Abstract
For every abelian compact Lie group $A$, we prove that the homotopical $A$-equivariant complex bordism ring, introduced by tom Dieck (1970), is isomorphic to the $A$-equivariant Lazard ring, introduced by Cole–Greenlees–Kriz (2000). This settles a conjecture of Greenlees. We also show an analog for homotopical real bordism rings over elementary abelian $2$-groups. Our results generalize classical theorems of Quillen (1969) on the connection between non-equivariant bordism rings and formal group laws, and extend the case $A=C_2$ due to Hanke–Wiemeler (2018).
We work in the framework of global homotopy theory, which is essential for our proof. In addition to the statements for a fixed group $A$, we also prove a global algebraic universal property that characterizes the collection of all equivariant complex bordism rings simultaneously. We show that they form the universal contravariant functor from abelian compact Lie groups to commutative rings that is equipped with a coordinate; the coordinate is given by the universal Euler class at the circle group. More generally, the ring of $n$-fold cooperations of equivariant complex bordism is shown to be universal among functors equipped with a strict $n$-tuple of coordinates.
-
[AK15]
W. C. Abram and I. Kriz, "The equivariant complex cobordism ring of a finite abelian group," Math. Res. Lett., vol. 22, iss. 6, pp. 1573-1588, 2015.
@ARTICLE{AK15,
author = {Abram, William C. and Kriz, Igor},
title = {The equivariant complex cobordism ring of a finite abelian group},
journal = {Math. Res. Lett.},
fjournal = {Mathematical Research Letters},
volume = {22},
year = {2015},
number = {6},
pages = {1573--1588},
issn = {1073-2780},
mrclass = {55N22 (55P60 55P91 57R75 57R85)},
mrnumber = {3507250},
mrreviewer = {Pedro Luiz Queiroz Pergher},
doi = {10.4310/MRL.2015.v22.n6.a1},
url = {https://doi.org/10.4310/MRL.2015.v22.n6.a1},
zblnumber = {1373.55005},
} -
[AR94]
J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, Cambridge Univ. Press, Cambridge, 1994, vol. 189.
@BOOK{AR94,
author = {Ad\'{a}mek, Ji\v{r}\'ı and Rosick\'{y},
Ji\v{r}\'ı},
title = {Locally Presentable and Accessible Categories},
series = {London Math. Soc. Lecture Note Ser.},
volume = {189},
publisher = {Cambridge Univ. Press, Cambridge},
year = {1994},
pages = {xiv+316},
isbn = {0-521-42261-2},
mrclass = {18Axx (18-02)},
mrnumber = {1294136},
mrreviewer = {J. R. Isbell},
doi = {10.1017/CBO9780511600579},
url = {https://doi.org/10.1017/CBO9780511600579},
zblnumber = {0795.18007},
} -
[BGH20]
T. Barthel, J. P. C. Greenlees, and M. Hausmann, "On the Balmer spectrum for compact Lie groups," Compos. Math., vol. 156, iss. 1, pp. 39-76, 2020.
@ARTICLE{BGH20,
author = {Barthel, Tobias and Greenlees, J. P. C. and Hausmann, Markus},
title = {On the {B}almer spectrum for compact {L}ie groups},
journal = {Compos. Math.},
fjournal = {Compositio Mathematica},
volume = {156},
year = {2020},
number = {1},
pages = {39--76},
issn = {0010-437X},
mrclass = {55P42 (55P91)},
mrnumber = {4036448},
mrreviewer = {Samik Basu},
doi = {10.1112/s0010437x19007656},
url = {https://doi.org/10.1112/s0010437x19007656},
zblnumber = {1431.55012},
} -
[BH72]
T. Bröcker and E. C. Hook, "Stable equivariant bordism," Math. Z., vol. 129, pp. 269-277, 1972.
@ARTICLE{BH72,
author = {Bröcker, Theodor and Hook, Edward C.},
title = {Stable equivariant bordism},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {129},
year = {1972},
pages = {269--277},
issn = {0025-5874},
mrclass = {57D85 (55B20)},
mrnumber = {0321119},
mrreviewer = {J. W. Vick},
doi = {10.1007/BF01187353},
url = {https://doi.org/10.1007/BF01187353},
zblnumber = {0236.57020},
} -
[BHN^+17]
T. Barthel, M. Hausmann, N. Naumann, T. Nikolaus, J. Noel, and N. Stapleton, "The Balmer spectrum of the equivariant homotopy category of a finite abelian group," Invent. Math., vol. 216, iss. 1, pp. 215-240, 2019.
@ARTICLE{BHN^+17,
author = {Barthel, Tobias and Hausmann, Markus and Naumann, Niko and Nikolaus, Thomas and Noel, Justin and Stapleton, Nathaniel},
title = {The {B}almer spectrum of the equivariant homotopy category of a finite abelian group},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {216},
year = {2019},
number = {1},
pages = {215--240},
issn = {0020-9910},
mrclass = {55P42 (18E30 55U35)},
mrnumber = {3935041},
mrreviewer = {Julia Bergner},
doi = {10.1007/s00222-018-0846-5},
url = {https://doi.org/10.1007/s00222-018-0846-5},
zblnumber = {1417.55016},
} -
[BM14] A. Baker and J. Morava, $MSp$ localized away from $2$ and odd formal group laws, 2014.
@MISC{BM14,
author = {Baker, A. and Morava, J.},
title = {{$MSp$} localized away from $2$ and odd formal group laws},
arxiv = {1403.2596},
year = {2014},
zblnumber = {},
} -
[Bre67]
G. E. Bredon, "Equivariant stable stems," Bull. Amer. Math. Soc., vol. 73, pp. 269-273, 1967.
@ARTICLE{Bre67,
author = {Bredon, Glen E.},
title = {Equivariant stable stems},
journal = {Bull. Amer. Math. Soc.},
fjournal = {Bulletin of the Amer. Math. Soc.},
volume = {73},
year = {1967},
pages = {269--273},
issn = {0002-9904},
mrclass = {55.40},
mrnumber = {0206947},
mrreviewer = {N. Stein},
doi = {10.1090/S0002-9904-1967-11713-0},
url = {https://doi.org/10.1090/S0002-9904-1967-11713-0},
zblnumber = {0152.21803},
} -
[BS17b]
P. Balmer and B. Sanders, "The spectrum of the equivariant stable homotopy category of a finite group," Invent. Math., vol. 208, iss. 1, pp. 283-326, 2017.
@ARTICLE{BS17b,
author = {Balmer, Paul and Sanders, Beren},
title = {The spectrum of the equivariant stable homotopy category of a finite group},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {208},
year = {2017},
number = {1},
pages = {283--326},
issn = {0020-9910},
mrclass = {18E30 (55P42 55U35)},
mrnumber = {3621837},
mrreviewer = {Geoffrey M. L. Powell},
doi = {10.1007/s00222-016-0691-3},
url = {https://doi.org/10.1007/s00222-016-0691-3},
zblnumber = {1373.18016},
} -
[CGK00]
M. Cole, J. P. C. Greenlees, and I. Kriz, "Equivariant formal group laws," Proc. London Math. Soc. (3), vol. 81, iss. 2, pp. 355-386, 2000.
@ARTICLE{CGK00,
author = {Cole, Michael and Greenlees, J. P. C. and Kriz, I.},
title = {Equivariant formal group laws},
journal = {Proc. London Math. Soc. (3)},
fjournal = {Proceedings of the London Mathematical Society. Third Series},
volume = {81},
year = {2000},
number = {2},
pages = {355--386},
issn = {0024-6115},
mrclass = {55N22 (55N91)},
mrnumber = {1770613},
mrreviewer = {Mark Hovey},
doi = {10.1112/S0024611500012466},
url = {https://doi.org/10.1112/S0024611500012466},
zblnumber = {1030.55004},
} -
[CGK02]
M. Cole, J. P. C. Greenlees, and I. Kriz, "The universality of equivariant complex bordism," Math. Z., vol. 239, iss. 3, pp. 455-475, 2002.
@ARTICLE{CGK02,
author = {Cole, Michael and Greenlees, J. P. C. and Kriz, I.},
title = {The universality of equivariant complex bordism},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {239},
year = {2002},
number = {3},
pages = {455--475},
issn = {0025-5874},
mrclass = {55N91 (55N22 57R77)},
mrnumber = {1893848},
mrreviewer = {Mark Hovey},
doi = {10.1007/s002090100315},
url = {https://doi.org/10.1007/s002090100315},
zblnumber = {1008.55015},
} -
[Com96]
S. Comezaña, "Calculations in complex equivariant bordism," in Equivariant Homotopy and Cohomology Theory, Amer. Math. Soc., Providence, RI, 1996, vol. 91, pp. 333-253.
@incollection{Com96,
author = {Comeza{\~{n}}a, S.},
title = {Calculations in complex equivariant bordism},
booktitle = {Equivariant Homotopy and Cohomology Theory},
series = {CBMS Reg. Conf. Ser. Math.},
note={{D}edicated to the {M}emory of {R}obert {J}. {P}iacenza},
publisher = {Amer. Math. Soc., Providence, RI},
volume={91},
year = {1996},
pages = {333--253},
isbn = {0-8218-0319-0},
mrclass = {55P91 (18G99 55N91 55U35)},
mrnumber = {1413302},
mrreviewer = {Ian Hambleton},
doi = {10.1090/cbms/091/29},
url = {https://doi.org/10.1090/cbms/091/29},
zblnumber = {0890.55001},
} -
[DHLPS] D. Degrijse, M. Hausmann, W. Lück, I. Patchkoria, and S. Schwede, Proper equivariant stable homotopy theory.
@MISC{DHLPS,
author = {Degrijse, D. and Hausmann, M. and L{ü}ck, W. and Patchkoria, I. and Schwede, S.},
title = {Proper equivariant stable homotopy theory},
note = {\emph{Mem. Amer. Math. Soc.} (to appear)},
arxiv = {1908.00779},
} -
[Fir13]
M. Firsching, "Real equivariant bordism for elementary abelian 2-groups," Homology Homotopy Appl., vol. 15, iss. 1, pp. 235-251, 2013.
@ARTICLE{Fir13,
author = {Firsching, Moritz},
title = {Real equivariant bordism for elementary abelian 2-groups},
journal = {Homology Homotopy Appl.},
fjournal = {Homology, Homotopy and Applications},
volume = {15},
year = {2013},
number = {1},
pages = {235--251},
issn = {1532-0073},
mrclass = {57R85 (55N91)},
mrnumber = {3079206},
mrreviewer = {David C. Johnson},
doi = {10.4310/HHA.2013.v15.n1.a12},
url = {https://doi.org/10.4310/HHA.2013.v15.n1.a12},
zblnumber = {1275.57042},
} -
[GM97]
J. P. C. Greenlees and J. P. May, "Localization and completion theorems for $M{ U}$-module spectra," Ann. of Math. (2), vol. 146, iss. 3, pp. 509-544, 1997.
@ARTICLE{GM97,
author = {Greenlees, J. P. C. and May, J. P.},
title = {Localization and completion theorems for {$M{\rm U}$}-module spectra},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {146},
year = {1997},
number = {3},
pages = {509--544},
issn = {0003-486X},
mrclass = {55P42 (19L47 55N22 55P60 55P91 57R77 57R85)},
mrnumber = {1491447},
mrreviewer = {Kathryn P. Hess},
doi = {10.2307/2952455},
url = {https://doi.org/10.2307/2952455},
zblnumber = {0910.55005},
} -
[Gre] J. P. C. Greenlees, The coefficient ring of equivariant homotopical bordism classifies equivariant formal group laws over Noetherian rings, 2000.
@MISC{Gre,
author = {Greenlees, J. P. C.},
title = {The coefficient ring of equivariant homotopical bordism classifies equivariant formal group laws over {N}oetherian rings},
note = {preprint},
year = {2000},
zblnumber = {},
} -
[Gre01]
J. P. C. Greenlees, "Equivariant formal group laws and complex oriented cohomology theories," in Equivariant Stable Homotopy Theory and Related Areas, , 2001, vol. 3, pp. 225-263.
@INCOLLECTION{Gre01,
author = {Greenlees, J. P. C.},
title = {Equivariant formal group laws and complex oriented cohomology theories},
booktitle = {Equivariant Stable Homotopy Theory and Related Areas},
venue = {Stanford, CA, 2000},
series = {Homology Homotopy Appl.},
volume = {3},
year = {2001},
number = {2},
pages = {225--263},
issn = {1532-0081},
mrclass = {55N91 (14L05 19L47 55N22 57R85)},
mrnumber = {1856028},
mrreviewer = {Mark Hovey},
doi = {10.4310/hha.2001.v3.n2.a1},
url = {https://doi.org/10.4310/hha.2001.v3.n2.a1},
zblnumber = {0992.55005},
} -
[Han05]
B. Hanke, "Geometric versus homotopy theoretic equivariant bordism," Math. Ann., vol. 332, iss. 3, pp. 677-696, 2005.
@ARTICLE{Han05,
author = {Hanke, Bernhard},
title = {Geometric versus homotopy theoretic equivariant bordism},
journal = {Math. Ann.},
fjournal = {Mathematische Annalen},
volume = {332},
year = {2005},
number = {3},
pages = {677--696},
issn = {0025-5831},
mrclass = {55N22 (55N91 57S15)},
mrnumber = {2181767},
mrreviewer = {Jason Stuart Hanson},
doi = {10.1007/s00208-005-0648-0},
url = {https://doi.org/10.1007/s00208-005-0648-0},
zblnumber = {1073.55006},
} -
[HHR16]
M. A. Hill, M. J. Hopkins, and D. C. Ravenel, "On the nonexistence of elements of Kervaire invariant one," Ann. of Math. (2), vol. 184, iss. 1, pp. 1-262, 2016.
@ARTICLE{HHR16,
author = {Hill, M. A. and Hopkins, M. J. and Ravenel, D. C.},
title = {On the nonexistence of elements of {K}ervaire invariant one},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {184},
year = {2016},
number = {1},
pages = {1--262},
issn = {0003-486X},
mrclass = {55P91 (55N22 55P42 55Q45 55T15 55U35 57R15)},
mrnumber = {3505179},
mrreviewer = {Paul G. Goerss},
doi = {10.4007/annals.2016.184.1.1},
url = {https://doi.org/10.4007/annals.2016.184.1.1},
zblnumber = {1366.55007},
} -
[HS98]
M. J. Hopkins and J. H. Smith, "Nilpotence and stable homotopy theory. II," Ann. of Math. (2), vol. 148, iss. 1, pp. 1-49, 1998.
@ARTICLE{HS98,
author = {Hopkins, Michael J. and Smith, Jeffrey H.},
title = {Nilpotence and stable homotopy theory. {II}},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {148},
year = {1998},
number = {1},
pages = {1--49},
issn = {0003-486X},
mrclass = {55P42 (55N20 55Q10)},
mrnumber = {1652975},
mrreviewer = {David A. Blanc},
doi = {10.2307/120991},
url = {https://doi.org/10.2307/120991},
zblnumber = {0924.55010},
} -
[HW18]
B. Hanke and M. Wiemeler, "An equivariant Quillen theorem," Adv. Math., vol. 340, pp. 48-75, 2018.
@ARTICLE{HW18,
author = {Hanke, Bernhard and Wiemeler, Michael},
title = {An equivariant {Q}uillen theorem},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {340},
year = {2018},
pages = {48--75},
issn = {0001-8708},
mrclass = {55N22 (55P91 57R85)},
mrnumber = {3886163},
mrreviewer = {Yuli B. Rudyak},
doi = {10.1016/j.aim.2018.10.009},
url = {https://doi.org/10.1016/j.aim.2018.10.009},
zblnumber = {1409.55012},
} -
[Joa04]
M. Joachim, "Higher coherences for equivariant $K$-theory," in Structured Ring Spectra, Cambridge Univ. Press, Cambridge, 2004, vol. 315, pp. 87-114.
@INCOLLECTION{Joa04,
author = {Joachim, Michael},
title = {Higher coherences for equivariant {$K$}-theory},
booktitle = {Structured Ring Spectra},
series = {London Math. Soc. Lecture Note Ser.},
volume = {315},
pages = {87--114},
publisher = {Cambridge Univ. Press, Cambridge},
year = {2004},
mrclass = {19L47 (55P43)},
mrnumber = {2122155},
mrreviewer = {Kazuhisa Shimakawa},
doi = {10.1017/CBO9780511529955.006},
url = {https://doi.org/10.1017/CBO9780511529955.006},
zblnumber = {1070.19007},
} -
[Kri99]
I. Kriz, "The ${\bf Z}/p$-equivariant complex cobordism ring," in Homotopy Invariant Algebraic Structures, Amer. Math. Soc., Providence, RI, 1999, vol. 239, pp. 217-223.
@INCOLLECTION{Kri99,
author = {Kriz, Igor},
title = {The {${\bf Z}/p$}-equivariant complex cobordism ring},
booktitle = {Homotopy Invariant Algebraic Structures},
venue = {{B}altimore, {MD},
1998},
series = {Contemp. Math.},
volume = {239},
pages = {217--223},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1999},
mrclass = {55N22 (55N91 55P92 55Q91 57R77)},
mrnumber = {1718082},
mrreviewer = {L. Gaunce Lewis, Jr.},
doi = {10.1090/conm/239/03603},
url = {https://doi.org/10.1090/conm/239/03603},
zblnumber = {0982.55001},
} -
[Laz55]
M. Lazard, "Sur les groupes de Lie formels à un paramètre," Bull. Soc. Math. France, vol. 83, pp. 251-274, 1955.
@ARTICLE{Laz55,
author = {Lazard, Michel},
title = {Sur les groupes de {L}ie formels à un paramètre},
journal = {Bull. Soc. Math. France},
fjournal = {Bulletin de la Société Mathématique de France},
volume = {83},
year = {1955},
pages = {251--274},
issn = {0037-9484},
mrclass = {17.0X},
mrnumber = {0073925},
mrreviewer = {J. Dieudonné},
doi = {10.24033/bsmf.1462},
url = {https://doi.org/10.24033/bsmf.1462},
zblnumber = {0068.25703},
} -
[Lof73] P. Löffler, "Equivariant unitary cobordism and classifying spaces," in Proceedings of the International Symposium on Topology and its Applications (Budva, 1972), 1973, pp. 158-160.
@INPROCEEDINGS{Lof73,
author = {L{ö}ffler, Peter},
title = {Equivariant unitary cobordism and classifying spaces},
booktitle = {Proceedings of the {I}nternational {S}ymposium on {T}opology and its {A}pplications ({B}udva, 1972)},
pages = {158--160},
year = {1973},
mrclass = {57D85},
mrnumber = {0334253},
mrreviewer = {R. E. Stong},
zblnumber = {0283.57017},
} -
[Lur18] J. Lurie, Elliptic cohomology II: Orientations.
@MISC{Lur18,
author = {Lurie, J.},
title = {Elliptic cohomology {II}: {O}rientations},
note = {available on the author's webpage},
zblnumber = {},
} -
[Nov67]
S. P. Novikov, "Methods of algebraic topology from the point of view of cobordism theory," Izv. Akad. Nauk SSSR Ser. Mat., vol. 31, pp. 855-951, 1967.
@ARTICLE{Nov67,
author = {Novikov, S. P.},
title = {Methods of algebraic topology from the point of view of cobordism theory},
journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
volume = {31},
year = {1967},
pages = {855--951},
issn = {0373-2436},
mrclass = {55.52 (57.00)},
mrnumber = {0221509},
mrreviewer = {A. Liulevicius},
doi = {10.1070/IM1967v001n04ABEH000591},
url = {https://doi.org/10.1070/IM1967v001n04ABEH000591},
zblnumber = {0169.54503},
} -
[Qui69]
D. Quillen, "On the formal group laws of unoriented and complex cobordism theory," Bull. Amer. Math. Soc., vol. 75, pp. 1293-1298, 1969.
@ARTICLE{Qui69,
author = {Quillen, Daniel},
title = {On the formal group laws of unoriented and complex cobordism theory},
journal = {Bull. Amer. Math. Soc.},
fjournal = {Bulletin of the Amer. Math. Soc.},
volume = {75},
year = {1969},
pages = {1293--1298},
issn = {0002-9904},
mrclass = {57.10},
mrnumber = {0253350},
mrreviewer = {R. E. Stong},
doi = {10.1090/S0002-9904-1969-12401-8},
url = {https://doi.org/10.1090/S0002-9904-1969-12401-8},
zblnumber = {0199.26705},
} -
@BOOK{Sch18,
author = {Schwede, Stefan},
title = {Global homotopy theory},
series = {New Math. Monogr.},
volume = {34},
publisher = {Cambridge Univ. Press, Cambridge},
year = {2018},
pages = {xviii+828},
isbn = {978-1-108-42581-0},
mrclass = {55P42 (18G55 19D99 55P91 55U35)},
mrnumber = {3838307},
mrreviewer = {Gregory Z. Arone},
doi = {10.1017/9781108349161},
url = {https://doi.org/10.1017/9781108349161},
zblnumber = {1451.55001},
} -
[Sin01]
D. P. Sinha, "Computations of complex equivariant bordism rings," Amer. J. Math., vol. 123, iss. 4, pp. 577-605, 2001.
@ARTICLE{Sin01,
author = {Sinha, Dev P.},
title = {Computations of complex equivariant bordism rings},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {123},
year = {2001},
number = {4},
pages = {577--605},
issn = {0002-9327},
mrclass = {55N22 (55N91 57R85)},
mrnumber = {1844571},
mrreviewer = {Maurizio Brunetti},
doi = {10.1353/ajm.2001.0028},
url = {https://doi.org/10.1353/ajm.2001.0028},
zblnumber = {0997.55008},
} -
[Sin02]
D. Sinha, "Real equivariant bordism and stable transversality obstructions for $\Bbb Z/2$," Proc. Amer. Math. Soc., vol. 130, iss. 1, pp. 271-281, 2002.
@ARTICLE{Sin02,
author = {Sinha, Dev},
title = {Real equivariant bordism and stable transversality obstructions for {$\Bbb Z/2$}},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the Amer. Math. Soc.},
volume = {130},
year = {2002},
number = {1},
pages = {271--281},
issn = {0002-9939},
mrclass = {57R85 (55N91)},
mrnumber = {1855646},
mrreviewer = {Katsuhiro Komiya},
doi = {10.1090/S0002-9939-01-06381-X},
url = {https://doi.org/10.1090/S0002-9939-01-06381-X},
zblnumber = {0987.57015},
} -
[Str01]
N. P. Strickland, "Complex cobordism of involutions," Geom. Topol., vol. 5, pp. 335-345, 2001.
@ARTICLE{Str01,
author = {Strickland, N. P.},
title = {Complex cobordism of involutions},
journal = {Geom. Topol.},
fjournal = {Geometry and Topology},
volume = {5},
year = {2001},
pages = {335--345},
issn = {1465-3060},
mrclass = {55N22 (55N91 57R77)},
mrnumber = {1825665},
mrreviewer = {Edgar H. Brown, Jr.},
doi = {10.2140/gt.2001.5.335},
url = {https://doi.org/10.2140/gt.2001.5.335},
zblnumber = {1009.55003},
} -
[Str11]
N. P. Strickland, "Multicurves and equivariant cohomology," Mem. Amer. Math. Soc., vol. 213, iss. 1001, p. vi, 2011.
@ARTICLE{Str11,
author = {Strickland, N. P.},
title = {Multicurves and equivariant cohomology},
journal = {Mem. Amer. Math. Soc.},
fjournal = {Memoirs of the Amer. Math. Soc.},
volume = {213},
year = {2011},
number = {1001},
pages = {vi+117},
issn = {0065-9266},
isbn = {978-0-8218-4901-9},
mrclass = {55N91 (14L05 55N20 55N22)},
mrnumber = {2856125},
mrreviewer = {Markus Szymik},
doi = {10.1090/S0065-9266-2011-00604-0},
url = {https://doi.org/10.1090/S0065-9266-2011-00604-0},
zblnumber = {1228.55001},
} -
@INPROCEEDINGS{Tat67,
author = {Tate, J. T.},
title = {{$p$}-divisible groups},
booktitle = {Proc. {C}onf. {L}ocal {F}ields},
venue = {{D}riebergen, 1966)},
pages = {158--183},
publisher = {Springer, Berlin},
year = {1967},
mrclass = {14.50},
mrnumber = {0231827},
mrreviewer = {M. Miyanishi},
doi = {10.1007/978-3-642-87942-5_12},
url = {https://doi.org/10.1007/978-3-642-87942-5_12},
zblnumber = {0157.27601},
} -
[tD70]
T. tom Dieck, "Bordism of $G$-manifolds and integrality theorems," Topology, vol. 9, pp. 345-358, 1970.
@ARTICLE{tD70,
author = {tom Dieck, Tammo},
title = {Bordism of {$G$}-manifolds and integrality theorems},
journal = {Topology},
fjournal = {Topology. An International Journal of Mathematics},
volume = {9},
year = {1970},
pages = {345--358},
issn = {0040-9383},
mrclass = {57.47},
mrnumber = {0266241},
mrreviewer = {R. E. Stong},
doi = {10.1016/0040-9383(70)90058-3},
url = {https://doi.org/10.1016/0040-9383(70)90058-3},
zblnumber = {0209.27504},
} -
[Uri18]
B. Uribe, "The evenness conjecture in equivariant unitary bordism," in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited Lectures, 2018, pp. 1217-1239.
@INPROCEEDINGS{Uri18,
author = {Uribe, Bernardo},
title = {The evenness conjecture in equivariant unitary bordism},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{R}io de {J}aneiro 2018. {V}ol. {II}. {I}nvited {L}ectures},
pages = {1217--1239},
publisher = {World Sci. Publ., Hackensack, NJ},
year = {2018},
mrclass = {55N22 (57R77 57R85)},
mrnumber = {3966806},
mrreviewer = {David C. Johnson},
doi = {10.1142/9789813272880_0094},
url = {https://doi.org/10.1142/9789813272880_0094},
zblnumber = {1450.55001},
}