Abstract
Let $K$ be a number field not containing a CM subfield. For any smooth projective curve $Y/K$ of genus $\geq2$, we prove that the image of the “Selmer” part of Grothendieck’s section set inside the $K_v$-rational points $Y(K_v)$ is finite for every finite place $v$. This gives an unconditional verification of a prediction of Grothendieck’s section conjecture. In the process of proving our main result, we also refine and extend the method of Lawrence and Venkatesh, with potential consequences for explicit computations.