Abstract
We establish the Gaussian Multi-Bubble Conjecture: the least Gaussian-weighted perimeter way to decompose $\mathbb {R}^n$ into $q$ cells of prescribed (positive) Gaussian measure when $2 \leq q \leq n+1$, is to use a “simplicial cluster,” obtained from the Voronoi cells of $q$ equidistant points. Moreover, we prove that simplicial clusters are the unique isoperimetric minimizers (up to null-sets). In particular, the case $q=3$ confirms the Gaussian Double-Bubble Conjecture: the unique least Gaussian-weighted perimeter way to decompose $\mathbb {R}^n$ ($n \geq 2$) into three cells of prescribed (positive) Gaussian measure is to use a tripod-cluster, whose interfaces consist of three half-hyperplanes meeting along an $(n-2)$-dimensional plane at $120^{\circ }$ angles (forming a tripod or “Y” shape in the plane). The case $q=2$ recovers the classical Gaussian isoperimetric inequality.
To establish the Multi-Bubble conjecture, we show that in the above range of $q$, stable regular clusters must have flat interfaces, therefore consisting of convex polyhedral cells (with at most $q-1$ facets). In the double-bubble case $q=3$, it is possible to avoid establishing flatness of the interfaces by invoking a certain dichotomy on the structure of stable clusters, yielding a simplified argument.
-
[ADN1]
S. Agmon, A. Douglis, and L. Nirenberg, "Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I," Comm. Pure Appl. Math., vol. 12, pp. 623-727, 1959.
@ARTICLE{ADN1,
author = {Agmon, S. and Douglis, A. and Nirenberg, L.},
title = {Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. {I}},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {12},
year = {1959},
pages = {623--727},
issn = {0010-3640},
mrclass = {35.43},
mrnumber = {0125307},
mrreviewer = {E. Magenes},
doi = {10.1002/cpa.3160120405},
url = {https://doi.org/10.1002/cpa.3160120405},
zblnumber = {0093.10401},
} -
[ADN2]
S. Agmon, A. Douglis, and L. Nirenberg, "Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II," Comm. Pure Appl. Math., vol. 17, pp. 35-92, 1964.
@ARTICLE{ADN2,
author = {Agmon, S. and Douglis, A. and Nirenberg, L.},
title = {Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. {II}},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {17},
year = {1964},
pages = {35--92},
issn = {0010-3640},
mrclass = {35.46},
mrnumber = {0162050},
mrreviewer = {G. Geymonat},
doi = {10.1002/cpa.3160170104},
url = {https://doi.org/10.1002/cpa.3160170104},
zblnumber = {0123.28706},
} -
[AlmgrenMemoirs]
F. J. Almgren Jr., "Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints," Mem. Amer. Math. Soc., vol. 4, iss. 165, p. viii, 1976.
@ARTICLE{AlmgrenMemoirs,
author = {Almgren, Jr., F. J.},
title = {Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints},
journal = {Mem. Amer. Math. Soc.},
fjournal = {Memoirs of the American Mathematical Society},
volume = {4},
year = {1976},
number = {165},
pages = {viii+199},
issn = {0065-9266},
mrclass = {49F22 (58E15)},
mrnumber = {0420406},
mrreviewer = {Jean E. Taylor},
doi = {10.1090/memo/0165},
url = {https://doi.org/10.1090/memo/0165},
zblnumber = {0327.49043},
} -
[BGL-Book]
D. Bakry, I. Gentil, and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, Cham, 2014, vol. 348.
@BOOK{BGL-Book,
author = {Bakry, Dominique and Gentil, Ivan and Ledoux, Michel},
title = {Analysis and Geometry of {M}arkov Diffusion Operators},
series = {Grundlehren Math. Wissens.},
volume = {348},
publisher = {Springer, Cham},
year = {2014},
pages = {xx+552},
isbn = {978-3-319-00226-2; 978-3-319-00227-9},
mrclass = {60J25 (58J65 60J35 60J60)},
mrnumber = {3155209},
mrreviewer = {Ming Liao},
doi = {10.1007/978-3-319-00227-9},
url = {https://doi.org/10.1007/978-3-319-00227-9},
zblnumber = {1376.60002},
} -
[BakryLedoux]
D. Bakry and M. Ledoux, "Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator," Invent. Math., vol. 123, iss. 2, pp. 259-281, 1996.
@ARTICLE{BakryLedoux,
author = {Bakry, Dominique and Ledoux, M.},
title = {Lévy-{G}romov's isoperimetric inequality for an infinite-dimensional diffusion generator},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {123},
year = {1996},
number = {2},
pages = {259--281},
issn = {0020-9910},
mrclass = {58G32 (47D07 53C21)},
mrnumber = {1374200},
mrreviewer = {Ming Liao},
doi = {10.1007/s002220050026},
url = {https://doi.org/10.1007/s002220050026},
zblnumber = {0855.58011},
} -
[Italians-SharpGaussianIsopStability]
M. Barchiesi, A. Brancolini, and V. Julin, "Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality," Ann. Probab., vol. 45, iss. 2, pp. 668-697, 2017.
@ARTICLE{Italians-SharpGaussianIsopStability,
author = {Barchiesi, Marco and Brancolini, Alessio and Julin, Vesa},
title = {Sharp dimension free quantitative estimates for the {G}aussian isoperimetric inequality},
journal = {Ann. Probab.},
fjournal = {The Annals of Probability},
volume = {45},
year = {2017},
number = {2},
pages = {668--697},
issn = {0091-1798},
mrclass = {28A75 (49Q20 60E15)},
mrnumber = {3630285},
mrreviewer = {Shun-Xiang Ouyang},
doi = {10.1214/15-AOP1072},
url = {https://doi.org/10.1214/15-AOP1072},
zblnumber = {1377.49050},
} -
[BartheMaureyIsoperimetricInqs]
F. Barthe and B. Maurey, "Some remarks on isoperimetry of Gaussian type," Ann. Inst. H. Poincaré Probab. Statist., vol. 36, iss. 4, pp. 419-434, 2000.
@ARTICLE{BartheMaureyIsoperimetricInqs,
author = {Barthe, F. and Maurey, B.},
title = {Some remarks on isoperimetry of {G}aussian type},
journal = {Ann. Inst. H. Poincaré Probab. Statist.},
fjournal = {Annales de l'Institut Henri Poincaré. Probabilités et Statistiques},
volume = {36},
year = {2000},
number = {4},
pages = {419--434},
issn = {0246-0203},
mrclass = {60G15 (60E15 60G46)},
mrnumber = {1785389},
mrreviewer = {Werner Linde},
doi = {10.1016/S0246-0203(00)00131-X},
url = {https://doi.org/10.1016/S0246-0203(00)00131-X},
zblnumber = {0964.60018},
} -
[BavardPansu]
C. Bavard and P. Pansu, "Sur le volume minimal de ${\bf R}^2$," Ann. Sci. École Norm. Sup. (4), vol. 19, iss. 4, pp. 479-490, 1986.
@ARTICLE{BavardPansu,
author = {Bavard, Christophe and Pansu, Pierre},
title = {Sur le volume minimal de {${\bf R}^2$}},
journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
volume = {19},
year = {1986},
number = {4},
pages = {479--490},
issn = {0012-9593},
mrclass = {53C20},
mrnumber = {0875084},
mrreviewer = {Gudlaugur Thorbergsson},
doi = {10.24033/asens.1514},
url = {https://doi.org/10.24033/asens.1514},
zblnumber = {0611.53038},
} -
[BayleIsoperimetricODE]
V. Bayle, "A differential inequality for the isoperimetric profile," Int. Math. Res. Not., iss. 7, pp. 311-342, 2004.
@ARTICLE{BayleIsoperimetricODE,
author = {Bayle, Vincent},
title = {A differential inequality for the isoperimetric profile},
journal = {Int. Math. Res. Not.},
fjournal = {International Mathematics Research Notices},
year = {2004},
number = {7},
pages = {311--342},
issn = {1073-7928},
mrclass = {53C20 (53C65)},
mrnumber = {2041647},
mrreviewer = {Gilles Carron},
doi = {10.1155/S1073792804130079},
url = {https://doi.org/10.1155/S1073792804130079},
zblnumber = {1080.53026},
} -
@MISC{BayleThesis,
author = {Bayle, Vincent},
title = {Propriétés de concavité du profil isopérimétrique et applications},
note = {Ph.D. {T}hesis, Institut Joseph Fourier, Grenoble},
url = {https://tel.archives-ouvertes.fr/tel-00004317v1/file/tel-00004317.pdf},
year = {2004},
zblnumber = {},
} -
[BayleRosales]
V. Bayle and C. Rosales, "Some isoperimetric comparison theorems for convex bodies in Riemannian manifolds," Indiana Univ. Math. J., vol. 54, iss. 5, pp. 1371-1394, 2005.
@ARTICLE{BayleRosales,
author = {Bayle, Vincent and Rosales, César},
title = {Some isoperimetric comparison theorems for convex bodies in {R}iemannian manifolds},
journal = {Indiana Univ. Math. J.},
fjournal = {Indiana Univ. Mathematics Journal},
volume = {54},
year = {2005},
number = {5},
pages = {1371--1394},
issn = {0022-2518},
mrclass = {53C20 (49Q05)},
mrnumber = {2177105},
mrreviewer = {Gilles Carron},
doi = {10.1512/iumj.2005.54.2575},
url = {https://doi.org/10.1512/iumj.2005.54.2575},
zblnumber = {1085.53025},
} -
[KarshonEtAl-TietzeNakajima]
C. Bjorndahl and Y. Karshon, "Revisiting Tietze-Nakajima: local and global convexity for maps," Canad. J. Math., vol. 62, iss. 5, pp. 975-993, 2010.
@ARTICLE{KarshonEtAl-TietzeNakajima,
author = {Bjorndahl, Christina and Karshon, Yael},
title = {Revisiting {T}ietze-{N}akajima: local and global convexity for maps},
journal = {Canad. J. Math.},
fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
volume = {62},
year = {2010},
number = {5},
pages = {975--993},
issn = {0008-414X},
mrclass = {53D20},
mrnumber = {2730351},
mrreviewer = {Karl-Hermann Neeb},
doi = {10.4153/CJM-2010-052-5},
url = {https://doi.org/10.4153/CJM-2010-052-5},
zblnumber = {1198.53094},
} -
[BobkovGaussianIsopInqViaCube]
S. G. Bobkov, "An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space," Ann. Probab., vol. 25, iss. 1, pp. 206-214, 1997.
@ARTICLE{BobkovGaussianIsopInqViaCube,
author = {Bobkov, S. G.},
title = {An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in {G}auss space},
journal = {Ann. Probab.},
fjournal = {The Annals of Probability},
volume = {25},
year = {1997},
number = {1},
pages = {206--214},
issn = {0091-1798},
mrclass = {60E15 (60G15)},
mrnumber = {1428506},
mrreviewer = {Werner Linde},
doi = {10.1214/aop/1024404285},
url = {https://doi.org/10.1214/aop/1024404285},
zblnumber = {0883.60031},
} -
[BobkovLocalizedProofOfGaussianIso]
S. G. Bobkov, "A localized proof of the isoperimetric Bakry-Ledoux inequality and some applications," Teor. Veroyatnost. i Primenen., vol. 47, iss. 2, pp. 340-346, 2002.
@ARTICLE{BobkovLocalizedProofOfGaussianIso,
author = {Bobkov, S. G.},
title = {A localized proof of the isoperimetric {B}akry-{L}edoux inequality and some applications},
journal = {Teor. Veroyatnost. i Primenen.},
fjournal = {Rossiĭskaya Akademiya Nauk. Teoriya Veroyatnosteĭ i ee Primeneniya},
volume = {47},
year = {2002},
number = {2},
pages = {340--346},
issn = {0040-361X},
mrclass = {60E15 (39B62 60F10)},
mrnumber = {2001838},
mrreviewer = {Alexander R. Pruss},
doi = {10.1137/S0040585X97979688},
url = {https://doi.org/10.1137/S0040585X97979688},
zblnumber = {},
} -
[SardAndInverseFunctionTheoremInHolderAndSobolevSpaces]
B. Bojarski, P. Hajłasz, and P. Strzelecki, "Sard’s theorem for mappings in Hölder and Sobolev spaces," Manuscripta Math., vol. 118, iss. 3, pp. 383-397, 2005.
@ARTICLE{SardAndInverseFunctionTheoremInHolderAndSobolevSpaces,
author = {Bojarski, Bogdan and Haj{\l}asz, Piotr and Strzelecki, Pawe\l},
title = {Sard's theorem for mappings in {H}ölder and {S}obolev spaces},
journal = {Manuscripta Math.},
fjournal = {Manuscripta Mathematica},
volume = {118},
year = {2005},
number = {3},
pages = {383--397},
issn = {0025-2611},
mrclass = {58C25 (46E35 46T20 58D15)},
mrnumber = {2183045},
mrreviewer = {Luigi De Pascale},
doi = {10.1007/s00229-005-0590-1},
url = {https://doi.org/10.1007/s00229-005-0590-1},
zblnumber = {1098.46024},
} -
[Borell-GaussianIsoperimetry]
C. Borell, "The Brunn-Minkowski inequality in Gauss space," Invent. Math., vol. 30, iss. 2, pp. 207-216, 1975.
@ARTICLE{Borell-GaussianIsoperimetry,
author = {Borell, Christer},
title = {The {B}runn-{M}inkowski inequality in {G}auss space},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {30},
year = {1975},
number = {2},
pages = {207--216},
issn = {0020-9910},
mrclass = {28A40 (60G15)},
mrnumber = {0399402},
mrreviewer = {A. Badrikian},
doi = {10.1007/BF01425510},
url = {https://doi.org/10.1007/BF01425510},
zblnumber = {0292.60004},
} -
[Borell-EhrhardForBorelSets]
C. Borell, "The Ehrhard inequality," C. R. Math. Acad. Sci. Paris, vol. 337, iss. 10, pp. 663-666, 2003.
@ARTICLE{Borell-EhrhardForBorelSets,
author = {Borell, Christer},
title = {The {E}hrhard inequality},
journal = {C. R. Math. Acad. Sci. Paris},
fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
volume = {337},
year = {2003},
number = {10},
pages = {663--666},
issn = {1631-073X},
mrclass = {60G15 (35K05 60E15)},
mrnumber = {2030108},
mrreviewer = {Thierry Edmond Huillet},
doi = {10.1016/j.crma.2003.09.031},
url = {https://doi.org/10.1016/j.crma.2003.09.031},
zblnumber = {1031.60013},
} -
[BuragoZalgallerBook]
Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988, vol. 285.
@BOOK{BuragoZalgallerBook,
author = {Burago, Yu. D. and Zalgaller, V. A.},
title = {Geometric Inequalities},
series = {Grundlehren Math. Wissen.},
volume = {285},
note = {translated from the Russian by A. B. Sosinskiĭ,
Springer Series in Soviet Mathematics},
publisher = {Springer-Verlag, Berlin},
year = {1988},
pages = {xiv+331},
isbn = {3-540-13615-0},
mrclass = {52A40 (53-02)},
mrnumber = {0936419},
doi = {10.1007/978-3-662-07441-1},
url = {https://doi.org/10.1007/978-3-662-07441-1},
zblnumber = {0633.53002},
} -
[CaffarelliContraction]
L. A. Caffarelli, "Monotonicity properties of optimal transportation and the FKG and related inequalities," Comm. Math. Phys., vol. 214, iss. 3, pp. 547-563, 2000.
@ARTICLE{CaffarelliContraction,
author = {Caffarelli, Luis A.},
title = {Monotonicity properties of optimal transportation and the {FKG} and related inequalities},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {214},
year = {2000},
number = {3},
pages = {547--563},
issn = {0010-3616},
mrclass = {60E15 (35R35 82B31)},
mrnumber = {1800860},
mrreviewer = {Ludger Rüschendorf},
doi = {10.1007/s002200000257},
url = {https://doi.org/10.1007/s002200000257},
zblnumber = {0978.60107},
} -
[CarlenKerceEqualityInGaussianIsop]
E. A. Carlen and C. Kerce, "On the cases of equality in Bobkov’s inequality and Gaussian rearrangement," Calc. Var. Partial Differential Equations, vol. 13, iss. 1, pp. 1-18, 2001.
@ARTICLE{CarlenKerceEqualityInGaussianIsop,
author = {Carlen, E. A. and Kerce, C.},
title = {On the cases of equality in {B}obkov's inequality and {G}aussian rearrangement},
journal = {Calc. Var. Partial Differential Equations},
fjournal = {Calculus of Variations and Partial Differential Equations},
volume = {13},
year = {2001},
number = {1},
pages = {1--18},
issn = {0944-2669},
mrclass = {26D10 (49N60 60E15)},
mrnumber = {1854254},
mrreviewer = {Antoine Henrot},
doi = {10.1007/PL00009921},
url = {https://doi.org/10.1007/PL00009921},
zblnumber = {1009.49029},
} -
[CES-RegularityOfMinimalSurfacesNearCones] M. Colombo, N. Edelen, and L. Spolaor, The singular set of minimal surfaces near polyhedral cones, 2017.
@MISC{CES-RegularityOfMinimalSurfacesNearCones,
author = {Colombo, M. and Edelen, N. and Spolaor, L.},
title = {The singular set of minimal surfaces near polyhedral cones},
arxiv = {1709.09957},
year = {2017},
zblnumber = {},
note={to appear in \emph{J. Diff. Geom.}},
} -
[CorneliCorwinEtAl-DoubleBubbleInSandG] J. Corneli, I. Corwin, S. Hurder, V. Sesum, Y. Xu, E. Adams, D. Davis, M. Lee, R. Visocchi, and N. Hoffman, "Double bubbles in Gauss space and spheres," Houston J. Math., vol. 34, iss. 1, pp. 181-204, 2008.
@ARTICLE{CorneliCorwinEtAl-DoubleBubbleInSandG,
author = {Corneli, J. and Corwin, I. and Hurder, S. and Sesum, V. and Xu, Y. and Adams, E. and Davis, D. and Lee, M. and Visocchi, R. and Hoffman, N.},
title = {Double bubbles in {G}auss space and spheres},
journal = {Houston J. Math.},
fjournal = {Houston Journal of Mathematics},
volume = {34},
year = {2008},
number = {1},
pages = {181--204},
issn = {0362-1588},
mrclass = {53A10},
mrnumber = {2383703},
mrreviewer = {Fei-Tsen Liang},
zblnumber = {1146.53004},
} -
[CorneliHoffmanEtAl-DoubleBubbleIn3D]
J. Corneli, N. Hoffman, P. Holt, G. Lee, N. Leger, S. Moseley, and E. Schoenfeld, "Double bubbles in ${\bf S}^3$ and ${\bf H}^3$," J. Geom. Anal., vol. 17, iss. 2, pp. 189-212, 2007.
@ARTICLE{CorneliHoffmanEtAl-DoubleBubbleIn3D,
author = {Corneli, Joseph and Hoffman, Neil and Holt, Paul and Lee, George and Leger, Nicholas and Moseley, Stephen and Schoenfeld, Eric},
title = {Double bubbles in {${\bf S}^3$} and {${\bf H}^3$}},
journal = {J. Geom. Anal.},
fjournal = {The Journal of Geometric Analysis},
volume = {17},
year = {2007},
number = {2},
pages = {189--212},
issn = {1050-6926},
mrclass = {53A10 (49Q10)},
mrnumber = {2320161},
mrreviewer = {Fei-Tsen Liang},
doi = {10.1007/BF02930720},
url = {https://doi.org/10.1007/BF02930720},
zblnumber = {1118.53039},
} -
[CottonFreeman-DoubleBubbleInSandH]
A. Cotton and D. Freeman, "The double bubble problem in spherical space and hyperbolic space," Int. J. Math. Math. Sci., vol. 32, iss. 11, pp. 641-699, 2002.
@ARTICLE{CottonFreeman-DoubleBubbleInSandH,
author = {Cotton, Andrew and Freeman, David},
title = {The double bubble problem in spherical space and hyperbolic space},
journal = {Int. J. Math. Math. Sci.},
fjournal = {International Journal of Mathematics and Mathematical Sciences},
volume = {32},
year = {2002},
number = {11},
pages = {641--699},
issn = {0161-1712},
mrclass = {53A10 (49Q05 49Q10)},
mrnumber = {1949693},
mrreviewer = {Fei-Tsen Liang},
doi = {10.1155/S0161171202207188},
url = {https://doi.org/10.1155/S0161171202207188},
zblnumber = {1036.49039},
} -
[EhrhardPhiConcavity]
A. Ehrhard, "Symétrisation dans l’espace de Gauss," Math. Scand., vol. 53, iss. 2, pp. 281-301, 1983.
@ARTICLE{EhrhardPhiConcavity,
author = {Ehrhard, Antoine},
title = {Symétrisation dans l'espace de {G}auss},
journal = {Math. Scand.},
fjournal = {Mathematica Scandinavica},
volume = {53},
year = {1983},
number = {2},
pages = {281--301},
issn = {0025-5521},
mrclass = {60G15 (35K05 52A22 60B99)},
mrnumber = {0745081},
mrreviewer = {A. Badrikian},
doi = {10.7146/math.scand.a-12035},
url = {https://doi.org/10.7146/math.scand.a-12035},
zblnumber = {0542.60003},
} -
[EhrhardGaussianIsopEqualityCases]
A. Ehrhard, "Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes," Ann. Inst. H. Poincaré Probab. Statist., vol. 22, iss. 2, pp. 149-168, 1986.
@ARTICLE{EhrhardGaussianIsopEqualityCases,
author = {Ehrhard, Antoine},
title = {\'{E}léments extrémaux pour les inégalités de {B}runn-{M}inkowski gaussiennes},
journal = {Ann. Inst. H. Poincaré Probab. Statist.},
fjournal = {Annales de l'Institut Henri Poincaré. Probabilités et Statistique},
volume = {22},
year = {1986},
number = {2},
pages = {149--168},
issn = {0246-0203},
mrclass = {60E15 (60G17)},
mrnumber = {0850753},
mrreviewer = {R. M. Dudley},
url = {http://www.numdam.org/item?id=AIHPB_1986__22_2_149_0},
zblnumber = {},
} -
[FedererBook] H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc., New York, 1969, vol. 153.
@BOOK{FedererBook,
author = {Federer, Herbert},
title = {Geometric Measure Theory},
series = {Grundlehren Math. Wissen.},
volume = {153},
publisher = {Springer-Verlag New York Inc., New York},
year = {1969},
pages = {xiv+676},
mrclass = {28.80 (26.00)},
mrnumber = {0257325},
mrreviewer = {J. E. Brothers},
zblnumber = {0176.00801},
} -
[Foisy-UGThesis] J. Foisy, Soap bubble clusters in $\mathbb{R}^2$ and $\mathbb{R}^3$, 1991.
@MISC{Foisy-UGThesis,
author = {Foisy, Joel},
title = {Soap bubble clusters in {$\mathbb{R}^2$} and {$\mathbb{R}^3$}},
note = {{S}enior {H}onors {T}hesis, {W}illiams {C}ollege, Williamstown, MA},
year = {1991},
zblnumber = {},
} -
[SMALL93]
J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba, "The standard double soap bubble in ${\bf R}^2$ uniquely minimizes perimeter," Pacific J. Math., vol. 159, iss. 1, pp. 47-59, 1993.
@ARTICLE{SMALL93,
author = {Foisy, Joel and Alfaro, Manuel and Brock, Jeffrey and Hodges, Nickelous and Zimba, Jason},
title = {The standard double soap bubble in {${\bf R}^2$} uniquely minimizes perimeter},
journal = {Pacific J. Math.},
fjournal = {Pacific Journal of Mathematics},
volume = {159},
year = {1993},
number = {1},
pages = {47--59},
issn = {0030-8730},
mrclass = {53A10 (49Q05)},
mrnumber = {1211384},
mrreviewer = {Gregory D. Crow},
doi = {10.2140/pjm.1993.159.47},
url = {https://doi.org/10.2140/pjm.1993.159.47},
zblnumber = {0738.49023},
} -
[HHS95]
J. Hass, M. Hutchings, and R. Schlafly, "The double bubble conjecture," Electron. Res. Announc. Amer. Math. Soc., vol. 1, iss. 3, pp. 98-102, 1995.
@ARTICLE{HHS95,
author = {Hass, Joel and Hutchings, Michael and Schlafly, Roger},
title = {The double bubble conjecture},
journal = {Electron. Res. Announc. Amer. Math. Soc.},
fjournal = {Electronic Research Announcements of the American Mathematical Society},
volume = {1},
year = {1995},
number = {3},
pages = {98--102},
issn = {1079-6762},
mrclass = {53A10 (49Q05)},
mrnumber = {1369639},
mrreviewer = {Udo Hertrich-Jeromin},
doi = {10.1090/S1079-6762-95-03001-0},
url = {https://doi.org/10.1090/S1079-6762-95-03001-0},
zblnumber = {0864.53007},
} -
@BOOK{HeilmanThesis,
author = {Heilman, Steven},
title = {Gaussian isoperimetry for multiple sets},
note = {{P}h.{D}. {T}hesis, New York Univ.},
year = {2014},
pages = {220},
isbn = {978-1321-16129-8},
mrclass = {Thesis},
mrnumber = {3279139},
url = {},
zblnumber = {},
} -
[Heilman-ConditionalTripleBubbleV1]
S. Heilman, "The structure of Gaussian minimal bubbles," J. Geom. Anal., vol. 31, iss. 6, pp. 6307-6348, 2021.
@ARTICLE{Heilman-ConditionalTripleBubbleV1,
author = {Heilman, Steven},
title = {The structure of {G}aussian minimal bubbles},
journal = {J. Geom. Anal.},
fjournal = {Journal of Geometric Analysis},
volume = {31},
year = {2021},
number = {6},
pages = {6307--6348},
issn = {1050-6926},
mrclass = {60E15 (53A10 58E30 60G15)},
mrnumber = {4267646},
doi = {10.1007/s12220-020-00531-x},
url = {https://doi.org/10.1007/s12220-020-00531-x},
zblnumber = {07379206},
} -
[HeilmanJagannathNaor-PropellerInR3]
S. Heilman, A. Jagannath, and A. Naor, "Solution of the propeller conjecture in $\Bbb{R}^3$," Discrete Comput. Geom., vol. 50, iss. 2, pp. 263-305, 2013.
@ARTICLE{HeilmanJagannathNaor-PropellerInR3,
author = {Heilman, Steven and Jagannath, Aukosh and Naor, Assaf},
title = {Solution of the propeller conjecture in {$\Bbb{R}^3$}},
journal = {Discrete Comput. Geom.},
fjournal = {Discrete \& Computational Geometry. An International Journal of Mathematics and Computer Science},
volume = {50},
year = {2013},
number = {2},
pages = {263--305},
issn = {0179-5376},
mrclass = {52A22 (52C99 68U05)},
mrnumber = {3090520},
doi = {10.1007/s00454-013-9530-0},
url = {https://doi.org/10.1007/s00454-013-9530-0},
zblnumber = {1279.28019},
} -
[Hutchings-StructureOfDoubleBubbles]
M. Hutchings, "The structure of area-minimizing double bubbles," J. Geom. Anal., vol. 7, iss. 2, pp. 285-304, 1997.
@ARTICLE{Hutchings-StructureOfDoubleBubbles,
author = {Hutchings, Michael},
title = {The structure of area-minimizing double bubbles},
journal = {J. Geom. Anal.},
fjournal = {The Journal of Geometric Analysis},
volume = {7},
year = {1997},
number = {2},
pages = {285--304},
issn = {1050-6926},
mrclass = {53A10 (49Q05)},
mrnumber = {1646776},
mrreviewer = {Rabah Souam},
doi = {10.1007/BF02921724},
url = {https://doi.org/10.1007/BF02921724},
zblnumber = {0935.53008},
} -
[DoubleBubbleInR3]
M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, "Proof of the double bubble conjecture," Ann. of Math. (2), vol. 155, iss. 2, pp. 459-489, 2002.
@ARTICLE{DoubleBubbleInR3,
author = {Hutchings, Michael and Morgan, Frank and Ritoré,
Manuel and Ros, Antonio},
title = {Proof of the double bubble conjecture},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {155},
year = {2002},
number = {2},
pages = {459--489},
issn = {0003-486X},
mrclass = {53A10},
mrnumber = {1906593},
mrreviewer = {Joel Hass},
doi = {10.2307/3062123},
url = {https://doi.org/10.2307/3062123},
zblnumber = {1009.53007},
} -
[IsakssonMossel-GaussianNoiseStability]
M. Isaksson and E. Mossel, "Maximally stable Gaussian partitions with discrete applications," Israel J. Math., vol. 189, pp. 347-396, 2012.
@ARTICLE{IsakssonMossel-GaussianNoiseStability,
author = {Isaksson, Marcus and Mossel, Elchanan},
title = {Maximally stable {G}aussian partitions with discrete applications},
journal = {Israel J. Math.},
fjournal = {Israel Journal of Mathematics},
volume = {189},
year = {2012},
pages = {347--396},
issn = {0021-2172},
mrclass = {60G15 (60D99 60G09 91A40 91B12 91B14)},
mrnumber = {2931402},
mrreviewer = {Giuseppe Caristi},
doi = {10.1007/s11856-011-0181-7},
url = {https://doi.org/10.1007/s11856-011-0181-7},
zblnumber = {1256.60017},
} -
[KimEMilmanGeneralizedCaffarelli]
Y. Kim and E. Milman, "A generalization of Caffarelli’s contraction theorem via (reverse) heat flow," Math. Ann., vol. 354, iss. 3, pp. 827-862, 2012.
@ARTICLE{KimEMilmanGeneralizedCaffarelli,
author = {Kim, Young-Heon and Milman, Emanuel},
title = {A generalization of {C}affarelli's contraction theorem via (reverse) heat flow},
journal = {Math. Ann.},
fjournal = {Mathematische Annalen},
volume = {354},
year = {2012},
number = {3},
pages = {827--862},
issn = {0025-5831},
mrclass = {35K20 (35B50 37C10)},
mrnumber = {2983070},
mrreviewer = {Daniela Ro\c{s}u},
doi = {10.1007/s00208-011-0749-x},
url = {https://doi.org/10.1007/s00208-011-0749-x},
zblnumber = {1257.35101},
} -
[KNS]
D. Kinderlehrer, L. Nirenberg, and J. Spruck, "Regularity in elliptic free boundary problems," J. Analyse Math., vol. 34, pp. 86-119, 1978.
@ARTICLE{KNS,
author = {Kinderlehrer, D. and Nirenberg, L. and Spruck, J.},
title = {Regularity in elliptic free boundary problems},
journal = {J. Analyse Math.},
fjournal = {Journal d'Analyse Mathématique},
volume = {34},
year = {1978},
pages = {86--119},
issn = {0021-7670},
mrclass = {35J85 (49A22 53C42 58G20)},
mrnumber = {0531272},
doi = {10.1007/BF02790009},
url = {https://doi.org/10.1007/BF02790009},
zblnumber = {0402.35045},
} -
[KleinerProofOfCartanHadamardIn3D]
B. Kleiner, "An isoperimetric comparison theorem," Invent. Math., vol. 108, iss. 1, pp. 37-47, 1992.
@ARTICLE{KleinerProofOfCartanHadamardIn3D,
author = {Kleiner, Bruce},
title = {An isoperimetric comparison theorem},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {108},
year = {1992},
number = {1},
pages = {37--47},
issn = {0020-9910},
mrclass = {53C20 (49Q20)},
mrnumber = {1156385},
mrreviewer = {Viktor Schroeder},
doi = {10.1007/BF02100598},
url = {https://doi.org/10.1007/BF02100598},
zblnumber = {0770.53031},
} -
[Kuwert]
E. Kuwert, "Note on the isoperimetric profile of a convex body," in Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, pp. 195-200.
@INCOLLECTION{Kuwert,
author = {Kuwert, Ernst},
title = {Note on the isoperimetric profile of a convex body},
booktitle = {Geometric Analysis and Nonlinear Partial Differential Equations},
pages = {195--200},
publisher = {Springer, Berlin},
year = {2003},
mrclass = {49Q05},
mrnumber = {2008339},
mrreviewer = {Guillaume Carlier},
doi = {10.1007/978-3-642-55627-2_12},
url = {https://doi.org/10.1007/978-3-642-55627-2_12},
zblnumber = {1029.35009},
} -
[LangRealAndFunctionalAnalysis]
S. Lang, Real and Functional Analysis, Third ed., Springer-Verlag, New York, 1993, vol. 142.
@BOOK{LangRealAndFunctionalAnalysis,
author = {Lang, Serge},
title = {Real and Functional Analysis},
series = {Grad. Texts in Math.},
volume = {142},
edition = {Third},
publisher = {Springer-Verlag, New York},
year = {1993},
pages = {xiv+580},
isbn = {0-387-94001-4},
mrclass = {00A05 (26-01 28-01 46-01 47-01 58-01)},
mrnumber = {1216137},
doi = {10.1007/978-1-4612-0897-6},
url = {https://doi.org/10.1007/978-1-4612-0897-6},
zblnumber = {0831.46001},
} -
[Lang-ManifoldsBook]
S. Lang, Differential and Riemannian Manifolds, Third ed., Springer-Verlag, New York, 1995, vol. 160.
@BOOK{Lang-ManifoldsBook,
author = {Lang, Serge},
title = {Differential and {R}iemannian Manifolds},
series = {Grad. Texts in Math.},
volume = {160},
edition = {Third},
publisher = {Springer-Verlag, New York},
year = {1995},
pages = {xiv+364},
isbn = {0-387-94338-2},
mrclass = {53-01 (58-01)},
mrnumber = {1335233},
mrreviewer = {Sorin Dragomir},
doi = {10.1007/978-1-4612-4182-9},
url = {https://doi.org/10.1007/978-1-4612-4182-9},
zblnumber = {0824.58003},
} -
[Latala-EhrhardForOneConvexSet]
R. Latała, "A note on the Ehrhard inequality," Studia Math., vol. 118, iss. 2, pp. 169-174, 1996.
@ARTICLE{Latala-EhrhardForOneConvexSet,
author = {Lata{\l}a, Rafa{\l}},
title = {A note on the {E}hrhard inequality},
journal = {Studia Math.},
fjournal = {Studia Mathematica},
volume = {118},
year = {1996},
number = {2},
pages = {169--174},
issn = {0039-3223},
mrclass = {60E15 (28A35)},
mrnumber = {1389763},
mrreviewer = {Werner Linde},
doi = {10.4064/sm-118-2-169-174},
url = {https://doi.org/10.4064/sm-118-2-169-174},
zblnumber = {0847.60012},
} -
[MaggiBook]
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory, Cambridge Univ. Press, Cambridge, 2012, vol. 135.
@BOOK{MaggiBook,
author = {Maggi, Francesco},
title = {Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory},
series = {Cambridge Stud. Adv. Math.},
volume = {135},
publisher = {Cambridge Univ. Press, Cambridge},
year = {2012},
pages = {xx+454},
isbn = {978-1-107-02103-7},
mrclass = {49-01 (26B20 28-02 49-02 49Q05 49Q20)},
mrnumber = {2976521},
mrreviewer = {Giovanni Alberti},
doi = {10.1017/CBO9781139108133},
url = {https://doi.org/10.1017/CBO9781139108133},
zblnumber = {1255.49074},
} -
[Masters-DoubleBubbleInS2]
J. D. Masters, "The perimeter-minimizing enclosure of two areas in $S^2$," Real Anal. Exchange, vol. 22, iss. 2, pp. 645-654, 1996/97.
@ARTICLE{Masters-DoubleBubbleInS2,
author = {Masters, Joseph D.},
title = {The perimeter-minimizing enclosure of two areas in {$S^2$}},
journal = {Real Anal. Exchange},
fjournal = {Real Analysis Exchange},
volume = {22},
year = {1996/97},
number = {2},
pages = {645--654},
issn = {0147-1937},
mrclass = {52A40 (49Q15 53A10)},
mrnumber = {1460978},
mrreviewer = {J. E. Brothers},
zblnumber = {0946.52004},
doi = {10.2307/44153944},
url = {https://doi.org/10.2307/44153944},
} -
[McGonagleRoss:15]
M. McGonagle and J. Ross, "The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space," Geom. Dedicata, vol. 178, pp. 277-296, 2015.
@ARTICLE{McGonagleRoss:15,
author = {McGonagle, Matthew and Ross, John},
title = {The hyperplane is the only stable, smooth solution to the isoperimetric problem in {G}aussian space},
journal = {Geom. Dedicata},
fjournal = {Geometriae Dedicata},
volume = {178},
year = {2015},
pages = {277--296},
issn = {0046-5755},
mrclass = {53C42 (49Q10 53A10)},
mrnumber = {3397495},
mrreviewer = {S\l awomir Kolasiński},
doi = {10.1007/s10711-015-0057-9},
url = {https://doi.org/10.1007/s10711-015-0057-9},
zblnumber = {1325.53079},
} -
[EMilmanNeeman-GaussianDoubleBubbleConj] E. Milman and J. Neeman, The Gaussian Double-Bubble Conjecture, 2018.
@MISC{EMilmanNeeman-GaussianDoubleBubbleConj,
author = {Milman, E. and Neeman, J.},
title = {The {G}aussian {D}ouble-{B}ubble {C}onjecture},
arxiv = {1801.09296v1},
year = {2018},
zblnumber = {},
} -
[HeilmanRemarks]
E. Milman and J. Neeman, Remarks on curvature blow-up and fundamental tones on multi-bubbles.
@misc{HeilmanRemarks,
author = {Milman, E. and Neeman, J.},
sortyear={2040},
title={Remarks on curvature blow-up and fundamental tones on multi-bubbles},
url={https://emilman.net.technion.ac.il/fundamentaltone/},
} -
[EMilmanNeeman-GaussianMultiBubbleConj] E. Milman and J. Neeman, The Gaussian Multi-Bubble Conjecture, 2018.
@MISC{EMilmanNeeman-GaussianMultiBubbleConj,
author = {Milman, E. and Neeman, J.},
title = {The {G}aussian {M}ulti-{B}ubble {C}onjecture},
arxiv = {1805.10961v1},
year = {2018},
zblnumber = {},
} -
[EMilmanNeeman-FunctionalVersions] E. Milman and J. Neeman, Functional Gaussian inequalities for vector-valued functions.
@MISC{EMilmanNeeman-FunctionalVersions,
author = {Milman, E. and Neeman, J.},
title = {Functional {G}aussian inequalities for vector-valued functions},
note = {in preparation},
sortyear = {2022},
zblnumber = {},
} -
[MontesinosStandardBubbleE!]
A. relax Montesinos Amilibia, "Existence and uniqueness of standard bubble clusters of given volumes in $\mathbb{R}^N$," Asian J. Math., vol. 5, iss. 1, pp. 25-31, 2001.
@ARTICLE{MontesinosStandardBubbleE!,
author = {{\relax Montesinos Amilibia},
A. },
title = {Existence and uniqueness of standard bubble clusters of given volumes in {$\mathbb{R}^N$}},
journal = {Asian J. Math.},
fjournal = {Asian Journal of Mathematics},
volume = {5},
year = {2001},
number = {1},
pages = {25--31},
issn = {1093-6106},
mrclass = {53A10 (49Q10)},
mrnumber = {1868162},
mrreviewer = {J. E. Brothers},
doi = {10.4310/AJM.2001.v5.n1.a3},
url = {https://doi.org/10.4310/AJM.2001.v5.n1.a3},
zblnumber = {1018.53005},
} -
[MorganSoapBubblesInR2]
F. Morgan, "Soap bubbles in ${\bf R}^2$ and in surfaces," Pacific J. Math., vol. 165, iss. 2, pp. 347-361, 1994.
@ARTICLE{MorganSoapBubblesInR2,
author = {Morgan, Frank},
title = {Soap bubbles in {${\bf R}^2$} and in surfaces},
journal = {Pacific J. Math.},
fjournal = {Pacific Journal of Mathematics},
volume = {165},
year = {1994},
number = {2},
pages = {347--361},
issn = {0030-8730},
mrclass = {58E12 (49Q05 53A10)},
mrnumber = {1300837},
mrreviewer = {Jon T. Pitts},
doi = {10.2140/pjm.1994.165.347},
url = {https://doi.org/10.2140/pjm.1994.165.347},
zblnumber = {0820.53002},
} -
[MorganRegularityOfMinimizers]
F. Morgan, "Regularity of isoperimetric hypersurfaces in Riemannian manifolds," Trans. Amer. Math. Soc., vol. 355, iss. 12, pp. 5041-5052, 2003.
@ARTICLE{MorganRegularityOfMinimizers,
author = {Morgan, Frank},
title = {Regularity of isoperimetric hypersurfaces in {R}iemannian manifolds},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {355},
year = {2003},
number = {12},
pages = {5041--5052},
issn = {0002-9947},
mrclass = {49Q20 (49N60 53C42)},
mrnumber = {1997594},
mrreviewer = {Monica Torres},
doi = {10.1090/S0002-9947-03-03061-7},
url = {https://doi.org/10.1090/S0002-9947-03-03061-7},
zblnumber = {1063.49031},
} -
[MorganManifoldsWithDensity] F. Morgan, "Manifolds with density," Notices Amer. Math. Soc., vol. 52, iss. 8, pp. 853-858, 2005.
@ARTICLE{MorganManifoldsWithDensity,
author = {Morgan, Frank},
title = {Manifolds with density},
journal = {Notices Amer. Math. Soc.},
fjournal = {Notices of the American Mathematical Society},
volume = {52},
year = {2005},
number = {8},
pages = {853--858},
issn = {0002-9920},
mrclass = {53C21},
mrnumber = {2161354},
mrreviewer = {Constantin Vernicos},
zblnumber = {1118.53022},
} -
[MorganBook5Ed]
F. Morgan, Geometric Measure Theory, Fifth ed., Elsevier/Academic Press, Amsterdam, 2016.
@BOOK{MorganBook5Ed,
author = {Morgan, Frank},
title = {Geometric Measure Theory},
edition = {Fifth},
titlenote = {A beginner's guide, illustrated by James F. Bredt},
publisher = {Elsevier/Academic Press, Amsterdam},
year = {2016},
pages = {viii+263},
isbn = {978-0-12-804489-6},
mrclass = {49-01 (26-01 28-01 28A75 49Q20 53C23 58E12)},
mrnumber = {3497381},
doi = {10.1016/B978-0-12-804489-6.50001-X},
url = {https://doi.org/10.1016/B978-0-12-804489-6.50001-X},
zblnumber = {1338.49089},
} -
[MorganJohnson]
F. Morgan and D. L. Johnson, "Some sharp isoperimetric theorems for Riemannian manifolds," Indiana Univ. Math. J., vol. 49, iss. 3, pp. 1017-1041, 2000.
@ARTICLE{MorganJohnson,
author = {Morgan, Frank and Johnson, David L.},
title = {Some sharp isoperimetric theorems for {R}iemannian manifolds},
journal = {Indiana Univ. Math. J.},
fjournal = {Indiana Univ. Mathematics Journal},
volume = {49},
year = {2000},
number = {3},
pages = {1017--1041},
issn = {0022-2518},
mrclass = {53C20 (49Q20 53A10)},
mrnumber = {1803220},
mrreviewer = {Daniel Hug},
doi = {10.1512/iumj.2000.49.1929},
url = {https://doi.org/10.1512/iumj.2000.49.1929},
zblnumber = {1021.53020},
} -
[Munkres-TopologyBook2ndEd] J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
@BOOK{Munkres-TopologyBook2ndEd,
author = {Munkres, James R.},
title = {Topology},
note = {Second edition},
publisher = {Prentice Hall, Inc., Upper Saddle River, NJ},
year = {2000},
pages = {xvi+537},
isbn = {0-13-181629-2},
mrclass = {54-01},
mrnumber = {3728284},
zblnumber = {0951.54001},
} -
[NaberValtorta-MinimizingHarmonicMaps]
A. Naber and D. Valtorta, "Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps," Ann. of Math. (2), vol. 185, iss. 1, pp. 131-227, 2017.
@ARTICLE{NaberValtorta-MinimizingHarmonicMaps,
author = {Naber, Aaron and Valtorta, Daniele},
title = {Rectifiable-{R}eifenberg and the regularity of stationary and minimizing harmonic maps},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {185},
year = {2017},
number = {1},
pages = {131--227},
issn = {0003-486X},
mrclass = {58E20 (53C43)},
mrnumber = {3583353},
mrreviewer = {Andreas Gastel},
doi = {10.4007/annals.2017.185.1.3},
url = {https://doi.org/10.4007/annals.2017.185.1.3},
zblnumber = {1393.58009},
} -
[Nitsche-ThreeMinimalSurfacesMeetOnSmoothCurve] J. C. C. Nitsche, "The higher regularity of liquid edges in aggregates of minimal surfaces," Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, iss. 2, pp. 31-51, 1978.
@ARTICLE{Nitsche-ThreeMinimalSurfacesMeetOnSmoothCurve,
author = {Nitsche, Johannes C. C.},
title = {The higher regularity of liquid edges in aggregates of minimal surfaces},
journal = {Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II},
fjournal = {Nachrichten der Akademie der Wissenschaften zu Göttingen. II. Mathematisch-Physikalische Klasse},
year = {1978},
number = {2},
pages = {31--51},
issn = {0065-5295},
mrclass = {49F10},
mrnumber = {0523326},
mrreviewer = {R. N. Abdulaev},
zblnumber = {0403.53001},
} -
[Reichardt-DoubleBubbleInRn]
B. W. Reichardt, "Proof of the double bubble conjecture in $\Bbb R^n$," J. Geom. Anal., vol. 18, iss. 1, pp. 172-191, 2008.
@ARTICLE{Reichardt-DoubleBubbleInRn,
author = {Reichardt, Ben W.},
title = {Proof of the double bubble conjecture in {$\bold R^n$}},
journal = {J. Geom. Anal.},
fjournal = {Journal of Geometric Analysis},
volume = {18},
year = {2008},
number = {1},
pages = {172--191},
issn = {1050-6926},
mrclass = {53A10 (49Q10)},
mrnumber = {2365672},
mrreviewer = {Fei-Tsen Liang},
doi = {10.1007/s12220-007-9002-y},
url = {https://doi.org/10.1007/s12220-007-9002-y},
zblnumber = {1149.53009},
} -
[SMALL03]
B. W. Reichardt, C. Heilmann, Y. Y. Lai, and A. Spielman, "Proof of the double bubble conjecture in ${\bf R}^4$ and certain higher dimensional cases," Pacific J. Math., vol. 208, iss. 2, pp. 347-366, 2003.
@ARTICLE{SMALL03,
author = {Reichardt, Ben W. and Heilmann, Cory and Lai, Yuan Y. and Spielman, Anita},
title = {Proof of the double bubble conjecture in {${\bf R}^4$} and certain higher dimensional cases},
journal = {Pacific J. Math.},
fjournal = {Pacific Journal of Mathematics},
volume = {208},
year = {2003},
number = {2},
pages = {347--366},
issn = {0030-8730},
mrclass = {53A10 (53A07)},
mrnumber = {1971669},
mrreviewer = {Marc Michel Soret},
doi = {10.2140/pjm.2003.208.347},
url = {https://doi.org/10.2140/pjm.2003.208.347},
zblnumber = {1056.53007},
} -
[RitoreRosalesMinimizersInEulideanCones]
M. Ritoré and C. Rosales, "Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones," Trans. Amer. Math. Soc., vol. 356, iss. 11, pp. 4601-4622, 2004.
@ARTICLE{RitoreRosalesMinimizersInEulideanCones,
author = {Ritoré,
Manuel and Rosales, César},
title = {Existence and characterization of regions minimizing perimeter under a volume constraint inside {E}uclidean cones},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {356},
year = {2004},
number = {11},
pages = {4601--4622},
issn = {0002-9947},
mrclass = {49Q20 (53C20)},
mrnumber = {2067135},
mrreviewer = {J. E. Brothers},
doi = {10.1090/S0002-9947-04-03537-8},
url = {https://doi.org/10.1090/S0002-9947-04-03537-8},
zblnumber = {1057.53023},
} -
[RosIsoperimetryInCrystals]
A. Ros, "Isoperimetric inequalities in crystallography," J. Amer. Math. Soc., vol. 17, iss. 2, pp. 373-388, 2004.
@ARTICLE{RosIsoperimetryInCrystals,
author = {Ros, Antonio},
title = {Isoperimetric inequalities in crystallography},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the American Mathematical Society},
volume = {17},
year = {2004},
number = {2},
pages = {373--388},
issn = {0894-0347},
mrclass = {53A10 (20H15)},
mrnumber = {2051615},
mrreviewer = {Jo\~{a}o Lucas Marques Barbosa},
doi = {10.1090/S0894-0347-03-00447-8},
url = {https://doi.org/10.1090/S0894-0347-03-00447-8},
zblnumber = {1048.53006},
} -
[Rosales-StableSetsForGaussianMeasures]
C. Rosales, "Isoperimetric and stable sets for log-concave perturbations of Gaussian measures," Anal. Geom. Metr. Spaces, vol. 2, iss. 1, pp. 328-358, 2014.
@ARTICLE{Rosales-StableSetsForGaussianMeasures,
author = {Rosales, César},
title = {Isoperimetric and stable sets for log-concave perturbations of {G}aussian measures},
journal = {Anal. Geom. Metr. Spaces},
fjournal = {Analysis and Geometry in Metric Spaces},
volume = {2},
year = {2014},
number = {1},
pages = {328--358},
mrclass = {49Q20 (53A10)},
mrnumber = {3290382},
mrreviewer = {Andrea Mondino},
doi = {10.2478/agms-2014-0014},
url = {https://doi.org/10.2478/agms-2014-0014},
zblnumber = {1304.49096},
} -
[RCBMIsopInqsForLogConvexDensities]
C. Rosales, A. Cañete, V. Bayle, and F. Morgan, "On the isoperimetric problem in Euclidean space with density," Calc. Var. Partial Differential Equations, vol. 31, iss. 1, pp. 27-46, 2008.
@ARTICLE{RCBMIsopInqsForLogConvexDensities,
author = {Rosales, César and Ca\~{n}ete, Antonio and Bayle, Vincent and Morgan, Frank},
title = {On the isoperimetric problem in {E}uclidean space with density},
journal = {Calc. Var. Partial Differential Equations},
fjournal = {Calculus of Variations and Partial Differential Equations},
volume = {31},
year = {2008},
number = {1},
pages = {27--46},
issn = {0944-2669},
mrclass = {49Q20 (53C17)},
mrnumber = {2342613},
mrreviewer = {Pei Biao Zhao},
doi = {10.1007/s00526-007-0104-y},
url = {https://doi.org/10.1007/s00526-007-0104-y},
zblnumber = {1126.49038},
} -
[Schechtman-ApproxGaussianMultiBubble]
G. Schechtman, "Approximate Gaussian isoperimetry for $k$ sets," in Geometric Aspects of Functional Aanalysis, Springer, Heidelberg, 2012, vol. 2050, pp. 373-379.
@INCOLLECTION{Schechtman-ApproxGaussianMultiBubble,
author = {Schechtman, Gideon},
title = {Approximate {G}aussian isoperimetry for {$k$} sets},
booktitle = {Geometric Aspects of Functional Aanalysis},
series = {Lecture Notes in Math.},
volume = {2050},
pages = {373--379},
publisher = {Springer, Heidelberg},
year = {2012},
mrclass = {60D05 (28A75 60E15 60G15)},
mrnumber = {2985305},
doi = {10.1007/978-3-642-29849-3\_23},
url = {https://doi.org/10.1007/978-3-642-29849-3_23},
zblnumber = {1264.60011},
} -
[Schneider-Book]
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993, vol. 44.
@BOOK{Schneider-Book,
author = {Schneider, Rolf},
title = {Convex Bodies: The {B}runn-{M}inkowski Theory},
series = {Encyc. Math. Appl.},
volume = {44},
publisher = {Cambridge Univ. Press, Cambridge},
year = {1993},
pages = {xiv+490},
isbn = {0-521-35220-7},
mrclass = {52A39 (52-02 52A20)},
mrnumber = {1216521},
mrreviewer = {W. J. Firey},
doi = {10.1017/CBO9780511526282},
url = {https://doi.org/10.1017/CBO9780511526282},
zblnumber = {0798.52001},
} -
[Simon-Codimension2Regularity]
L. Simon, "Cylindrical tangent cones and the singular set of minimal submanifolds," J. Differential Geom., vol. 38, iss. 3, pp. 585-652, 1993.
@ARTICLE{Simon-Codimension2Regularity,
author = {Simon, Leon},
title = {Cylindrical tangent cones and the singular set of minimal submanifolds},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {38},
year = {1993},
number = {3},
pages = {585--652},
issn = {0022-040X},
mrclass = {58E15 (49Q20)},
mrnumber = {1243788},
mrreviewer = {J. E. Brothers},
doi = {10.4310/jdg/1214454484},
url = {https://doi.org/10.4310/jdg/1214454484},
zblnumber = {0819.53029},
} -
[SternbergZumbrun]
P. Sternberg and K. Zumbrun, "On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint," Comm. Anal. Geom., vol. 7, iss. 1, pp. 199-220, 1999.
@ARTICLE{SternbergZumbrun,
author = {Sternberg, Peter and Zumbrun, Kevin},
title = {On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint},
journal = {Comm. Anal. Geom.},
fjournal = {Communications in Analysis and Geometry},
volume = {7},
year = {1999},
number = {1},
pages = {199--220},
issn = {1019-8385},
mrclass = {49Q15 (58E15)},
mrnumber = {1674097},
mrreviewer = {Silvano Delladio},
doi = {10.4310/CAG.1999.v7.n1.a7},
url = {https://doi.org/10.4310/CAG.1999.v7.n1.a7},
zblnumber = {0930.49024},
} -
[SudakovTsirelson] V. N. Sudakov and B. S. Cirelcprimeson, "Extremal properties of half-spaces for spherically invariant measures," Zap. Nau\vcn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 41, pp. 14-24, 165, 1974.
@ARTICLE{SudakovTsirelson,
author = {Sudakov, V. N. and Cirel{\cprime}son, B. S.},
title = {Extremal properties of half-spaces for spherically invariant measures},
note = {Problems in the theory of probability distributions, II},
journal = {Zap. Nau\v{c}n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)},
fjournal = {Zapiski Nau\v{c}nyh Seminarov Leningradskogo Otdelenija Matemati\v{c}eskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI)},
volume = {41},
year = {1974},
pages = {14--24, 165},
mrclass = {60G15},
mrnumber = {0365680},
mrreviewer = {R. M. Dudley},
zblnumber = {0351.28015},
} -
[OpenProblemsInSoapBubbles96]
J. M. Sullivan and F. Morgan, "Open problems in soap bubble geometry," Internat. J. Math., vol. 7, iss. 6, pp. 833-842, 1996.
@ARTICLE{OpenProblemsInSoapBubbles96,
author = {Sullivan, John M. and Morgan, Frank},
title = {Open problems in soap bubble geometry},
journal = {Internat. J. Math.},
fjournal = {International Journal of Mathematics},
volume = {7},
year = {1996},
number = {6},
pages = {833--842},
issn = {0129-167X},
mrclass = {53A10 (53-02)},
mrnumber = {1417788},
mrreviewer = {Ricardo Sa Earp},
doi = {10.1142/S0129167X9600044X},
url = {https://doi.org/10.1142/S0129167X9600044X},
zblnumber = {0867.53009},
} -
[Taylor-SoapBubbleRegularityInR3]
J. E. Taylor, "The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces," Ann. of Math. (2), vol. 103, iss. 3, pp. 489-539, 1976.
@ARTICLE{Taylor-SoapBubbleRegularityInR3,
author = {Taylor, Jean E.},
title = {The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {103},
year = {1976},
number = {3},
pages = {489--539},
issn = {0003-486X},
mrclass = {49F22 (58A99)},
mrnumber = {0428181},
mrreviewer = {Klaus Steffen},
doi = {10.2307/1970949},
url = {https://doi.org/10.2307/1970949},
zblnumber = {0335.49032},
} -
[Tripathi:99]
G. Tripathi, "A matrix extension of the Cauchy-Schwarz inequality," Econom. Lett., vol. 63, iss. 1, pp. 1-3, 1999.
@ARTICLE{Tripathi:99,
author = {Tripathi, Gautam},
title = {A matrix extension of the {C}auchy-{S}chwarz inequality},
journal = {Econom. Lett.},
fjournal = {Economics Letters},
volume = {63},
year = {1999},
number = {1},
pages = {1--3},
issn = {0165-1765},
mrclass = {26A15 (15A45)},
mrnumber = {1686762},
doi = {10.1016/S0165-1765(99)00014-2},
url = {https://doi.org/10.1016/S0165-1765(99)00014-2},
zblnumber = {0916.90082},
} -
[White-AusyAnnouncementOfClusterRegularity] B. White, "Regularity of the singular sets in immiscible fluid interfaces and solutions to other Plateau-type problems," in Miniconference on Geometry and Partial Differential Equations, Austral. Nat. Univ., Canberra, 1986, vol. 10, pp. 244-249.
@INCOLLECTION{White-AusyAnnouncementOfClusterRegularity,
author = {White, Brian},
title = {Regularity of the singular sets in immiscible fluid interfaces and solutions to other {P}lateau-type problems},
booktitle = {Miniconference on Geometry and Partial Differential Equations},
venue = {{C}anberra, 1985},
series = {Proc. Centre Math. Anal. Austral. Nat. Univ.},
volume = {10},
pages = {244--249},
publisher = {Austral. Nat. Univ., Canberra},
year = {1986},
mrclass = {49F22},
mrnumber = {0857670},
zblnumber = {0606.49029},
} -
[White-SoapBubbleRegularityInRn] B. White, Regularity of singular sets for Plateau-type problems.
@MISC{White-SoapBubbleRegularityInRn,
author = {White, Brian},
title = {Regularity of singular sets for {P}lateau-type problems},
note = {announced, 1990s},
sortyear = {2022},
zblnumber = {},
} -
[Wichiramala-TripleBubbleInR2]
W. Wichiramala, "Proof of the planar triple bubble conjecture," J. Reine Angew. Math., vol. 567, pp. 1-49, 2004.
@ARTICLE{Wichiramala-TripleBubbleInR2,
author = {Wichiramala, Wacharin},
title = {Proof of the planar triple bubble conjecture},
journal = {J. Reine Angew. Math.},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
volume = {567},
year = {2004},
pages = {1--49},
issn = {0075-4102},
mrclass = {53A10},
mrnumber = {2038304},
mrreviewer = {Joel Hass},
doi = {10.1515/crll.2004.011},
url = {https://doi.org/10.1515/crll.2004.011},
zblnumber = {1078.53010},
}