Finite generation for valuations computing stability thresholds and applications to K-stability

Abstract

We prove that on any log Fano pair of dimension $n$ whose stability threshold is less than $\frac {n+1}{n}$, any valuation computing the stability threshold has a finitely generated associated graded ring. Together with earlier works, this implies that (a) a log Fano pair is uniformly $\mathrm {K}$-stable (resp. reduced uniformly $\mathrm {K}$-stable) if and only if it is $\mathrm {K}$-stable (resp. $\mathrm {K}$-polystable); (b) the $\mathrm {K}$-moduli spaces are proper and projective; and combining with the previously known equivalence between the existence of Kähler-Einstein metric and reduced uniform $\mathrm {K}$-stability proved by the variational approach, (c) the Yau-Tian-Donaldson conjecture holds for general (possibly singular) log Fano pairs.

  • [AZ-index2] H. Abban and Z. Zhuang, K-stability of Fano varieties via admissible flags, 2020.
    @MISC{AZ-index2,
      author = {Abban, H. and Zhuang, Z.},
      title = {K-stability of {F}ano varieties via admissible flags},
      year = {2020},
      arxiv = {2003.13788},
      zblnumber = {},
      }
  • [ATW19] D. Abramovich, M. Temkin, and J. Włodarczyk, Functorial embedded resolution via weighted blowings up, 2019.
    @MISC{ATW19,
      author = {Abramovich, D. and Temkin, M. and W{\l}odarczyk, J.},
      title = {Functorial embedded resolution via weighted blowings up},
      year = {2019},
      arxiv = {1906.07106},
      zblnumber = {},
      }
  • [ABHLX-goodmoduli] Go to document J. Alper, H. Blum, D. Halpern-Leistner, and C. Xu, "Reductivity of the automorphism group of K-polystable Fano varieties," Invent. Math., vol. 222, iss. 3, pp. 995-1032, 2020.
    @ARTICLE{ABHLX-goodmoduli,
      author = {Alper, Jarod and Blum, Harold and Halpern-Leistner, Daniel and Xu, Chenyang},
      title = {Reductivity of the automorphism group of {K}-polystable {F}ano varieties},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {222},
      year = {2020},
      number = {3},
      pages = {995--1032},
      issn = {0020-9910},
      mrclass = {14J45 (14D23 14E30 14J10)},
      mrnumber = {4169054},
      mrreviewer = {James McKernan},
      doi = {10.1007/s00222-020-00987-2},
      url = {https://doi.org/10.1007/s00222-020-00987-2},
      zblnumber = {1465.14043},
      }
  • [AHLH-Sandtheta] J. Alper, D. Halpern-Leistner, and J. Heinloth, Existence of moduli spaces for algebraic stacks, 2018.
    @MISC{AHLH-Sandtheta,
      author = {Alper, Jarod and Halpern-Leistner, Daniel and Heinloth, Jochen},
      title = {Existence of moduli spaces for algebraic stacks},
      year = {2018},
      arxiv = {1812.01128},
      zblnumber = {},
      }
  • [Amb16] Go to document F. Ambro, "Variation of log canonical thresholds in linear systems," Int. Math. Res. Not. IMRN, iss. 14, pp. 4418-4448, 2016.
    @ARTICLE{Amb16,
      author = {Ambro, Florin},
      title = {Variation of log canonical thresholds in linear systems},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2016},
      number = {14},
      pages = {4418--4448},
      issn = {1073-7928},
      mrclass = {14E30 (14J45 14M25)},
      mrnumber = {3556423},
      mrreviewer = {Alex Massarenti},
      doi = {10.1093/imrn/rnv284},
      url = {https://doi.org/10.1093/imrn/rnv284},
      zblnumber = {1404.14020},
      }
  • [ADL19] K. Ascher, K. DeVleming, and Y. Liu, Wall crossing for K-moduli spaces of plane curves, 2019.
    @MISC{ADL19,
      author = {Ascher, K. and DeVleming, K. and Liu, Y.},
      title = {Wall crossing for {K}-moduli spaces of plane curves},
      year = {2019},
      arxiv = {1909.04576},
      zblnumber = {},
      }
  • [BBJ-variational] Go to document R. J. Berman, S. Boucksom, and M. Jonsson, "A variational approach to the Yau-Tian-Donaldson conjecture," J. Amer. Math. Soc., vol. 34, iss. 3, pp. 605-652, 2021.
    @ARTICLE{BBJ-variational,
      author = {Berman, Robert J. and Boucksom, Sébastien and Jonsson, Mattias},
      title = {A variational approach to the {Y}au-{T}ian-{D}onaldson conjecture},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {34},
      year = {2021},
      number = {3},
      pages = {605--652},
      issn = {0894-0347},
      mrclass = {32Q20 (14E30 32P05 32Q26 32U35)},
      mrnumber = {4334189},
      doi = {10.1090/jams/964},
      url = {https://doi.org/10.1090/jams/964},
      zblnumber = {07420176},
      }
  • [Berman-Kpoly] Go to document R. J. Berman, "K-polystability of ${\Bbb Q}$-Fano varieties admitting Kähler-Einstein metrics," Invent. Math., vol. 203, iss. 3, pp. 973-1025, 2016.
    @ARTICLE{Berman-Kpoly,
      author = {Berman, Robert J.},
      title = {K-polystability of {${\Bbb Q}$}-{F}ano varieties admitting {K}ähler-{E}instein metrics},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {203},
      year = {2016},
      number = {3},
      pages = {973--1025},
      issn = {0020-9910},
      mrclass = {53C55 (14J45 53C25)},
      mrnumber = {3461370},
      mrreviewer = {Cristiano Spotti},
      doi = {10.1007/s00222-015-0607-7},
      url = {https://doi.org/10.1007/s00222-015-0607-7},
      zblnumber = {1353.14051},
      }
  • [Birkar-BAB] Go to document C. Birkar, "Singularities of linear systems and boundedness of Fano varieties," Ann. of Math. (2), vol. 193, iss. 2, pp. 347-405, 2021.
    @ARTICLE{Birkar-BAB,
      author = {Birkar, Caucher},
      title = {Singularities of linear systems and boundedness of {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {193},
      year = {2021},
      number = {2},
      pages = {347--405},
      issn = {0003-486X},
      mrclass = {14J45 (14C20 14E30)},
      mrnumber = {4224714},
      doi = {10.4007/annals.2021.193.2.1},
      url = {https://doi.org/10.4007/annals.2021.193.2.1},
      zblnumber = {1469.14085},
      }
  • [Birkar-boundedcomplements] Go to document C. Birkar, "Anti-pluricanonical systems on Fano varieties," Ann. of Math. (2), vol. 190, iss. 2, pp. 345-463, 2019.
    @ARTICLE{Birkar-boundedcomplements,
      author = {Birkar, Caucher},
      title = {Anti-pluricanonical systems on {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {190},
      year = {2019},
      number = {2},
      pages = {345--463},
      issn = {0003-486X},
      mrclass = {14J45 (14C20 14E05 14E30)},
      mrnumber = {3997127},
      mrreviewer = {James McKernan},
      doi = {10.4007/annals.2019.190.2.1},
      url = {https://doi.org/10.4007/annals.2019.190.2.1},
      zblnumber = {1470.14078},
      }
  • [BCHM] Go to document C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type," J. Amer. Math. Soc., vol. 23, iss. 2, pp. 405-468, 2010.
    @ARTICLE{BCHM,
      author = {Birkar, Caucher and Cascini, Paolo and Hacon, Christopher D. and McKernan, James},
      title = {Existence of minimal models for varieties of log general type},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {23},
      year = {2010},
      number = {2},
      pages = {405--468},
      issn = {0894-0347},
      mrclass = {14E30 (14E05)},
      mrnumber = {2601039},
      mrreviewer = {Mark Gross},
      doi = {10.1090/S0894-0347-09-00649-3},
      url = {https://doi.org/10.1090/S0894-0347-09-00649-3},
      zblnumber = {1210.14019},
      }
  • [BHLLX-theta] Go to document H. Blum, D. Halpern-Leistner, Y. Liu, and C. Xu, "On properness of K-moduli spaces and optimal degenerations of Fano varieties," Selecta Math. (N.S.), vol. 27, iss. 4, p. 73, 2021.
    @ARTICLE{BHLLX-theta,
      author = {Blum, Harold and Halpern-Leistner, Daniel and Liu, Yuchen and Xu, Chenyang},
      title = {On properness of {K}-moduli spaces and optimal degenerations of {F}ano varieties},
      journal = {Selecta Math. (N.S.)},
      fjournal = {Selecta Mathematica. New Series},
      volume = {27},
      year = {2021},
      number = {4},
      pages = {Paper No. 73, 39},
      issn = {1022-1824},
      mrclass = {14J45 (14D23)},
      mrnumber = {4292783},
      doi = {10.1007/s00029-021-00694-7},
      url = {https://doi.org/10.1007/s00029-021-00694-7},
      zblnumber = {1477.14021},
      }
  • [BJ-delta] Go to document H. Blum and M. Jonsson, "Thresholds, valuations, and K-stability," Adv. Math., vol. 365, p. 107062, 2020.
    @ARTICLE{BJ-delta,
      author = {Blum, Harold and Jonsson, Mattias},
      title = {Thresholds, valuations, and {K}-stability},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {365},
      year = {2020},
      pages = {107062, 57},
      issn = {0001-8708},
      mrclass = {14C20 (14M25)},
      mrnumber = {4067358},
      mrreviewer = {Chenyang Xu},
      doi = {10.1016/j.aim.2020.107062},
      url = {https://doi.org/10.1016/j.aim.2020.107062},
      zblnumber = {1441.14137},
      }
  • [BL18] Go to document H. Blum and Y. Liu, "Openness of uniform K-stability in families of $\Bbb Q$-Fano varieties," Ann. Sci. Éc. Norm. Supér. (4), vol. 55, iss. 1, pp. 1-41, 2022.
    @article{BL18,
      author = {Blum, Harold and Liu, Yuchen},
      TITLE = {Openness of uniform {K}-stability in families of {$\Bbb Q$}-{F}ano varieties},
      JOURNAL = {Ann. Sci. \'{E}c. Norm. Supér. (4)},
      FJOURNAL = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      VOLUME = {55},
      YEAR = {2022},
      NUMBER = {1},
      PAGES = {1--41},
      ISSN = {0012-9593},
      MRCLASS = {14J45 (14E07 32Q26)},
      MRNUMBER = {4411858},
      DOI = {10.24033/asens.2490},
      URL = {https://doi.org/10.24033/asens.2490},
      }
  • [BL-vol-lsc] Go to document H. Blum and Y. Liu, "The normalized volume of a singularity is lower semicontinuous," J. Eur. Math. Soc. (JEMS), vol. 23, iss. 4, pp. 1225-1256, 2021.
    @ARTICLE{BL-vol-lsc,
      author = {Blum, Harold and Liu, Yuchen},
      title = {The normalized volume of a singularity is lower semicontinuous},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {23},
      year = {2021},
      number = {4},
      pages = {1225--1256},
      issn = {1435-9855},
      mrclass = {14B05 (13A18 32Q26)},
      mrnumber = {4228279},
      mrreviewer = {Eugenii Shustin},
      doi = {10.4171/jems/1032},
      url = {https://doi.org/10.4171/jems/1032},
      zblnumber = {1470.14008},
      }
  • [BLX-openness] H. Blum, Y. Liu, and C. Xu, Openness of K-semistability for Fano varieties, 2019.
    @MISC{BLX-openness,
      author = {Blum, Harold and Liu, Yuchen and Xu, C.},
      title = {Openness of {K}-semistability for {F}ano varieties},
      note = {to appear in \emph{Duke Math. J.}},
      year = {2019},
      arxiv = {1907.02408},
      zblnumber = {},
      }
  • [BLZ-opt-destabilization] H. Blum, Y. Liu, and C. Zhou, Optimal destabilization of K-unstable Fano varieties via stability thresholds, 2019.
    @MISC{BLZ-opt-destabilization,
      author = {Blum, Harold and Liu, Yuchen and Zhou, C.},
      title = {Optimal destabilization of {K}-unstable {F}ano varieties via stability thresholds},
      note = {to appear in \emph{Geom. Topol.}},
      year = {2019},
      arxiv = {1907.05399},
      zblnumber = {},
      }
  • [BX-uniqueness] Go to document H. Blum and C. Xu, "Uniqueness of K-polystable degenerations of Fano varieties," Ann. of Math. (2), vol. 190, iss. 2, pp. 609-656, 2019.
    @ARTICLE{BX-uniqueness,
      author = {Blum, Harold and Xu, Chenyang},
      title = {Uniqueness of {K}-polystable degenerations of {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {190},
      year = {2019},
      number = {2},
      pages = {609--656},
      issn = {0003-486X},
      mrclass = {14J45 (14D20 14E30)},
      mrnumber = {3997130},
      mrreviewer = {James McKernan},
      doi = {10.4007/annals.2019.190.2.4},
      url = {https://doi.org/10.4007/annals.2019.190.2.4},
      zblnumber = {1427.14084},
      }
  • [BdFFU15] Go to document S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, "Valuation spaces and multiplier ideals on singular varieties," in Recent Advances in Algebraic Geometry, Cambridge Univ. Press, Cambridge, 2015, vol. 417, pp. 29-51.
    @INCOLLECTION{BdFFU15,
      author = {Boucksom, S. and de Fernex, T. and Favre, C. and Urbinati, S.},
      title = {Valuation spaces and multiplier ideals on singular varieties},
      booktitle = {Recent {A}dvances in {A}lgebraic {G}eometry},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {417},
      pages = {29--51},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2015},
      mrclass = {14F18 (13A18 14B05 14C20 14J17)},
      mrnumber = {3380442},
      mrreviewer = {Patrick Graf},
      doi = {10.1017/CBO9781107416000.004},
      url = {https://doi.org/10.1017/CBO9781107416000.004},
      zblnumber = {1330.14025},
      }
  • [BHJ-DH-measure] Go to document S. Boucksom, T. Hisamoto, and M. Jonsson, "Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs," Ann. Inst. Fourier (Grenoble), vol. 67, iss. 2, pp. 743-841, 2017.
    @ARTICLE{BHJ-DH-measure,
      author = {Boucksom, Sébastien and Hisamoto, Tomoyuki and Jonsson, Mattias},
      title = {Uniform {K}-stability, {D}uistermaat-{H}eckman measures and singularities of pairs},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {67},
      year = {2017},
      number = {2},
      pages = {743--841},
      issn = {0373-0956},
      mrclass = {32Q26 (14E30 14G22)},
      mrnumber = {3669511},
      mrreviewer = {Yuji Odaka},
      doi = {10.5802/aif.3096},
      url = {https://doi.org/10.5802/aif.3096},
      zblnumber = {1391.14090},
      }
  • [CS08] Go to document I. A. Cheltsov and K. A. Shramov, "Log-canonical thresholds for nonsingular Fano threefolds," Uspekhi Mat. Nauk, vol. 63, iss. 5(383), pp. 73-180, 2008.
    @ARTICLE{CS08,
      author = {Cheltsov, I. A. and Shramov, K. A.},
      title = {Log-canonical thresholds for nonsingular {F}ano threefolds},
      journal = {Uspekhi Mat. Nauk},
      fjournal = {Uspekhi Matematicheskikh Nauk},
      volume = {63},
      year = {2008},
      number = {5(383)},
      pages = {73--180},
      issn = {0042-1316},
      mrclass = {14J45 (14J30 32Q20)},
      mrnumber = {2484031},
      mrreviewer = {Alexandr V. Pukhlikov},
      doi = {10.1070/RM2008v063n05ABEH004561},
      url = {https://doi.org/10.1070/RM2008v063n05ABEH004561},
      zblnumber = {1167.14024},
      }
  • [Chen-boundedness] Go to document W. Chen, "Boundedness of weak Fano pairs with alpha-invariants and volumes bounded below," Publ. Res. Inst. Math. Sci., vol. 56, iss. 3, pp. 539-559, 2020.
    @ARTICLE{Chen-boundedness,
      author = {Chen, Weichung},
      title = {Boundedness of weak {F}ano pairs with alpha-invariants and volumes bounded below},
      journal = {Publ. Res. Inst. Math. Sci.},
      fjournal = {Publications of the Research Institute for Mathematical Sciences},
      volume = {56},
      year = {2020},
      number = {3},
      pages = {539--559},
      issn = {0034-5318},
      mrclass = {14J45 (14C20)},
      mrnumber = {4116691},
      mrreviewer = {Constantin Shramov},
      doi = {10.4171/PRIMS/56-3-4},
      url = {https://doi.org/10.4171/PRIMS/56-3-4},
      zblnumber = {1453.14108},
      }
  • [CDS15a] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 183-197, 2015.
    @ARTICLE{CDS15a,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds. {I}: {A}pproximation of metrics with cone singularities},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {183--197},
      issn = {0894-0347},
      mrclass = {53C55 (14J45 32Q20 32W20 53C25)},
      mrnumber = {3264766},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00799-2},
      url = {https://doi.org/10.1090/S0894-0347-2014-00779-2},
      zblnumber = {1312.53096},
      }
  • [CDS15b] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than $2\pi$," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 199-234, 2015.
    @ARTICLE{CDS15b,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds. {II}: {L}imits with cone angle less than {$2\pi$}},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {199--234},
      issn = {0894-0347},
      mrclass = {53C55 (53C25)},
      mrnumber = {3264767},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00800-6},
      url = {https://doi.org/10.1090/S0894-0347-2014-00800-6},
      zblnumber = {1312.53097},
      }
  • [CDS15c] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 235-278, 2015.
    @ARTICLE{CDS15c,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds. {III}: {L}imits as cone angle approaches {$2\pi$} and completion of the main proof},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {235--278},
      issn = {0894-0347},
      mrclass = {53C55 (53C25)},
      mrnumber = {3264768},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00801-8},
      url = {https://doi.org/10.1090/S0894-0347-2014-00801-8},
      zblnumber = {1311.53059},
      }
  • [CP-Proj] Go to document G. Codogni and Z. Patakfalvi, "Positivity of the CM line bundle for families of K-stable klt Fano varieties," Invent. Math., vol. 223, iss. 3, pp. 811-894, 2021.
    @ARTICLE{CP-Proj,
      author = {Codogni, Giulio and Patakfalvi, Zsolt},
      title = {Positivity of the {CM} line bundle for families of {K}-stable klt {F}ano varieties},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {223},
      year = {2021},
      number = {3},
      pages = {811--894},
      issn = {0020-9910},
      mrclass = {14J45 (14C20)},
      mrnumber = {4213768},
      doi = {10.1007/s00222-020-00999-y},
      url = {https://doi.org/10.1007/s00222-020-00999-y},
      zblnumber = {1462.14044},
      }
  • [Don-cone] Go to document S. K. Donaldson, "Kähler metrics with cone singularities along a divisor," in Essays in Mathematics and its Applications, Springer, Heidelberg, 2012, pp. 49-79.
    @INCOLLECTION{Don-cone,
      author = {Donaldson, S. K.},
      title = {Kähler metrics with cone singularities along a divisor},
      booktitle = {Essays in Mathematics and its Applications},
      pages = {49--79},
      publisher = {Springer, Heidelberg},
      year = {2012},
      mrclass = {53C55 (32Q26 53C21)},
      mrnumber = {2975584},
      mrreviewer = {Julius Ross},
      doi = {10.1007/978-3-642-28821-0\_4},
      url = {https://doi.org/10.1007/978-3-642-28821-0_4},
      zblnumber = {1326.32039},
      }
  • [DS-GHlimit] Go to document S. Donaldson and S. Sun, "Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry," Acta Math., vol. 213, iss. 1, pp. 63-106, 2014.
    @ARTICLE{DS-GHlimit,
      author = {Donaldson, Simon and Sun, Song},
      title = {Gromov-{H}ausdorff limits of {K}ähler manifolds and algebraic geometry},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {213},
      year = {2014},
      number = {1},
      pages = {63--106},
      issn = {0001-5962},
      mrclass = {53C55 (32Q20 53C23)},
      mrnumber = {3261011},
      mrreviewer = {Valentino Tosatti},
      doi = {10.1007/s11511-014-0116-3},
      url = {https://doi.org/10.1007/s11511-014-0116-3},
      zblnumber = {1318.53037},
      }
  • [ELS03] Go to document L. Ein, R. Lazarsfeld, and K. E. Smith, "Uniform approximation of Abhyankar valuation ideals in smooth function fields," Amer. J. Math., vol. 125, iss. 2, pp. 409-440, 2003.
    @ARTICLE{ELS03,
      author = {Ein, Lawrence and Lazarsfeld, Robert and Smith, Karen E.},
      title = {Uniform approximation of {A}bhyankar valuation ideals in smooth function fields},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {125},
      year = {2003},
      number = {2},
      pages = {409--440},
      issn = {0002-9327},
      mrclass = {13A18 (13H10)},
      mrnumber = {1963690},
      mrreviewer = {Irena Swanson},
      doi = {10.1353/ajm.2003.0010},
      url = {https://doi.org/10.1353/ajm.2003.0010},
      zblnumber = {1033.14030},
      }
  • [dFKX-dualcomplex] Go to document T. de Fernex, J. Kollár, and C. Xu, "The dual complex of singularities," in Higher Dimensional Algebraic Geometry—In Honour of Professor Yujiro Kawamata’s Sixtieth Birthday, Math. Soc. Japan, Tokyo, 2017, vol. 74, pp. 103-129.
    @INCOLLECTION{dFKX-dualcomplex,
      author = {de Fernex, Tommaso and Koll{\'{a}}r, J{\'{a}}nos and Xu, Chenyang},
      title = {The dual complex of singularities},
      booktitle = {Higher Dimensional Algebraic Geometry---In Honour of {P}rofessor {Y}ujiro {K}awamata's Sixtieth Birthday},
      series = {Adv. Stud. Pure Math.},
      volume = {74},
      pages = {103--129},
      publisher = {Math. Soc. Japan, Tokyo},
      year = {2017},
      mrclass = {14B05 (14D06 14J17)},
      mrnumber = {3791210},
      mrreviewer = {Chen Jiang},
      doi = {10.2969/aspm/07410103},
      url = {https://doi.org/10.2969/aspm/07410103},
      zblnumber = {1388.14107},
      }
  • [Fujita-plt] Go to document K. Fujita, "Uniform K-stability and plt blowups of log Fano pairs," Kyoto J. Math., vol. 59, iss. 2, pp. 399-418, 2019.
    @ARTICLE{Fujita-plt,
      author = {Fujita, Kento},
      title = {Uniform {K}-stability and plt blowups of log {F}ano pairs},
      journal = {Kyoto J. Math.},
      fjournal = {Kyoto Journal of Mathematics},
      volume = {59},
      year = {2019},
      number = {2},
      pages = {399--418},
      issn = {2156-2261},
      mrclass = {14J45 (14E30)},
      mrnumber = {3960299},
      mrreviewer = {Chen Jiang},
      doi = {10.1215/21562261-2019-0012},
      url = {https://doi.org/10.1215/21562261-2019-0012},
      zblnumber = {1419.14065},
      }
  • [Fujita-criterion] Go to document K. Fujita, "A valuative criterion for uniform K-stability of $\Bbb Q$-Fano varieties," J. Reine Angew. Math., vol. 751, pp. 309-338, 2019.
    @ARTICLE{Fujita-criterion,
      author = {Fujita, Kento},
      title = {A valuative criterion for uniform {K}-stability of {$\Bbb Q$}-{F}ano varieties},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {751},
      year = {2019},
      pages = {309--338},
      issn = {0075-4102},
      mrclass = {14E05 (14J45 32Q26)},
      mrnumber = {3956698},
      mrreviewer = {Ziquan Zhuang},
      doi = {10.1515/crelle-2016-0055},
      url = {https://doi.org/10.1515/crelle-2016-0055},
      zblnumber = {1435.14039},
      }
  • [FO18] Go to document K. Fujita and Y. Odaka, "On the K-stability of Fano varieties and anticanonical divisors," Tohoku Math. J. (2), vol. 70, iss. 4, pp. 511-521, 2018.
    @ARTICLE{FO18,
      author = {Fujita, Kento and Odaka, Yuji},
      title = {On the {K}-stability of {F}ano varieties and anticanonical divisors},
      journal = {Tohoku Math. J. (2)},
      fjournal = {The Tohoku Mathematical Journal. Second Series},
      volume = {70},
      year = {2018},
      number = {4},
      pages = {511--521},
      issn = {0040-8735},
      mrclass = {14J45 (32Q26 53C55)},
      mrnumber = {3896135},
      mrreviewer = {Andreas Höring},
      doi = {10.2748/tmj/1546570823},
      url = {https://doi.org/10.2748/tmj/1546570823},
      zblnumber = {1422.14047},
      }
  • [HMX-ACC] Go to document C. D. Hacon, J. McKernan, and C. Xu, "ACC for log canonical thresholds," Ann. of Math. (2), vol. 180, iss. 2, pp. 523-571, 2014.
    @ARTICLE{HMX-ACC,
      author = {Hacon, Christopher D. and McKernan, James and Xu, Chenyang},
      title = {A{CC} for log canonical thresholds},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {180},
      year = {2014},
      number = {2},
      pages = {523--571},
      issn = {0003-486X},
      mrclass = {14E05 (14C20 14E30)},
      mrnumber = {3224718},
      mrreviewer = {Alexandr V. Pukhlikov},
      doi = {10.4007/annals.2014.180.2.3},
      url = {https://doi.org/10.4007/annals.2014.180.2.3},
      zblnumber = {1320.14023},
      }
  • [Fletcher-weighted] Go to document A. R. Iano-Fletcher, "Working with weighted complete intersections," in Explicit Birational Geometry of 3-folds, Cambridge Univ. Press, Cambridge, 2000, vol. 281, pp. 101-173.
    @INCOLLECTION{Fletcher-weighted,
      author = {Iano-Fletcher, A. R.},
      title = {Working with weighted complete intersections},
      booktitle = {Explicit {B}irational {G}eometry of 3-folds},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {281},
      pages = {101--173},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2000},
      mrclass = {14M10 (14B05 14M07)},
      mrnumber = {1798982},
      mrreviewer = {Roberto Mu\~{n}oz},
      doi = {10.1017/CBO9780511758942.005},
      url = {https://doi.org/10.1017/CBO9780511758942.005},
      zblnumber = {0960.14027},
      }
  • [Jiang-boundedness] Go to document C. Jiang, "Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below," Ann. Sci. Éc. Norm. Supér. (4), vol. 53, iss. 5, pp. 1235-1248, 2020.
    @ARTICLE{Jiang-boundedness,
      author = {Jiang, Chen},
      title = {Boundedness of {$\Bbb Q$}-{F}ano varieties with degrees and alpha-invariants bounded from below},
      journal = {Ann. Sci. \'{E}c. Norm. Supér. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {53},
      year = {2020},
      number = {5},
      pages = {1235--1248},
      issn = {0012-9593},
      mrclass = {14J45 (14L24)},
      mrnumber = {4174851},
      zblnumber = {1473.14079},
      doi = {10.24033/asens.2445},
      url = {https://doi.org/10.24033/asens.2445},
     }
  • [JM12] Go to document M. Jonsson and M. Mustactua, "Valuations and asymptotic invariants for sequences of ideals," Ann. Inst. Fourier (Grenoble), vol. 62, iss. 6, pp. 2145-2209 (2013), 2012.
    @ARTICLE{JM12,
      author = {Jonsson, Mattias and Musta\c{t}\u{a},
      Mircea},
      title = {Valuations and asymptotic invariants for sequences of ideals},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {62},
      year = {2012},
      number = {6},
      pages = {2145--2209 (2013)},
      issn = {0373-0956},
      mrclass = {14F18 (12J20 14B05)},
      mrnumber = {3060755},
      mrreviewer = {Carlos Galindo},
      doi = {10.5802/aif.2746},
      url = {https://doi.org/10.5802/aif.2746},
      zblnumber = {1272.14016},
      }
  • [Kawamata-subadj] Go to document Y. Kawamata, "Subadjunction of log canonical divisors. II," Amer. J. Math., vol. 120, iss. 5, pp. 893-899, 1998.
    @ARTICLE{Kawamata-subadj,
      author = {Kawamata, Yujiro},
      title = {Subadjunction of log canonical divisors. {II}},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {120},
      year = {1998},
      number = {5},
      pages = {893--899},
      issn = {0002-9327},
      mrclass = {14E30 (14J10)},
      mrnumber = {1646046},
      mrreviewer = {Alessio Corti},
      doi = {10.1353/ajm.1998.0038},
      url = {https://doi.org/10.1353/ajm.1998.0038},
      zblnumber = {0919.14003},
      }
  • [Kol04] J. Kollár, Seifert $G_m$-bundles, 2004.
    @MISC{Kol04,
      author = {Koll{\'{a}}r, J{\'{a}}nos},
      title = {Seifert {$G_m$}-bundles},
      year = {2004},
      arxiv = {math/0404386},
      zblnumber = {},
      }
  • [Kol13] Go to document J. Kollár, Singularities of the Minimal Model Program, Cambridge University Press, Cambridge, 2013, vol. 200.
    @BOOK{Kol13,
      author = {Koll{\'{a}}r, J{\'{a}}nos},
      title = {Singularities of the Minimal Model Program},
      series = {Cambridge Tracts in Math.},
      volume = {200},
      note = {with the collaboration of S\'{a}ndor Kov\'{a}cs},
      publisher = {Cambridge University Press, Cambridge},
      year = {2013},
      pages = {x+370},
      isbn = {978-1-107-03534-8},
      mrclass = {14E30 (14B05)},
      mrnumber = {3057950},
      mrreviewer = {Tommaso De Fernex},
      doi = {10.1017/CBO9781139547895},
      url = {https://doi.org/10.1017/CBO9781139547895},
      zblnumber = {1282.14028},
      }
  • [Kollar-pair] J. Kollár, Families of divisors, 2019.
    @MISC{Kollar-pair,
      author = {Koll{\'{a}}r, J{\'{a}}nos},
      title = {Families of divisors},
      year = {2019},
      arxiv = {1910.00937},
      zblnumber = {},
      }
  • [K+92] Go to document J. Kollár, "Flips and abundance for algebraic threefolds," in Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Soc. Math. France, Paris, 1992, vol. 211, p. 258.
    @INCOLLECTION{K+92,
      author ={Koll{\'{a}}r, J{\'{a}}nos},
      title = {Flips and abundance for algebraic threefolds},
      publisher = {Soc. Math. France, Paris},
      year = {1992},
      booktitle = {Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991},
      issn = {0303-1179},
      mrclass = {14E30 (14E35 14M10)},
      mrnumber = {1225842},
      mrreviewer = {Mark Gross},
      series = {Ast{é}risque},
      volume = {211},
      pages = {258},
      zblnumber = {0782.00075},
      url = {http://www.numdam.org/item?id=AST_1992__211__1_0},
      }
  • [KM98] Go to document J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge University Press, Cambridge, 1998, vol. 134.
    @BOOK{KM98,
      author = {Koll{\'{a}}r, J{\'{a}}nos and Mori, Shigefumi},
      title = {Birational geometry of algebraic varieties},
      series = {Cambridge Tracts in Mathematics},
      volume = {134},
      note = {with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original},
      publisher = {Cambridge University Press, Cambridge},
      year = {1998},
      pages = {viii+254},
      isbn = {0-521-63277-3},
      mrclass = {14E30},
      mrnumber = {1658959},
      mrreviewer = {Mark Gross},
      doi = {10.1017/CBO9780511662560},
      url = {https://doi.org/10.1017/CBO9780511662560},
      zblnumber = {0926.14003},
      }
  • [Li-criterion] Go to document C. Li, "K-semistability is equivariant volume minimization," Duke Math. J., vol. 166, iss. 16, pp. 3147-3218, 2017.
    @ARTICLE{Li-criterion,
      author = {Li, Chi},
      title = {K-semistability is equivariant volume minimization},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {16},
      pages = {3147--3218},
      issn = {0012-7094},
      mrclass = {14B05 (13A18 14J45 52A27 53C25 53C55)},
      mrnumber = {3715806},
      mrreviewer = {Ruadha\'ı Dervan},
      doi = {10.1215/00127094-2017-0026},
      url = {https://doi.org/10.1215/00127094-2017-0026},
      zblnumber = {1409.14008},
      }
  • [Li-volume] Go to document C. Li, "Minimizing normalized volumes of valuations," Math. Z., vol. 289, iss. 1-2, pp. 491-513, 2018.
    @ARTICLE{Li-volume,
      author = {Li, Chi},
      title = {Minimizing normalized volumes of valuations},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {289},
      year = {2018},
      number = {1-2},
      pages = {491--513},
      issn = {0025-5874},
      mrclass = {14B05},
      mrnumber = {3803800},
      mrreviewer = {Chen Jiang},
      doi = {10.1007/s00209-017-1963-3},
      url = {https://doi.org/10.1007/s00209-017-1963-3},
      zblnumber = {1423.14025},
      }
  • [Li19] Go to document C. Li, "$G$-uniform stability and Kähler-Einstein metrics on Fano varieties," Invent. Math., vol. 227, iss. 2, pp. 661-744, 2022.
    @ARTICLE{Li19,
      author = {Li, Chi},
      title = {{$G$}-uniform stability and {K}ähler-{E}instein metrics on {F}ano varieties},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {227},
      year = {2022},
      number = {2},
      pages = {661--744},
      issn = {0020-9910},
      mrclass = {14J45},
      mrnumber = {4372222},
      doi = {10.1007/s00222-021-01075-9},
      url = {https://doi.org/10.1007/s00222-021-01075-9},
      zblnumber = {07470589},
      }
  • [Li-Tian-Wang] Go to document C. Li, G. Tian, and F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, 2021.
    @MISC{Li-Tian-Wang,
      author = {Li, Chi and Tian, G. and Wang, F.},
      title = {The uniform version of {Y}au-{T}ian-{D}onaldson conjecture for singular {F}ano varieties},
      journal = {Peking Math. J.},
      fjournal = {Peking Mathematical Journal},
      year = {2021},
      doi = {10.1007/s42543-021-00039-5},
      url = {https://doi.org/10.1007/s42543-021-00039-5},
      zblnumber = {},
      }
  • [LWXI] Go to document C. Li, X. Wang, and C. Xu, "On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties," Duke Math. J., vol. 168, iss. 8, pp. 1387-1459, 2019.
    @ARTICLE{LWXI,
      author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang},
      title = {On the proper moduli spaces of smoothable {K}ähler-{E}instein {F}ano varieties},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {168},
      year = {2019},
      number = {8},
      pages = {1387--1459},
      issn = {0012-7094},
      mrclass = {14J45 (14D20 14J10 53C25 53C55)},
      mrnumber = {3959862},
      mrreviewer = {Indranil Biswas},
      doi = {10.1215/00127094-2018-0069},
      url = {https://doi.org/10.1215/00127094-2018-0069},
      zblnumber = {1469.14087},
      }
  • [LWX-cone] Go to document C. Li, X. Wang, and C. Xu, "Algebraicity of the metric tangent cones and equivariant K-stability," J. Amer. Math. Soc., vol. 34, iss. 4, pp. 1175-1214, 2021.
    @ARTICLE{LWX-cone,
      author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang},
      title = {Algebraicity of the metric tangent cones and equivariant {K}-stability},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {34},
      year = {2021},
      number = {4},
      pages = {1175--1214},
      issn = {0894-0347},
      mrclass = {14B07 (14E30 14J17 14J45 53C55)},
      mrnumber = {4301561},
      doi = {10.1090/jams/974},
      url = {https://doi.org/10.1090/jams/974},
      zblnumber = {1475.14062},
      }
  • [LX-special] Go to document C. Li and C. Xu, "Special test configuration and K-stability of Fano varieties," Ann. of Math. (2), vol. 180, iss. 1, pp. 197-232, 2014.
    @ARTICLE{LX-special,
      author = {Li, Chi and Xu, Chenyang},
      title = {Special test configuration and {K}-stability of {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {180},
      year = {2014},
      number = {1},
      pages = {197--232},
      issn = {0003-486X},
      mrclass = {14J45 (14E30 14J10 14J80)},
      mrnumber = {3194814},
      mrreviewer = {Anne-Sophie Kaloghiros},
      doi = {10.4007/annals.2014.180.1.4},
      url = {https://doi.org/10.4007/annals.2014.180.1.4},
      zblnumber = {1301.14026},
      }
  • [LX-higher-rank] Go to document C. Li and C. Xu, "Stability of valuations: higher rational rank," Peking Math. J., vol. 1, iss. 1, pp. 1-79, 2018.
    @ARTICLE{LX-higher-rank,
      author = {Li, Chi and Xu, Chenyang},
      title = {Stability of valuations: higher rational rank},
      journal = {Peking Math. J.},
      fjournal = {Peking Mathematical Journal},
      volume = {1},
      year = {2018},
      number = {1},
      pages = {1--79},
      issn = {2096-6075},
      mrclass = {14E30 (14B05 32Q26)},
      mrnumber = {4059992},
      mrreviewer = {Jingjun Han},
      doi = {10.1007/s42543-018-0001-7},
      url = {https://doi.org/10.1007/s42543-018-0001-7},
      zblnumber = {1423.14262},
      }
  • [LZ-alpha-sharpness] Go to document Y. Liu and Z. Zhuang, "On the sharpness of Tian’s criterion for K-stability," Nagoya Math. J., vol. 245, pp. 41-73, 2022.
    @article{LZ-alpha-sharpness,
      author = {Liu, Yuchen and Zhuang, Ziquan},
      TITLE = {On the sharpness of {T}ian's criterion for {K}-stability},
      JOURNAL = {Nagoya Math. J.},
      FJOURNAL = {Nagoya Mathematical Journal},
      VOLUME = {245},
      YEAR = {2022},
      PAGES = {41--73},
      ISSN = {0027-7630},
      MRCLASS = {14J45 (14L24 32Q26)},
      MRNUMBER = {4413362},
      DOI = {10.1017/nmj.2020.28},
      URL = {https://doi.org/10.1017/nmj.2020.28},
      ZBLNUMBER = {7517288},
      }
  • [PT-CM] Go to document S. T. Paul and G. Tian, "CM stability and the generalized Futaki invariant II," Astérisque, iss. 328, pp. 339-354, 2009.
    @ARTICLE{PT-CM,
      author = {Paul, Sean Timothy and Tian, Gang},
      title = {C{M} stability and the generalized {F}utaki invariant {II}},
      journal = {Astérisque},
      fjournal = {Astérisque},
      number = {328},
      year = {2009},
      pages = {339--354},
      issn = {0303-1179},
      isbn = {978-2-85629-289-1},
      mrclass = {32Q26 (14D06 32Q20)},
      mrnumber = {2674882},
      mrreviewer = {Julien Keller},
      url = {http://www.numdam.org/item/AST_2009__328__339_0/},
      zblnumber = {1204.53061},
      }
  • [RT-weighted] Go to document J. Ross and R. Thomas, "Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics," J. Differential Geom., vol. 88, iss. 1, pp. 109-159, 2011.
    @ARTICLE{RT-weighted,
      author = {Ross, Julius and Thomas, Richard},
      title = {Weighted projective embeddings, stability of orbifolds, and constant scalar curvature {K}ähler metrics},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {88},
      year = {2011},
      number = {1},
      pages = {109--159},
      issn = {0022-040X},
      mrclass = {32Q26},
      mrnumber = {2819757},
      doi = {10.4310/jdg/1317758871},
      url = {https://doi.org/10.4310/jdg/1317758871},
      zblnumber = {1244.32013},
      }
  • [Sze-conic] Go to document G. Székelyhidi, "A remark on conical Kähler-Einstein metrics," Math. Res. Lett., vol. 20, iss. 3, pp. 581-590, 2013.
    @ARTICLE{Sze-conic,
      author = {Sz{é}kelyhidi, G{\'{a}}bor},
      title = {A remark on conical {K}{ä}hler-{E}instein metrics},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {20},
      year = {2013},
      number = {3},
      pages = {581--590},
      issn = {1073-2780},
      mrclass = {32Q25 (14J45 53C25 53C55)},
      mrnumber = {3162849},
      mrreviewer = {Yanir A. Rubinstein},
      doi = {10.4310/MRL.2013.v20.n3.a14},
      url = {https://doi.org/10.4310/MRL.2013.v20.n3.a14},
      zblnumber = {1286.32010},
      }
  • [Tia87] Go to document G. Tian, "On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$," Invent. Math., vol. 89, iss. 2, pp. 225-246, 1987.
    @ARTICLE{Tia87,
      author = {Tian, Gang},
      title = {On {K}ähler-{E}instein metrics on certain {K}ähler manifolds with {$C_1(M)>0$}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {89},
      year = {1987},
      number = {2},
      pages = {225--246},
      issn = {0020-9910},
      mrclass = {53C25 (32C10 53C55 58E20)},
      mrnumber = {0894378},
      mrreviewer = {M. Kalka},
      doi = {10.1007/BF01389077},
      url = {https://doi.org/10.1007/BF01389077},
      zblnumber = {0599.53046},
      }
  • [Tian-97] Go to document G. Tian, "Kähler-Einstein metrics with positive scalar curvature," Invent. Math., vol. 130, iss. 1, pp. 1-37, 1997.
    @ARTICLE{Tian-97,
      author = {Tian, Gang},
      title = {Kähler-{E}instein metrics with positive scalar curvature},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {130},
      year = {1997},
      number = {1},
      pages = {1--37},
      issn = {0020-9910},
      mrclass = {53C25 (32L07 53C55)},
      mrnumber = {1471884},
      mrreviewer = {Thalia D. Jeffres},
      doi = {10.1007/s002220050176},
      url = {https://doi.org/10.1007/s002220050176},
      zblnumber = {0892.53027},
      }
  • [Tia15] Go to document G. Tian, "K-stability and Kähler-Einstein metrics," Comm. Pure Appl. Math., vol. 68, iss. 7, pp. 1085-1156, 2015.
    @ARTICLE{Tia15,
      author = {Tian, Gang},
      title = {K-stability and {K}ähler-{E}instein metrics},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {68},
      year = {2015},
      number = {7},
      pages = {1085--1156},
      issn = {0010-3640},
      mrclass = {53C55 (53C25)},
      mrnumber = {3352459},
      mrreviewer = {Matthew B. Stenzel},
      doi = {10.1002/cpa.21578},
      url = {https://doi.org/10.1002/cpa.21578},
      zblnumber = {1318.14038},
      }
  • [Xu-quasimonomial] Go to document C. Xu, "A minimizing valuation is quasi-monomial," Ann. of Math. (2), vol. 191, iss. 3, pp. 1003-1030, 2020.
    @ARTICLE{Xu-quasimonomial,
      author = {Xu, Chenyang},
      title = {A minimizing valuation is quasi-monomial},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {191},
      year = {2020},
      number = {3},
      pages = {1003--1030},
      issn = {0003-486X},
      mrclass = {14E30 (14J17 14J45)},
      mrnumber = {4088355},
      mrreviewer = {Yuchen Liu},
      doi = {10.4007/annals.2020.191.3.6},
      url = {https://doi.org/10.4007/annals.2020.191.3.6},
      zblnumber = {1469.14033},
      }
  • [Xu-survey] Go to document C. Xu, "K-stability of Fano varieties: an algebro-geometric approach," EMS Surv. Math. Sci., vol. 8, iss. 1-2, pp. 265-354, 2021.
    @ARTICLE{Xu-survey,
      author = {Xu, Chenyang},
      title = {K-stability of {F}ano varieties: an algebro-geometric approach},
      journal = {EMS Surv. Math. Sci.},
      fjournal = {EMS Surveys in Mathematical Sciences},
      volume = {8},
      year = {2021},
      number = {1-2},
      pages = {265--354},
      issn = {2308-2151},
      mrclass = {14D20 (14E30 14J10 14J45)},
      mrnumber = {4307210},
      doi = {10.4171/emss/51},
      url = {https://doi.org/10.4171/emss/51},
      zblnumber = {1476.14030},
      }
  • [Xu-HRFG] Go to document C. Xu, "Towards finite generation of higher rational rank valuations," Mat. Sb., vol. 212, iss. 3, pp. 157-174, 2021.
    @ARTICLE{Xu-HRFG,
      author = {Xu, Chenyang},
      title = {Towards finite generation of higher rational rank valuations},
      journal = {Mat. Sb.},
      fjournal = {Matematicheskiĭ Sbornik},
      volume = {212},
      year = {2021},
      number = {3},
      pages = {157--174},
      issn = {0368-8666},
      mrclass = {14B05 (14E30)},
      mrnumber = {4223976},
      doi = {10.1070/SM9448},
      url = {https://doi.org/10.1070/SM9448},
      zblnumber = {07349637},
      }
  • [XZ-CM-positive] Go to document C. Xu and Z. Zhuang, "On positivity of the CM line bundle on K-moduli spaces," Ann. of Math. (2), vol. 192, iss. 3, pp. 1005-1068, 2020.
    @ARTICLE{XZ-CM-positive,
      author = {Xu, Chenyang and Zhuang, Ziquan},
      title = {On positivity of the {CM} line bundle on {K}-moduli spaces},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {192},
      year = {2020},
      number = {3},
      pages = {1005--1068},
      issn = {0003-486X},
      mrclass = {14J45 (14D20 14E30)},
      mrnumber = {4172625},
      mrreviewer = {Kenta Hashizume},
      doi = {10.4007/annals.2020.192.3.7},
      url = {https://doi.org/10.4007/annals.2020.192.3.7},
      zblnumber = {1465.14047},
      }
  • [XZ-uniqueness] Go to document C. Xu and Z. Zhuang, "Uniqueness of the minimizer of the normalized volume function," Camb. J. Math., vol. 9, iss. 1, pp. 149-176, 2021.
    @ARTICLE{XZ-uniqueness,
      author = {Xu, Chenyang and Zhuang, Ziquan},
      title = {Uniqueness of the minimizer of the normalized volume function},
      journal = {Camb. J. Math.},
      fjournal = {Cambridge Journal of Mathematics},
      volume = {9},
      year = {2021},
      number = {1},
      pages = {149--176},
      issn = {2168-0930},
      mrclass = {14B05 (13A18 14E30)},
      mrnumber = {4325260},
      doi = {10.4310/CJM.2021.v9.n1.a2},
      url = {https://doi.org/10.4310/CJM.2021.v9.n1.a2},
      zblnumber = {07374199},
      }
  • [Z-product] Go to document Z. Zhuang, "Product theorem for K-stability," Adv. Math., vol. 371, p. 107250, 2020.
    @ARTICLE{Z-product,
      author = {Zhuang, Ziquan},
      title = {Product theorem for {K}-stability},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {371},
      year = {2020},
      pages = {107250, 18},
      issn = {0001-8708},
      mrclass = {14E30 (14J45)},
      mrnumber = {4108221},
      mrreviewer = {Chenyang Xu},
      doi = {10.1016/j.aim.2020.107250},
      url = {https://doi.org/10.1016/j.aim.2020.107250},
      zblnumber = {1469.14090},
      }
  • [Z-equivariant] Go to document Z. Zhuang, "Optimal destabilizing centers and equivariant K-stability," Invent. Math., vol. 226, iss. 1, pp. 195-223, 2021.
    @ARTICLE{Z-equivariant,
      author = {Zhuang, Ziquan},
      title = {Optimal destabilizing centers and equivariant {K}-stability},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {226},
      year = {2021},
      number = {1},
      pages = {195--223},
      issn = {0020-9910},
      mrclass = {14J45 (32Q26 53C55)},
      mrnumber = {4309493},
      doi = {10.1007/s00222-021-01046-0},
      url = {https://doi.org/10.1007/s00222-021-01046-0},
      zblnumber = {07416639},
      }

Authors

Yuchen Liu

Northwestern University, Evanston, IL, USA

Chenyang Xu

Beijing International Center for Mathematical Research, Beijing, China

Current address:

Princeton University, Princeton, NJ, USA Ziquan Zhuang

Massachusetts Institute of Technology, Cambridge, MA