On the $p$-adic theory of local models

Abstract

We prove the Scholze–Weinstein conjecture on the existence and uniqueness of local models for local Shimura varieties, as well as the test function conjecture of Haines–Kottwitz in this framework. To this end, we establish a specialization principle for well-behaved $p$-adic kimberlites, show that these include the v-sheaf local models, determine their special fibers using hyperbolic localization for the étale cohomology of small v-stacks, and analytic the resulting specialization morphism using convolution.

Authors

Johannes Anschütz

Mathematisches Institut der Universität Bonn, Bonn, Germany

Current address:

Université Paris-Saclay, Laboratoire de mathématiques d'Orsay, Orsay, France Ian Gleason

Mathematisches Institut der Universität Bonn, Bonn, Germany

Current address:

Department of Mathematics, National University of Singapore, Singapore João Lourenço

Max-Planck-Institut für Mathematik, 53111 Bonn, Germany

Current address:

Université Sorbonne Paris Nord (Paris 13), Villetaneuse, France Timo Richarz

Department of Mathematics, Technische Universität Darmstadt, Darmstadt, Germany