)–(15) and (38); i.e.,

U is an open subset of fj!j< C1g � R#A;� ˇ̌
@�!.�a.!/� jaj

2/
ˇ̌
� C2e

�C3jaj; C3 > 0;

.a; !/ 2 L�U; � D 0; 1;8̂̂̂<̂
ˆ̂:
h@!.hk; !iC�a.!//;

k
jkj
i � C4 > 0;

h@!.hk; !iC�a.!/C�b.!//;
k
jkj
i � C4;

h@!.hk; !iC�a.!/��b.!//;
k
jkj
i � C4;

a; b 2 L; k 2 ZA n 0; ! 2 U;8̂̂<̂
:̂
j�a.!/j � C5 > 0;

j�a.!/C�b.!/j � C5;

j�a.!/��b.!/j � C5; jaj 6D jbj;

a; b 2 L; ! 2 U:

Remark. The conditions on the directional derivative hold trivially for C4D 1
2

if j@!�a.!/j � 1
4

for all .a; !/ 2 L�U .

We also assume (16) and (39); i.e.,8̂<̂
:
k@!H.!/k �

C4
4

kH.!/k � C5
4

hH inƒ
U

o . 1
for some ƒ. (Here k k is the operator norm.)

Remark. For simplicity we assume that 
; �; �; � are < 1 and that �;ƒ are
� 3.

Let f W O
 .�; �; �/�U ! C be real analytic in �; '; r and C1 in ! 2 U and
let

Œf �nƒ;
;�
U;�;�

o sup
'2TA

�

r2D.�/A

Œf .�; '; r; �/�nƒ;
;�
U

o:

THEOREM 7.1. Assume that U verifies (13), that � is real diagonal and ver-
ifies (14), (15), and (38), that H.!/ and @!H.!/ are Töplitz at1 and NF� for
all ! 2 U , and that H verifies (16) and (39).

Then there is a constant Cte: and an exponent exp such that, if

Œf �nƒ;
;�
U;�;�

o D "� Cte:min
�

; �;

1

ƒ
;
1

�

�exp
min.�2; �/2;



418 L. HAKAN ELIASSON and SERGEI B. KUKSIN

there is a U 0�U with Leb.U nU 0/� cte:"exp0 such that for all ! 2U 0 the following
hold: There are a real analytic symplectic diffeomorphism

ˆ W O0
�
�

2
;
�

2
;
�

2

�
! O0.�; �; �/

and a vector !0 D !0.!/ such that .h!0 Cf / ıˆ equals (modulo a constant)

h!; riC
1

2
h�; .�CH 0/.!/�iCf 0.�; '; r; !/

where @�f 0 D @rf 0 D @2�f
0 D 0 for � D r D 0 and

H 0 D

�
Q01 Q02
tQ02 Q

0
1

�
withQ0DQ01C iQ

0
2 Hermitian and block diagonal, i.e., .Q0/baD 0 for all jaj 6D jbj.

Moreover, ˆD .ˆ� ; ˆ' ; ˆr/ verifies

ˆ� � �

0C ˇ̌ˆ' �' ˇ̌Cjˆr � r j � cte:ˇ"

for all .�; '; r/ 2 O0.�
2
; �
2
; �
2
/, kH 0.!/�H.!/k � cte:ˇ" and the mapping ! 7!

!0.!/ verifies j!0� idjC1.U 0/ � cte: "
�
:

The exponents exp; exp0 only depend on d; #A; m�, the constants Cte:; cte:
also depend on C1; : : : ; C5 and ˇ D ˇ.
; �; �; �;ƒ;�; !/.

Remark 1. Each block-component of �CH.!/ is of finite dimension but in
general there is no uniform bound – they may be of arbitrarily large dimension.
Due to this lack of uniformity we lose, in our estimates, all exponential decay in
the space modes. However, if there were a uniform bound (as happens in some
cases, cf. [GY06]) we would retain some exponential decay.

Remark 2. It follows from the proof that ˆ is of the form8<:
ˆ� .�; '; r/D z.'/CZ.'/�;

ˆ'.�; '; r/D 'C a.'/;

ˆr.�; '; r/D r C b.�; '/C c.'/r;

where b.�; '/ is quadratic in �, because ˆ is a composition of mappings of this
form.

If f does not depend on r , then a D c D 0 and !0 D !, because ˆ is a
composition of mappings of this form, and it preserves Hamiltonians of this form.

If f .�; '/D 1
2
h�; F.'/�i, then also zD 0 and b.�; '/D 1

2
h�; B.'/�i, because

ˆ is a composition of mappings of this form, and it preserves Hamiltonians of this
form.

Since the consequences of the theorem are discussed in the introduction, let us
instead here discuss a special case. Consider a linear nonautonomous Hamiltonian
system with quasiperiodic coefficients

P� D J
�
�CH.!/C "F.'; !/

�
�; P' D !
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where � and H.!/ are as in Theorem 7.1 and F is symmetric and Töplitz at1
and

hF.'; �/inƒ;

U

o <1
for j='j< � and for some 
 > 0. Then, by Young’s inequality (2),

kF.'; !/�k
 0 �
�

1


�
 0

�dCm�
jF.'; !/j
 k�k
 0 8


0 < 


and

jh�; F.'; !/�ij �
�
1




�dCm�
jF.'; !/j
 k�k

2
0 :

Therefore we can apply Theorem 7.1 and Remark 2 to the Hamiltonian

hC "f D h!; riC
1

2
h�; .�CH.!/CF.'; !//�i:

If " is sufficiently small, it gives a mapping ˆ such that

.hC "f / ıˆ.�; '; r/D h!; riC
1

2
h�; .�CH 0.!//�i

with

ˆ.�; '; r/D

0@ Z.'/�

r C 1
2
h�; B.'/�i

'

1A :
From this form and from the symplectic character of ˆ we derive

h@'Z.'/; !i D J.�CH CF.'//Z.'/�Z.'/J.�CH
0/:

This implies that the mapping .�; '/ 7! .w DZ.'/�; '/ reduces the linear nonau-
tonomous system to the autonomous system Pw D J

�
�CH 0.!/

�
�, P' D !. Notice

also that J.�CH 0.!// is block-diagonal with purely imaginary eigenvalues.

7.2. Application to the Schrödinger equation. Consider a nonlinear Schröd-
inger equation

.�/ �i PuD��uCV.x/�uC "
@F

@ Nu
.x; u; Nu/; uD u.t; x/; x 2 Td ;

where V.x/D
P
yV .a/eiha;xi is an analytic function with yV real and where F is

real analytic in <u;=u and in x 2 Td .
Let A� Zd be a finite set and consider a function

u1.'; x/D
X
a2A

p
pae

i'aeiha;xi; pa > 0;

such that .x; u1.'; x/; Nu1.'; x// belongs to the domain of F for all .x; '/ 2 Td �

TA. Then u1.t; x/D u1.'C t!; x/ is a solution of .�/ for "D 0.
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Let L be the complement of A and let

! D f!a D jaj
2
C yV .a/ W a 2Ag;

�D f!a D jaj
2
C yV .a/ W a 2 Lg:

Let V depend C1 on a parameter w 2W � R#A and assume that the mapping

W 3 w 7! !.w/D f!a D jaj
2
C OV .a;w/I a 2Ag � U

is a diffeomorphism whose inverse is bounded in the C1-norm, i.e.,

(40) j!�1jC1 � C6:

We also assume conditions analogous to (13)–(15) and (38); i.e.,

W is an open subset of fjwj< C1g � R#A;

�
j@�w.�a.w/� jaj

2/j � C2e
�C3jaj; C3 > 0;

.a; w/ 2 L�W; � D 0; 1;8̂̂<̂
:̂
h@w.hk; !.w/iC�a.w//; vki � C4 > 0;

h@w.hk; !.w/iC�a.w/C�b.w//; vki � C4;

h@w.hk; !.w/iC�a.w/��b.w//; vki � C4;

a; b 2 L; k 2 ZA n 0; w 2W;

where

vk D .D!.w//
�1 k

jkj
;

and 8̂̂<̂
:̂
j�a.w/j � C5 > 0;

j�a.w/C�b.w/j � C5;

j�a.w/��b.w/j � C5; jaj 6D jbj;

a; b 2 L; ! 2 U:

THEOREM 7.2. For " sufficiently small, there is a subset W 0 �W ,

Leb.W nW 0/� cte:"exp;

such that on W 0 there is a u.'; x/, analytic in ' 2 Td�
2

and of class Cm��d in

x 2 Td , with
sup
j='j<�

2

ku.'; �/�u1.'; �/kHm� .Td / � ˇ";

and there is a !0 WW 0! U , j!0�!jC1.W 0/ � ˇ", such that

u.t; x/D u.'C t!0.w/; x/

is a solution of .�/ for any w 2W 0.
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Moreover, the linearized equation

�i Pv D�vCV.x/� vC "
@2F

@ Nu2
.x; u.t; x/; Nu.t; x// Nv

C "
@2F

@u@ Nu
.x; u.t; x/; Nu.t; x//v

is reducible to constant coefficients and has only time-quasi-periodic solutions,
except for a .#A/-dimensional subspace where solutions may increase at most
linearly in t . Also, ˇ is a constant that depends on the dimensions d; #A; m�,
the constants C1; : : : ; C6 and on w and F .

Proof. We write(
u.x/D

P
a2Zd uae

iha;xi;

u.x/D
P
a2Zd vae

ih�a;xi .va D Nua/;

and let

�a D

�
�a
�a

�
D

 
1p
2
.uaC va/

�ip
2
.ua � va/

!
:

In the symplectic space˚
.�a; �a/ W a 2 Zd

	
D RZd

�RZd ;
X
a2Zd

d�a ^ d�a;

the equation becomes a Hamiltonian equation in infinite degrees of freedom. The
Hamiltonian function has an integrable part

1

2

X
a2Zd

.jaj2C yV .a//.�2a C �
2
a/

plus a perturbation.
In a neighborhood of the unperturbed solution 1

2
.�2a C�

2
a/D pa; a 2A, we

introduce the action angle variables .'a; ra/ (notice that each pa > 0 by assump-
tion), defined through the relations

�a D
p
2.raCpa/ cos.'a/; �a D

p
2.raCpa/ sin.'a/:

The integrable part of the Hamiltonian becomes

h.�; r; !/D h!; riC
1

2

X
a2L

�a.!/.�
2
a C �

2
a/;

while the perturbation

"f .u; Nu/D "

Z
Td
F.x; u.x/ Nu.x//dx;

will be a function of �; '; r . If we write

G.x; u1; Nu1; u; Nu/D F.x; u1Cu; Nu1C Nu/
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then G is an analytic function in x; u; Nu which depends analytically on '; r . Then
one verifies (see Lemma 1 in [EK08]) that, since m� > d

2
, there exist 
; �; �; �

such that f is real analytic on O
 .�; �; �/ and that f has the Töplitz-Lipschitz
property:

(41) Œf �nƒ;
;�
U;�;�

o � C7
for some constant C7.

The assumptions of Theorem 7.1 are now fulfilled and gives the result. �

8. Proof of theorem

8.1. Preliminaries. Let f W O
 .�; �; �/�U ! C be real analytic in �; '; r
and C1 in ! 2 U and consider Œf �nƒ;
;�

U;�;�

o:
Notation. We let

˛ D

�

 �

� �

�
;

and we write this norm as Œf �nƒ
U
˛
o.

Remark. We assume that all 
; �; �; � are < 1, that 0 < � � � 0 � �; 0 <

���0 � � and that ƒ;�� 3.

Cauchy estimates. It follows by Cauchy estimates that

Œ@'f �
n
ƒ
U
˛0
o . 1

�� �0
Œf �nƒ

U
˛
o;(42)

Œ@rf �
n
ƒ
U
˛0
o . 1

���0
Œf �nƒ

U
˛
o:

Truncation. We obtain T�f from f by: 1) truncating the Taylor expansion
in � at order 2; 2) truncating the Taylor expansion in r at order 0 for the first and the
second order term in � and at order 1 for the zero’th order term in �; 3) truncating
the Fourier modes at order �; 4) truncating the space modes of the second order
term in � at order �. Formally T�f isX

jkj��

Œ Of .0; k; 0; !/C @r Of .0; k; 0; !/r Ch@� Of .0; k; 0; !/; �i

C
1

2
h�;T�@

2
�
Of .0; k; 0; !/�i�eihk;'i:

We have

(43) ŒT�f �nƒ
U
˛
o .�#AŒf �nƒ

U
˛
o

and

(44) Œf �T�f �nƒ
U
˛0
o . A.˛; ˛0; �/Œf �nƒ

U
˛
o;
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where A.˛; ˛0; �/ is�
� 0

�

�3
C

�
� 0

�
C
�0

�

�
�0

�
C

�
1

���0

�#A
e��.���

0/
C e��.
�


0/:

This follows from Proposition 3.2, from Cauchy estimates in r and ', and from
formula (8).

Poisson brackets. The Poisson bracket is defined by

ff; gg D h@�f; J @�giC @'f @rg� @rf @'g:

If g is a quadratic polynomial in �, then

(45) Œff; gg�nƒC3
U

˛0
o . B.
 � 
 0; �; �� �0; �;ƒ/Œf �nƒ

U
˛
oŒg�nƒ

U
˛
o;

where B Dƒ2 1
�2
. 1

�
 0

/dCm� C 1
���0

1
�

.

Also, if f is a quadratic polynomial in � and, moreover, independent of ' and
of the form ha; riC 1

2
h�; A�i, then

Œff; gg�nƒC3
U

˛0
o . B.x
 � 
 0; �1; N�� �0; �1; ƒ/Œf �nƒ

U
˛1

oŒg�nƒ
U
˛2

o;(46)

˛i D

�

 �i
� �i

�
; i D 1; 2;

and x
 Dmin.
1; 
2/; N�Dmin.�1; �2/.10

In both cases, the first term to the right (in the expression for ff; gg above) is
estimated by Proposition 3.3 and the other two terms by Cauchy estimates.

We shall use both these estimates. Notice that (46) is much better than (45)
when �2; �2 are much smaller than �1; �1.

Flow maps. Let

s D T�s D S0.'; r; !/Ch�; S1.'; !/iC
1

2
h�; S2.'; !/�i:

Notice that, since sDT�, S0 is of first order in r . Consider the Hamiltonian vector
field

d

dt

0@ �

'

r

1AD
0@ J@�s

@rs

�@'s

1AD
0@ JS1.'; !/CJS2.'; !/�@rS0.'; 0; !/

�@'s.�; '; r; !/

1A
and let

ˆt D

0@ �t
't
rt

1AD � �C bt .z; !/CBt .z; !/�
zCgt .�; z; !/

�
be the flow. Here we have denoted ' and r by z.

10In the expression for B we have assumed that 0 < �j � � 0 � �; 0 < �j ��0 � �j , j D 1; 2.
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Assume that

(47) Œs�nƒ
U
˛
o D ".min..�� �0/�; .
 � 
 0/dCm��2/:

Then for jt j � 1 we have: ˆt W O

00

.� 0; �0; �0/! O

00

.�; �; �/, for all 
 00 � 
 0;

(48) Œgt �
n
ƒ
U
˛0
o . "

�
or

"

�� �0

depending on if g is a '-component or an r-component;

(49) kbt CBt�k
�

 00

U;�0

� .
��

1


�
 0

�m�
C

� 1


 � 
 0

�dCm� 1
�
k�k
 00

�
"

�

for all 
 00 � 
 0;

(50) hBt i
�
ƒC6;
 0

U;�0

� .ƒ2� 1


�
 0

� "
�2
:

Moreover, for 1� N� � � 0 and 1� N�� �0, ˆt has an analytic (because polynomial
in � and �) extension to O


00

. N�; �0; N�/ for all 
 00 � 
 0 and verifies on this set

(51)

8̂̂<̂
:̂
k�t � �k
 00 . . 1


�
 0
/dCm�. N�

�
C 1/ "

�

j't �'j. "
�

jrt � r j. . 1
���0

/. N�
�
C . N�

�
/2C 1/":

Proof. We have 't D ' C at .'; !/ and since j@rS0.'; 0; !/j . "
�

for all
' 2 TA

� , 't remains in TA
� for jt j � 1 if "

�
. .�� �0/. The !-derivative verifies

d

dt
.@!'t /D @!@rS0.'; 0; !/C @'@rS0.'; 0; !/.@!'t /

and can be solved explicitly by an integral formula. This gives (48) for z D ' and
the '-part of (51).

For a fixed ! (49) follows from the first part of Proposition 3.4(i) if jJS2j
 .
.
 �
 0/d , i.e., if ". .
 �
 0/d�2. This also gives the �-part of (51). In order to get
k�t � �k
 0 � � � �

0 � � for k�k
 0 � � we need " . .
 � 
 0/dCm��2. Now, (50)
follows from the second part of Proposition 3.4(i). The !-derivative of �t satisfies

d

dt
.@!�t /D @!JS1.'; 0; !/C @!JS2.'; 0; !/�t CJS2.'; 0; !/.@!�t /

which is solved in the same way. We note that rt D rCct .�; '; !/Cdt .'; !/r and
for a fixed !, (48) follows from Proposition 3.4(ii) if ". .���0/.���0/� .���0/�.
The !-derivative satisfies a similar equation which is solved in the same way. The
r-part of (51) follows from these estimates since rt is linear in r . �

Composition. Consider now the composition f .ˆt ; !/. If

(52) ".min..�� �0/�; .
 � 
 0/dCm�C1�2/
p

 � 
 0
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then

(53) Œf .ˆt ; �/�
n
ƒC18
U

˛0
o .ƒ14Œf �nƒ

U
˛
o:

Proof. Consider first a fixed !. We have

k�t .�; z/� �k
 0 < � � �
0
8.�; z/ 2 O


0

.� 0/�TA
�0 �D.�0/A

by (49) and (52), and we have

jgt .�; z/j<
1

2
.���0/ or

1

2
.�� �0/ 8.�; z/ 2 O0.� 0/�TA

�0 �D.�0/A;

depending on whether g is an r-component or a '-component, by (48) and (52).
By Proposition 3.5 we get

Œf .ˆt .�; !/; !/�
�
ƒC12;
 00;� 0

�0;�0

� . A Œf .�; !/�nƒC6;
 0;�
�;�

o;
where ADmax.1; ˛;ƒ2 1


 0�
 00
˛2/ and

˛ D
1

���0
Œrt � r�

�
ƒC6;
 0;� 0

�0;�0

�C 1

�� �0
Œ't �'�

�
ƒC6;
 0;� 0

�0;�0

�

C

�
1


 0�
 00

�dCm�
hBt i

�
ƒC6;
 0

�0

�:
If we choose 
 0� 
 00 D 
 � 
 0, then (48), (50), and the bound (52) give A.ƒ6.

Consider now the dependence on !. We have

@!.f .ˆt //D @!f .ˆt /Ch@zf .ˆt /; @!gt iC h@�f .ˆt /; @!�t i:

The first term is a composition and we get the same estimate as above but
with f replaced by @!f .

The second term is a finite sum of products, each of which is estimated by
Proposition 3.1(i); i.e.,

Œh@zf .ˆt ; !/; @!gt i�
�
ƒC12;
 00;� 0

�00;�00

�
. Œ@zf .ˆt ; !/��ƒC12;
 00;� 0

�00;�00

�Œ@!gt ��ƒC12;
 00;� 0
�00;�00

�:
The first factor is a composition which is estimated as above: if we take �0� �00 D
�� �0 and �0��00 D ���0, then we get

.ƒ6Œ@zf .�; !/��ƒC6;
 0;�
�0;�0

�Œ@!gt ��ƒC12;
 00;� 0
�0;�0

�:
Using Cauchy estimates for the first factor and (48) and (50) for the second factor
gives

.ƒ6Œf .�; !/�nƒC6;
 0;�
�;�

o:
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The third term is a composition of the function Qf D h@�f; .@!�t / ıˆ�t i with
ˆt . Evaluating Qf we find that it has the form h@�f; Qbt C QBt�i where

Qbt D @!bt .'�t /C @!Bt .'�t /b�t ;

QBt D @!Bt .'�t /C @!Bt .'�t /B�t :

For ' 2 TA
�00 we get by (48) and (52) that j'�t �'j � �0 � �00 D � � �0, so

that Qbt and QBt are defined on TA
�00 . By (49) and (52),



 Qbt


 0 � � � � 0, and by (50),
(52), and the product formula (10),

h QBt i
�
ƒC9;
 0

�00

� .ƒ6� 1


�
 0

�
"

�2
;

and so by Proposition 3.1(ii), (iii) and (52) we obtain

Œ Qf ��ƒC9;
 0;� 0
�00;�0

� .ƒ8Œf ��ƒC6;
;�
�00;�0

�:

Finally by the same argument as above we get

Œ Qf .ˆt .�; !/; !/�
�
ƒC15;
 00;� 00

�000;�00

� .ƒ6Œ Qf .�; !/��ƒC9;
 0;� 0
�00;�0

�;

if we choose �00 � �000 D �0 � �00, � 0 � � 00 D � � � 0 and �0 ��00 D ���0. This
completes the proof. �

8.2. A finite induction. Let h.�; r; !/D h!; riC 1
2
h�; .�.!/CH.!//�i sat-

isfy (13)–(16) and (38)–(39), and letH.!/ and @!H.!/ be NF�. Let f WO
.�; �; �/
�U ! C be real analytic in �; '; r and C1 in ! 2 U and consider

Œf �nƒ
U
˛
o D "; ˛ D

�

 �

� �

�
:

Besides the assumption that all constants 
; �; �; � are < 1 and that �;ƒ are
� 3, we shall also assume that �D �2 and d�
 � 1. The first assumption is just
for convenience, but the second is forced upon us by the occurrence of a factor
ed�
 in the estimates of Propositions 6.6 and 6.7 which we must control.

Fix �0 < �, 
 0 < 
 and 0 < � < 1 and let

�0 D

�
log
�
1

"

��2
1

min.
�
 0; ���0/
; nD

�
log
�
1

"

��
:
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Define for 1� j � n,

"jC1 D .
"

�2�3
/"j ; "1 D ";

ƒjC1 Dƒj C d�C 23; ƒ1 D cte:max.ƒ; d2�; .d�0/
2/; 11


j D 
 � .j � 1/

�
 0

n
; �j D �� .j � 1/

���0

n
;

�jC1 D .
"

�2�3
/
1
3�j �1 D �;

�jC1 D .
"

�2�3
/
2
3�j ; �1 D �:

We have the following proposition.

PROPOSITION 8.1. Under the above assumptions there exist a constant Cte:
and an exponent exp1 such that if

" � �3Cte:min
�

 � 
 0; �� �0;

1

�
;
1

ƒ
;

1

log.1
"
/

�exp1
min.�2; �/;

then there is a subset U 0 �U , Leb.U nU 0/� cte:"exp2 , such that for all ! 2U 0 the
following holds for 1� j � n: there is a real analytic symplectic diffeomorphism

ĵ W O

 00.�jC1; �jC1; �jC1/! O


00

.�j ; �j ; �j /; 8

00
� 
jC1;

such that

.hC h1C : : :C hj�1Cfj / ı ĵ D hC h1C : : :C hj CfjC1

.f1 D f / with

(i)

hj D cj .!/Ch�j .!/; riC
1

2
h�;Hj .!/�i;

Hj .!/ and @!Hj .!/ in NF�0 , and Œhj �nƒj
U 0

j̨

o � ˇj�1"j .

(ii) ŒfjC1�nƒjC1
U 0

j̨C1

o � ˇj "jC1,

for some

ˇ . cte:max
�

1


�
 0
;
1

���0
; ƒ;�; log

�
1

"

��exp3
:

Moreover, for 1 � N� � �jC1 and 1 � N� � �jC1, ĵ D .�j ; 'j ; rj / has an
analytic extension to O


00

. N�; �rCj ; N�/ for all 
 00 � 
jC1 and verifies on this set8̂̂<̂
:̂


�j � �


 00 . . 1


j�
jC1
/dCm�. N�

�j
C 1/ˇj�1

"j
�jˇ̌

'j �'
ˇ̌
. ˇj�1 "j

�jˇ̌
rj � r

ˇ̌
. . 1

�j��jC1
/. N�
�j
C . N�

�j
/2C 1/ˇj�1":

11The constant in the definition of ƒ1 is the one in Proposition 6.7.
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The exponents exp1; exp2; exp3 only depend on d; #A; m� while the constants
Cte: and cte: also depend on C1; : : : ; C5.

Proof. We start by solving inductively fh; sj g D �T�0fj C hj , where T�0fj
is the truncation (�8.1) and sj and hj are to be found using Propositions 6.6 and
6.7. To see how this works, write

sj D S0Ch�; S1iC
1
2
h�; S2�i;

T�0fj D F0Ch�; F1iC
1
2
h�; F2�i;

hj D cj .!/Ch�j .!/; riC
1
2
h�;Hj .!/�i:

The equations written in Fourier modes become

�ihk; !i yS0.k/D� OF0.k/C ı
k
0 .cj .!/Ch�j .!/; ri/;

�ihk; !i OS1.k/CJ.�.!/CH.!// yS1.k/D� OF1.k/;

�ihk; !i yS2.k/C .�.!/CH.!//J yS2.k/� OS2.k/J.�.!/CH.!//

D� OF2.k/C ı
k
0Hj .!/:

Using Propositions 6.6 and 6.7 these equations can now be solved for ! in a set
Uj with Leb.Uj�1 nUj / � cte:"exp, .U0 D U/. Indeed with cj .!/ D OF0.0/ and
�j .!/D OF1.0/ the first equation follows from Proposition 6.6(i). The second equa-
tion follows from Proposition 6.6(ii) and the third from Proposition 6.7. (Hj .!/
is not the full mean value OF2.0/ but only the part � OF2.0/.)

This gives, after summing up the (finite) Fourier series,

Œsj �
�
ƒjCd�C2
Uj

j̨

� � cte:.�0�/exp 1

�3
ˇj�1"j D Q"j ;

Œhj �
�
ƒjCd�C2
Uj

j̨

� � cte:.�0�/expˇj�1"j :

If the solutions sj and hj were nonreal (they are not because the construction gives
real functions) then their real parts would give real solutions.

In a second step, for 0� t � 1 we estimate

fj � hj CfhC h1C : : :C hj�1C .1� t /hj C tfj ; sj g

which is equal to

.fj �T�0fj /C tffj ; sj gC fh1C : : :C hj�1C .1� t /hj ; sj g DW g1Cg2Cg3:

According to (44) we have

Œg1�
�
ƒjCd�C2
Uj

Q̨jC1

� . A. j̨ ; Q̨jC1; �0/ˇj�1"j ;
where

Q̨jC1 D

�

j �


j�
jC1
2

2�jC1
�j �

�j��jC1
2

2�jC1

�
:
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By our choice of constants and the assumption on " we have

A.
�

1

�2�3
C

�
1

���0

�#A
�
". 1

ƒ14j
ˇ

"

�2�3
:

According to (45),

Œg2�
�
ƒjCd�C5
Uj

Q̨jC1

� . Bj .�0�/exp 1

�3
ˇ2j�2"2j ;

where Bj DB.
j �
jC1; �j ; �j ��jC1; �j ; ƒj /. ˇ takes care of this when j D 1
and when j � 2 we have the factor "j

"1
that controls everything, and we get the

bound . 1

ƒ14
j

ˇj "
�2�3

"j .

According to (46),

Œg3�
�
ƒjCd�C5
Uj

Q̨jC1

� . X
1�i�n

Bi .�
0�/expˇi�1"icte:.�0�/exp 1

�3
ˇj�1"j ;

where Bi DB.
j �
jC1; �i ; �j ��jC1; �i ; ƒj /. The same argument applies again:
ˇ takes care of this when i D 1 and when i � 2 we have the factor "i

"1
that controls

everything. We get, as before, the bound . 1

ƒ14
j

ˇj "
�2�3

"j .

In a third step we construct the time-t-map, jt j � 1, ˆt of the Hamiltonian
vector field J@sj . Condition (47),

Q"j .min
�
. Q�jC1� �jC1/ Q�jC1; . Q
jC1� 
jC1/

dCm� Q�2jC1

�
;

is fulfilled for all j by assumption on ", so that

ˆt W O

 00.�jC1; �jC1; �jC1/! O


00

. Q�jC1; Q�jC1; Q�jC1/

for all 
 00 < 
jC1, and it will verify conditions (48)–(51) with ˛; ˛0; ƒ replaced by
Q̨jC1; j̨C1; ƒj Cd�C 2. Then the time-1-map ˆt ; t D 1; will be our ĵ and do
what we want; this is a well-known relation.

Finally we define

fjC1 D

Z 1

0

.g1Cg2Cg3/ ıˆtdt:

It only remains to verify the estimate for fjC1. Condition (52),

Q"j .min.. Q�jC1� �jC1/ Q�jC1; . Q
jC1� 
jC1/dCm�C1 Q�2jC1/
p
Q
jC1� 
jC1;

is fulfilled for all j by assumption on ", so we get by (53)

ŒfjC1�
�
ƒjC1
Uj

j̨C1

� .ƒ14j Œg��ƒjCd�C5
Uj

Q̨jC1

�;
and we are done. �
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COROLLARY 8.2. There exist a constant Cte: and an exponent exp1 such
that, if

" � Cte:min
�

 � 
 0; �� �0;

1

�
;
1

ƒ

�exp1
min.�2; �/

1
1�3� .� D 1

30
/; 12

then there is a subset U 0 � U ,

Leb.U nU 0/� cte:"exp2 ;

such that for all ! 2 U 0 the following hold: There is a real analytic symplectic
diffeomorphism ˆ W O


00

.� 0; �0; �0/! O

00

.�; �; �/ for all 
 00 � 
 0, and a vector !0

such that .h!0 Cf / ıˆD h0Cf 0 with

(i) h0Dh!; riC1
2
h�; .�.!/CH 0.!//�i (modulo a constant),H 0.!/ and @!H 0.!/

in NF�0 , and 

H 0�H


U 0
; hH 0�H inƒ0

U 0

o � cte:
"

�2
I

(ii) Œf 0�nƒ0
U 0

˛0
o � "0 � e��.log. 1

"
//2 ;

where

�0 D .log.1
"
//2

1

min.
 � 
 0; �� �0/
;

ƒ0 D cte:max.ƒ; d2�; .d�0/
2/C log.1

"
/.d�C 23/;

� 0 D ."0/
1
3
C��;

�0 D ."0/
2
3
C2��:

Moreover, for 1� N� � � 0 and 1� N�� �0, ˆD .ˆ� ; ˆ' ; ˆr/ has an analytic
extension to O


00

. N�; �0; N�/ for all 
 00 � 
 0 and verifies on this set8̂̂<̂
:̂


ˆ� � �


 00 � . N�� C 1/ˇ "�ˇ̌
ˆ' �'

ˇ̌
� ˇ "

�

jˆr � r j � .
N�
�
C . N�

�
/2C 1/ˇ"

for some ˇ � cte:max. 1

�
 0

; 1
���0

; ƒ;�; log.1
"
//exp3 , and the mapping ! 7! !0

verifies j!0� idjC1.U 0/ � cte: "
�

.
The exponents exp1; exp2; exp3 only depend on d; #A; m� while the constants

Cte: and cte: also depend on C1; : : : ; C5.

Proof. Take �3 D "� . Then ˇn"nC1 D "0, �nC1 � ."0/
1
3
C�� , �nC1 �

."0/
2
3
C2��, and "0 � e��.log. 1

"
//2 if "1�2� . . 1

ˇ
/
1C3�
3� �2.

12The bound on " in Proposition 8.1 is implicit due to log.1" // and depends on �. Here we have
an explicit bound, but the price for taking � to be a fractional power of " is that the bound must
depend on max.�2; �/ to a power larger than 1. The choice of � is only for convenience.
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The result is an immediate consequence of Proposition 8.1 with

h0! D h!C�.!/; riC
1

2
h�; .�.!/CH 0.!//�i:

By Proposition 8.1(ii) we get j�jC1.U 0/ � cte: "
�
: Therefore the image of U 0

under the mapping ! ! ! C �.!/ covers a subset U 00 of U of the same com-
plementary Lebesgue measure, and we can replace ! C �.!/ by ! if we take
!0 D .IdC�/�1.!/. �

8.3. The infinite induction. Let h and f be as in the previous subsection with
the same restrictions on the constants 
; �; �; �, �;ƒ.

Choice of constants. We define

"jC1 D e
��.log. 1

"j
//2

.� D 1
30
/; "1 D "


j D .d�j /
�1; 
1 Dmin.d�; 
/

�j D "
1
3
C�

j �j�1 j � 2; �1 D �

�j D "
2
3
C2�

j �j�1 j � 2; �1 D �

�j D .
1
2
C
1

2j
/�;

�jC1 D .log. 1
"j
//2 1

min.
j ;�j��jC1/
; �1 D�

ƒj D cte:.d�j /
2: 13

With this choice of constants we prove

LEMMA 8.3. There exist a constant Cte:0 and an exponent exp0 such that if

"� Cte:0min
�

; �;

1

�
;
1

ƒ

�exp0

min.�2; �/
1

1�3� ;

then for all j � 1,

"j � Cte:min
�

j � 
jC1; �j � �jC1;

1

�j
;
1

ƒj

�exp

min.�2j ; �j /
1

1�3�

and X
1�i�j

.d�i /
2"i �

1

4
min.C4; C5; 1/;

where Cte:; exp are those of Corollary 8.2. The exponents exp0 only depend on
d; #A; m� while the constant Cte:0 also depend on C1; : : : ; C5.

Remark. Notice that �j increases much faster than quadratically at each step

— �jC1 ��
.dC1/Š
2

j due to its coupling with 
j . This is the reason why we cannot

13The constant in the definition of ƒj is the one in Proposition 6.7.
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grant the convergence by a quadratic iteration but need a much faster iteration
scheme, as the one provided by Proposition 8.1 and Corollary 8.2.

The proof is an exercise on the theme “superexponential growth beats (almost)
everything”.

PROPOSITION 8.4. Under the above assumptions, there exist a constant Cte:
and an exponent exp such that if

" � Cte:min
�

 � 
 0; �� �0;

1

�
;
1

ƒ

�exp
min.�2; �/

1
1�3� ;

then there is a subset U 0 � U , Leb.U nU 0/� cte:"exp0 , such that for all ! 2 U 0 the
following hold: for all j � 1 there are an analytic symplectic diffeomorphism

ĵ W O

 00.�jC1; �jC1; �jC1/! O


00

.�j ; �j ; �j /; 8

00
� 
jC1;

and a vector !j such that

.hj�1Cfj / ı ĵ D hj CfjC1 .h0 D h!j ; f1 D f /

and satisfying:

(i) hjDh!; riC12h�; .�.!/CHj .!//�i (modulo a constant),Hj .!/ and @!Hj .!/
in NF�jC1 , and

Hj �Hj�1

U 0 ; hHj �Hj�1inƒj

U 0

o � cte:
"j

�2j
I

(ii) ŒfjC1�nƒjC1
U 0

j̨C1

o � "jC1.

Moreover, ĵ D .�j ; 'j ; rj / has an analytic extension to O0.�
2
; �
2
; �
2
/ and

verifies on this set 8̂̂<̂
:̂


�j � �

0 � . ��j C 1/ˇ "j�jˇ̌
'j �'

ˇ̌
� ǰ

"j
�jˇ̌

rj � r
ˇ̌
� . �

�j
C .�

�j
/2C 1/ ǰ "j

for some

ǰ � cte:max
�

1


j�
jC1
;

1

�j��jC1
;ƒj ; �j ; log

�
1

"j

��exp3
;

and the mapping ! 7! !j verifies
ˇ̌
!j �!j�1

ˇ̌
C1.U 0/

� cte: "j
�j

.
The exponents exp; exp0 only depend on d; #A; m� while the constants Cte:

and cte: also depend on C1; : : : ; C5.

Proof. The proof is an immediate consequence of Corollary 8.2 and Lemma
8.3. The first part of the lemma implies that the smallness assumption in the corol-
lary is fulfilled for every j � 1, and the second part implies that assumptions (16)
and (39) hold for every j � 1. The remaining assumptions are only on �. �
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Theorem 7.1 now follows from this proposition. Indeed, !j ! !0 and we
have

.h!0 Cf / ıˆD lim
t!1

.h!j Cf / ıˆ1 ı � � � ı ĵ D lim
t!1

.hj CfjC1/:

Since the sequence hj clearly converges on O0.�
2
; �
2
; �
2
/, also fj converges on this

set — to a function f 0.
Moreover, for � D r D 0 and j='j< �

2
we have, as j !1,ˇ̌

fj
ˇ̌
;
ˇ̌
@rfj

ˇ̌
;


@�fj

0! 0

and, by Young’s inequality,


@2�fj O�



0
.
�
1


j

�d ˇ̌̌
@2�fj

ˇ̌̌
0




 O�



0
! 0:

Therefore @�f 0 D @rf 0 D @2�f
0 D 0 for � D r D 0.

9. Appendix. Some estimates

LEMMA 9.1. Let f W I D��1; 1Œ! R be of class Cn and
ˇ̌
f .n/.t/

ˇ̌
� 1 for all

t 2 I . Then, for all " > 0, the Lebesgue measure of ft 2 I W jf .t/j< "g is � cte:"
1
n ,

where the constant only depends on n.

Proof. We have
ˇ̌
f .n/.t/

ˇ̌
� "

0
n for all t 2 I . Since

f .n�1/.t/�f .n�1/.t0/D

Z t

t0

f .n/.s/ds;

we get that
ˇ̌̌
f .n�1/.t/

ˇ̌̌
� "

1
n for all t outside an interval of length � 2"

1
n . By

induction we get that
ˇ̌̌
f .n�j /.t/

ˇ̌̌
� "

j
n for all t outside 2j�1 intervals of length

� 2"
1
n . Now, j D n gives the result. �

Remark. The same is true if max0�j�n
ˇ̌
f .j /.t/

ˇ̌
� 1 for all t 2 I and f 2

CnC1. In this case the constant will depend on jf jCnC1 .

Let A.t/ be a real diagonal N �N -matrix with diagonal components aj which
are C1 on I D�� 1; 1Œ and

a0j .t/� 1 j D 1; : : : ; N; 8t 2 I:

Let B.t/ be a Hermitian N �N -matrix of class C1 on I D�� 1; 1Œ with

B 0.t/

� 1
2
8t 2 I:

LEMMA 9.2. The Lebesgue measure of the set

ft 2 I W min
�.t/2�.A.t/CB.t//

j�.t/j< "g

is � cte:N", where the constant is independent of N .
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Proof. Assume first that A.t/CB.t/ is analytic in t . Then each eigenvalue
�.t/ and its (normalized) eigenvector v.t/ are analytic in t , and

�0.t/D hv.t/; .A0.t/CB 0.t//v.t/i

(scalar product in CN ). Under the assumptions on A and B , this is � 1� 1
2

. Lemma
9.1 applied to each eigenvalue �.t/ gives the result.

If B is nonanalytic we get the same result by analytic approximation. �

PROPOSITION 9.3.


.A.t/CB.t//�1

� 1

"
outside a set of t 2 I of Lebesgue

measure � cte:N".

Proof. There exists a unitary matrix U.t/ such that

U.t/�.A.t/CB.t//U.t/

0B@ �1.t/ : : : 0
:::

: : :
:::

0 : : : �N .t/

1CA :
Now 

.A.t/CB.t//�1

D max

0�j�N

ˇ̌̌̌
1

�j .t/

ˇ̌̌̌
: �
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