A negative answer to Ulam’s Problem 19 from the Scottish Book

Abstract

We give a negative answer to Ulam’s Problem 19 from the Scottish Book asking is a solid of uniform density which will float in water in every position a sphere? Assuming that the density of water is $1$, we show that there exists a strictly convex body of revolution $K\subset {\mathbb R^3}$ of uniform density $\frac {1}{2}$, which is not a Euclidean ball, yet floats in equilibrium in every orientation. We prove an analogous result in all dimensions $d\ge 3$.

  • [A] H. Auerbach, "Sur un probléme de M. Ulam concernant l’équilibre des corps flottants," Studia Math., vol. 7, iss. 1, pp. 121-142, 1938.
    @ARTICLE{A,
      author = {Auerbach, H.},
      title = {Sur un probléme de {M. U}lam concernant l'équilibre des corps flottants},
      journal = {Studia Math.},
      volume = {7},
      year = {1938},
      number = {1},
      pages = {121--142},
      zblnumber = {64.0733.04},
      }
  • [BG] Go to document J. W. Bruce and P. J. Giblin, Curves and Singularities, Second ed., Cambridge Univ. Press, Cambridge, 1992.
    @BOOK{BG,
      author = {Bruce, J. W. and Giblin, P. J.},
      title = {Curves and Singularities},
      edition = {Second},
      note = {A geometrical introduction to singularity theory},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1992},
      pages = {xviii+321},
      isbn = {0-521-41985-9; 0-521-42999-4},
      mrclass = {58C27},
      mrnumber = {1206472},
      doi = {10.1017/CBO9781139172615},
      url = {https://doi.org/10.1017/CBO9781139172615},
      zblnumber = {0770.53002},
      }
  • [BMO] Go to document J. Bracho, L. Montejano, and D. Oliveros, "Carousels, Zindler curves and the floating body problem," Period. Math. Hungar., vol. 49, iss. 2, pp. 9-23, 2004.
    @ARTICLE{BMO,
      author = {Bracho, J. and Montejano, L. and Oliveros, D.},
      title = {Carousels, {Z}indler curves and the floating body problem},
      journal = {Period. Math. Hungar.},
      fjournal = {Periodica Mathematica Hungarica. Journal of the J\'{a}nos Bolyai Mathematical Society},
      volume = {49},
      year = {2004},
      number = {2},
      pages = {9--23},
      issn = {0031-5303},
      mrclass = {52A10 (34A12 53A04)},
      mrnumber = {2106462},
      doi = {10.1007/s10998-004-0519-6},
      url = {https://doi.org/10.1007/s10998-004-0519-6},
      zblnumber = {1075.52003},
      }
  • [CFG] Go to document H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
    @BOOK{CFG,
      author = {Croft, Hallard T. and Falconer, Kenneth J. and Guy, Richard K.},
      title = {Unsolved Problems in Geometry},
      series = {Problem Books in Mathematics},
      titlenote = {Unsolved Problems in Intuitive Mathematics, II},
      publisher = {Springer-Verlag, New York},
      year = {1991},
      pages = {xvi+198},
      isbn = {0-387-97506-3},
      mrclass = {52-02},
      mrnumber = {1107516},
      mrreviewer = {W. J. Firey},
      doi = {10.1007/978-1-4612-0963-8},
      url = {https://doi.org/10.1007/978-1-4612-0963-8},
      zblnumber = {0748.52001},
      }
  • [DVP] . C. de La Vallée Poussin, Lecons De Mécanique Analytique, Vol II., Gauthier-Villars éditeur, Paris, 1925.
    @BOOK{DVP,
      author = {de La Vallée Poussin, {\relax Ch.-J}},
      title = {Lecons De Mécanique Analytique, Vol II.},
      publisher = {Gauthier-Villars éditeur, Paris},
      note = {copyright by A. Uystpruyst, Louvain (in French)},
      year = {1925},
      zblnumber = {},
      }
  • [Fa] Go to document K. J. Falconer, "Applications of a result on spherical integration to the theory of convex sets," Amer. Math. Monthly, vol. 90, iss. 10, pp. 690-693, 1983.
    @ARTICLE{Fa,
      author = {Falconer, K. J.},
      title = {Applications of a result on spherical integration to the theory of convex sets},
      journal = {Amer. Math. Monthly},
      fjournal = {American Mathematical Monthly},
      volume = {90},
      year = {1983},
      number = {10},
      pages = {690--693},
      issn = {0002-9890},
      mrclass = {52A20 (43A90 52A22)},
      mrnumber = {0723941},
      mrreviewer = {V. P. Yashnikov},
      doi = {10.2307/2323535},
      url = {https://doi.org/10.2307/2323535},
      zblnumber = {0529.52001},
      }
  • [FSWZ] D. I. Florentin, C. Schütt, E. M. Werner, and N. Zhang, Convex floating bodies of equilibrium, 2020.
    @MISC{FSWZ,
      author = {Florentin, D. I. and Schütt, C. and Werner, E. M. and Zhang, N.},
      title = {Convex floating bodies of equilibrium},
      year = {2020},
      arxiv = {2010.09006},
      zblnumber = {},
      }
  • [Ga] Go to document R. J. Gardner, Geometric Tomography, Second ed., Cambridge Univ. Press, New York, 2006, vol. 58.
    @BOOK{Ga,
      author = {Gardner, Richard J.},
      title = {Geometric Tomography},
      series = {Encyc. Math. Appl.},
      volume = {58},
      edition = {Second},
      publisher = {Cambridge Univ. Press, New York},
      year = {2006},
      pages = {xxii+492},
      isbn = {0-521; 0-521-68493-5},
      mrclass = {52A22 (44A12 92C55)},
      mrnumber = {2251886},
      doi = {10.1017/CBO9781107341029},
      url = {https://doi.org/10.1017/CBO9781107341029},
      zblnumber = {1102.52002},
      }
  • [G] Go to document E. N. Gilbert, "How things float," Amer. Math. Monthly, vol. 98, iss. 3, pp. 201-216, 1991.
    @ARTICLE{G,
      author = {Gilbert, E. N.},
      title = {How things float},
      journal = {Amer. Math. Monthly},
      fjournal = {American Mathematical Monthly},
      volume = {98},
      year = {1991},
      number = {3},
      pages = {201--216},
      issn = {0002-9890},
      mrclass = {76B99},
      mrnumber = {1093951},
      doi = {10.2307/2325023},
      url = {https://doi.org/10.2307/2325023},
      zblnumber = {0735.76012},
      }
  • [H] Go to document Archimedes, The Works of Archimedes, Dover Publ., Inc., Mineola, NY, 2002.
    @BOOK{H,
      author = {Archimedes},
      title = {The Works of {A}rchimedes},
      note = {reprint of the 1897 edition and the 1912 supplement; edited by T. L. Heath},
      publisher = {Dover Publ., Inc., Mineola, NY},
      year = {2002},
      pages = {clxxxvi+51},
      isbn = {0-486-42084-1},
      mrclass = {01A20 (01-06)},
      mrnumber = {2000800},
      mrreviewer = {Ivo Schneider},
      doi = {10.1017/CBO9781139600583.002},
      url = {https://doi.org/10.1017/CBO9781139600583.002},
      zblnumber = {1044.01016},
      }
  • [He] Go to document S. Helgason, The Radon Transform, Second ed., Birkhäuser Boston, Inc., Boston, MA, 1999, vol. 5.
    @BOOK{He,
      author = {Helgason, Sigurdur},
      title = {The {R}adon Transform},
      series = {Progr. in Mathematics},
      volume = {5},
      edition = {Second},
      publisher = {Birkhäuser Boston, Inc., Boston, MA},
      year = {1999},
      pages = {xiv+188},
      isbn = {0-8176-4109-2},
      mrclass = {44A12 (22E30 22E46 43A85 58J40)},
      mrnumber = {1723736},
      mrreviewer = {B. S. Rubin},
      doi = {10.1007/978-1-4757-1463-0},
      url = {https://doi.org/10.1007/978-1-4757-1463-0},
      zblnumber = {0932.43011},
      }
  • [HSS] M. A. Hernández Cifre, G. Salinas, and S. Segura Gomis, "Two optimization problems for convex bodies in the $n$-dimensional space," Beiträge Algebra Geom., vol. 45, iss. 2, pp. 549-555, 2004.
    @ARTICLE{HSS,
      author = {Hern\'{a}ndez Cifre, Mar\'ıa A. and Salinas, Guillermo and Segura Gomis, Salvador},
      title = {Two optimization problems for convex bodies in the {$n$}-dimensional space},
      journal = {Beiträge Algebra Geom.},
      fjournal = {Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry},
      volume = {45},
      year = {2004},
      number = {2},
      pages = {549--555},
      issn = {0138-4821},
      mrclass = {52A20 (52A40)},
      mrnumber = {2093025},
      zblnumber = {1074.52004},
      }
  • [HSW] Go to document H. Huang, B. A. Slomka, and E. M. Werner, "Ulam floating bodies," J. Lond. Math. Soc. (2), vol. 100, iss. 2, pp. 425-446, 2019.
    @ARTICLE{HSW,
      author = {Huang, Han and Slomka, Boaz A. and Werner, Elisabeth M.},
      title = {Ulam floating bodies},
      journal = {J. Lond. Math. Soc. (2)},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {100},
      year = {2019},
      number = {2},
      pages = {425--446},
      issn = {0024-6107},
      mrclass = {52A20 (52A38)},
      mrnumber = {4017149},
      mrreviewer = {Aijun Li},
      doi = {10.1112/jlms.12226},
      url = {https://doi.org/10.1112/jlms.12226},
      zblnumber = {1431.52006},
      }
  • [L] E. V. Lewis, Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers, Jersey City, NJ, 1988.
    @BOOK{L,
      author = {Lewis, E. V.},
      title = {Principles of Naval Architecture},
      publisher = {The Society of Naval Architects and Marine Engineers, Jersey City, NJ},
      series = {Stability and Strength},
      year = {1988},
      note = {2nd revision of Principles of Naval Architecture, 1939, edited by H.E. Rossell and L. B. Chapman},
      zblnumber = {},
      }
  • [M] Go to document The Scottish Book, Second ed., Mauldin, D. R., Ed., Birkhäuser/Springer, Cham, 2015.
    @BOOK{M, title = {The {S}cottish {B}ook},
      edition = {Second},
      editor = {Mauldin, R. Daniel},
      note = {Mathematics from the Scottish Café with selected problems from the new Scottish Book, including selected papers presented at the Scottish Book Conference held at North Texas Univ., Denton, TX, May 1979},
      publisher = {Birkhäuser/Springer, Cham},
      year = {2015},
      pages = {xvii+322},
      isbn = {978-3-319-22896-9; 978-3-319-22897-6},
      mrclass = {00B25 (01A60 03E15)},
      mrnumber = {3242261},
      mrreviewer = {Godofredo Iommi Amun\'{a}tegui},
      doi = {10.1007/978-3-319-22897-6},
      url = {https://doi.org/10.1007/978-3-319-22897-6},
      zblnumber = {1331.01039},
      }
  • [NRZ] Go to document F. Nazarov, D. Ryabogin, and A. Zvavitch, "An asymmetric convex body with maximal sections of constant volume," J. Amer. Math. Soc., vol. 27, iss. 1, pp. 43-68, 2014.
    @ARTICLE{NRZ,
      author = {Nazarov, Fedor and Ryabogin, Dmitry and Zvavitch, Artem},
      title = {An asymmetric convex body with maximal sections of constant volume},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {27},
      year = {2014},
      number = {1},
      pages = {43--68},
      issn = {0894-0347},
      mrclass = {52A20 (52A38 53A40)},
      mrnumber = {3110795},
      mrreviewer = {P. R. Goodey},
      doi = {10.1090/S0894-0347-2013-00777-8},
      url = {https://doi.org/10.1090/S0894-0347-2013-00777-8},
      zblnumber = {1283.52005},
      }
  • [O] S. Olovjanischnikoff, "Ueber eine kennzeichnende Eigenschaft des Ellipsoides," Uchenye Zapiski Leningrad State Univ., Math. Ser., vol. 83(12), pp. 114-128, 1941.
    @ARTICLE{O,
      author = {Olovjanischnikoff, S.},
      title = {Ueber eine kennzeichnende {E}igenschaft des {E}llipsoides},
      journal = {Uchenye Zapiski Leningrad State Univ., Math. Ser.},
      volume = {83(12)},
      year = {1941},
      pages = {114--128},
      mrclass = {52.0X},
      mrnumber = {0017553},
      mrreviewer = {H. P. Mulholland},
      zblnumber = {},
      }
  • [R] D. Ryabogin, On bodies floating in equilibrium in every orientation, 2020.
    @MISC{R,
      author = {Ryabogin, D.},
      title = {On bodies floating in equilibrium in every orientation},
      year = {2020},
      arxiv = {2010.09565},
      zblnumber = {},
      }
  • [Sch1] R. Schneider, "Functional equations connected with rotations and their geometric applications," Enseign. Math. (2), vol. 16, pp. 297-305, 1971.
    @ARTICLE{Sch1,
      author = {Schneider, Rolf},
      title = {Functional equations connected with rotations and their geometric applications},
      journal = {Enseign. Math. (2)},
      fjournal = {L'Enseignement Mathématique. Revue Internationale. 2e Série},
      volume = {16},
      year = {1971},
      pages = {297--305},
      issn = {0013-8584},
      mrclass = {52.30 (22.00)},
      mrnumber = {0287438},
      mrreviewer = {C. M. Petty},
      zblnumber = {0209.26502},
      }
  • [Sch2] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, expanded ed., Cambridge Univ. Press, Cambridge, 2014, vol. 151.
    @BOOK{Sch2,
      author = {Schneider, Rolf},
      title = {Convex Bodies: The {B}runn-{M}inkowski {T}heory},
      series = {Encycl. Math. Appl.},
      volume = {151},
      edition = {expanded},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2014},
      pages = {xxii+736},
      isbn = {978-1-107-60101-7},
      mrclass = {52-02 (52A20 52A39)},
      mrnumber = {3155183},
      mrreviewer = {Andrea Colesanti},
      zblnumber = {1287.52001},
      }
  • [Tu] E. C. Tupper, Introduction to Naval Architecture, Butterworth-Heinemann is an imprint of Elsevier, 2013.
    @BOOK{Tu,
      author = {Tupper, E. C.},
      title = {Introduction to Naval Architecture},
      note = {Fifth edition},
      publisher = {Butterworth-Heinemann is an imprint of Elsevier},
      year={2013},
      zblnumber = {},
      }
  • [U] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York-London, 1960, vol. 8.
    @BOOK{U,
      author = {Ulam, S. M.},
      title = {A Collection of Mathematical Problems},
      series = {Intersci. Tracts Pure Appl. Math.},
      volume = {8},
      publisher = {Interscience Publishers, New York-London},
      year = {1960},
      pages = {xiii+150},
      mrclass = {00.00},
      mrnumber = {0120127},
      mrreviewer = {A. Dvoretzky},
      zblnumber = {0086.24101},
      }
  • [V1] Go to document P. L. Várkonyi, "Neutrally floating objects of density $\frac12$ in three dimensions," Stud. Appl. Math., vol. 130, iss. 3, pp. 295-315, 2013.
    @ARTICLE{V1,
      author = {V{\'{a}}rkonyi, P. L.},
      title = {Neutrally floating objects of density {$\frac12$} in three dimensions},
      journal = {Stud. Appl. Math.},
      fjournal = {Studies in Applied Mathematics},
      volume = {130},
      year = {2013},
      number = {3},
      pages = {295--315},
      issn = {0022-2526},
      mrclass = {76B10},
      mrnumber = {3039399},
      doi = {10.1111/j.1467-9590.2012.00569.x},
      url = {https://doi.org/10.1111/j.1467-9590.2012.00569.x},
      zblnumber = {1316.76017},
      }
  • [V2] Go to document P. L. Várkonyi, "Floating body problems in two dimensions," Stud. Appl. Math., vol. 122, iss. 2, pp. 195-218, 2009.
    @ARTICLE{V2,
      author = {V{\'{a}}rkonyi, P. L.},
      title = {Floating body problems in two dimensions},
      journal = {Stud. Appl. Math.},
      fjournal = {Studies in Applied Mathematics},
      volume = {122},
      year = {2009},
      number = {2},
      pages = {195--218},
      issn = {0022-2526},
      mrclass = {52A99 (76B10)},
      mrnumber = {2492863},
      doi = {10.1111/j.1467-9590.2008.00429.x},
      url = {https://doi.org/10.1111/j.1467-9590.2008.00429.x},
      zblnumber = {1168.76011},
      }
  • [Wea] C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. I. Fourth Impression, Cambridge Univ. Press, 1955.
    @BOOK{Wea,
      author = {Weatherburn, C. E.},
      title = {Differential {G}eometry of {T}hree {D}imensions, Vol. I. Fourth Impression},
      publisher = {Cambridge Univ. Press},
      year = {1955},
      zblnumber = {},
      }
  • [Weg1] Go to document F. Wegner, "Floating bodies of equilibrium," Stud. Appl. Math., vol. 111, iss. 2, pp. 167-183, 2003.
    @ARTICLE{Weg1,
      author = {Wegner, Franz},
      title = {Floating bodies of equilibrium},
      journal = {Stud. Appl. Math.},
      fjournal = {Studies in Applied Mathematics},
      volume = {111},
      year = {2003},
      number = {2},
      pages = {167--183},
      issn = {0022-2526},
      mrclass = {76B10 (76B75 76B99)},
      mrnumber = {1990237},
      doi = {10.1111/1467-9590.t01-1-00231},
      url = {https://doi.org/10.1111/1467-9590.t01-1-00231},
      zblnumber = {1141.76345},
      }
  • [Weg2] F. J. Wegner, Floating bodies of equilibrium in 2D, the tire track problem and electrons in a parabolic magnetic fields, 2007.
    @MISC{Weg2,
      author = {Wegner, Franz J.},
      title = {Floating bodies of equilibrium in {2D},
      the tire track problem and electrons in a parabolic magnetic fields},
      arxiv = {physics/0701241v3},
      year = {2007},
      zblnumber = {},
      }
  • [Za] V. A. Zalgaller, Theory of Envelopes, Teoriya Ogibayushchikh, Izdat. “Nauka”, Moscow, 1975.
    @BOOK{Za,
      author = {Zalgaller, V. A.},
      title = {Theory of {E}nvelopes, Teoriya Ogibayushchikh},
      titlenote={(in Russian)},
      publisher = {Izdat. ``Nauka'', Moscow},
      year = {1975},
      pages = {104},
      mrclass = {53-01 (57-01)},
      mrnumber = {0394450},
      zblnumber = {0306.53005},
      }
  • [Zh] N. E. Zhukovsky, Classical Mechanics, Moscow, 1936.
    @BOOK{Zh,
      author = {Zhukovsky, N. E.},
      title = {Classical Mechanics},
      publisher = {Moscow},
      year = {1936},
      note = {in Russian},
      zblnumber = {},
      }
  • [Zi] Go to document V. K. Zindler, "Über konvexe Gebilde. II," Monatsh. Math. Phys., vol. 31, iss. 1, pp. 25-56, 1921.
    @ARTICLE{Zi,
      author = {Zindler, Von Konrad},
      title = {Über konvexe {G}ebilde. II},
      journal = {Monatsh. Math. Phys.},
      fjournal = {Monatshefte für Mathematik und Physik},
      volume = {31},
      year = {1921},
      number = {1},
      pages = {25--56},
      issn = {1812-8076},
      mrclass = {DML},
      mrnumber = {1549095},
      doi = {10.1007/BF01702711},
      url = {https://doi.org/10.1007/BF01702711},
      jfmnumber = {48.0833.05},
      }

Authors

Dmitry Ryabogin

Kent State University, Kent, OH