Global regularity for the Monge-Ampère equation with natural boundary condition

Abstract

In this paper, we establish the global $C^{2,\alpha }$ and $W^{2,p}$ regularity for the Monge-Ampère equation ${\mathrm{det}}\, D^2u = f$ subject to boundary condition $Du(\Omega ) = \Omega ^*$, where $\Omega $ and $\Omega ^*$ are bounded convex domains in the Euclidean space $\mathbb{R}^n$ with $C^{1,1}$ boundaries, and $f$ is a Hölder continuous function. This boundary value problem arises naturally in optimal transportation and many other applications.

  • [Br1] Go to document S. Brendle, "Minimal Lagrangian diffeomorphisms between domains in the hyperbolic plane," J. Differential Geom., vol. 80, iss. 1, pp. 1-22, 2008.
    @ARTICLE{Br1,
      author = {Brendle, Simon},
      title = {Minimal {L}agrangian diffeomorphisms between domains in the hyperbolic plane},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {80},
      year = {2008},
      number = {1},
      pages = {1--22},
      issn = {0022-040X},
      mrclass = {53D12 (53A10)},
      mrnumber = {2434257},
      mrreviewer = {John Urbas},
      doi = {10.4310/jdg/1217361064},
      url = {https://doi.org/10.4310/jdg/1217361064},
      zblnumber = {1154.53034},
      }
  • [Br2] Go to document S. Brendle and M. Warren, "A boundary value problem for minimal Lagrangian graphs," J. Differential Geom., vol. 84, iss. 2, pp. 267-287, 2010.
    @ARTICLE{Br2,
      author = {Brendle, Simon and Warren, Micah},
      title = {A boundary value problem for minimal {L}agrangian graphs},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {84},
      year = {2010},
      number = {2},
      pages = {267--287},
      issn = {0022-040X},
      mrclass = {53D12 (35J60 53C42)},
      mrnumber = {2652462},
      mrreviewer = {John Urbas},
      doi = {10.4310/jdg/1274707314},
      url = {https://doi.org/10.4310/jdg/1274707314},
      zblnumber = {1195.53081},
      }
  • [Bre91] Go to document Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions," Comm. Pure Appl. Math., vol. 44, iss. 4, pp. 375-417, 1991.
    @ARTICLE{Bre91,
      author = {Brenier, Yann},
      title = {Polar factorization and monotone rearrangement of vector-valued functions},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {44},
      year = {1991},
      number = {4},
      pages = {375--417},
      issn = {0010-3640},
      mrclass = {46E40 (35Q99 46E99 49Q99)},
      mrnumber = {1100809},
      mrreviewer = {Robert McOwen},
      doi = {10.1002/cpa.3160440402},
      url = {https://doi.org/10.1002/cpa.3160440402},
      zblnumber = {0738.46011},
      }
  • [C1] Go to document L. A. Caffarelli, "Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation," Ann. of Math. (2), vol. 131, iss. 1, pp. 135-150, 1990.
    @ARTICLE{C1,
      author = {Caffarelli, Luis A.},
      title = {Interior {$W^{2,p}$} estimates for solutions of the {M}onge-{A}mpère equation},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {131},
      year = {1990},
      number = {1},
      pages = {135--150},
      issn = {0003-486X},
      mrclass = {35B65 (35B45 35J60)},
      mrnumber = {1038360},
      mrreviewer = {John Urbas},
      doi = {10.2307/1971510},
      url = {https://doi.org/10.2307/1971510},
      zblnumber = {0704.35044},
      }
  • [C92] Go to document L. A. Caffarelli, "Boundary regularity of maps with convex potentials," Comm. Pure Appl. Math., vol. 45, iss. 9, pp. 1141-1151, 1992.
    @ARTICLE{C92,
      author = {Caffarelli, Luis A.},
      title = {Boundary regularity of maps with convex potentials},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {45},
      year = {1992},
      number = {9},
      pages = {1141--1151},
      issn = {0010-3640},
      mrclass = {35B65 (35J65)},
      mrnumber = {1177479},
      mrreviewer = {S. K. Vodop\cprime yanov},
      doi = {10.1002/cpa.3160450905},
      url = {https://doi.org/10.1002/cpa.3160450905},
      zblnumber = {0778.35015},
      }
  • [C92a] Go to document L. A. Caffarelli, "The regularity of mappings with a convex potential," J. Amer. Math. Soc., vol. 5, iss. 1, pp. 99-104, 1992.
    @ARTICLE{C92a,
      author = {Caffarelli, Luis A.},
      title = {The regularity of mappings with a convex potential},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {5},
      year = {1992},
      number = {1},
      pages = {99--104},
      issn = {0894-0347},
      mrclass = {35B65 (35A30 35J60)},
      mrnumber = {1124980},
      doi = {10.2307/2152752},
      url = {https://doi.org/10.2307/2152752},
      zblnumber = {0753.35031},
      }
  • [C96] Go to document L. A. Caffarelli, "Boundary regularity of maps with convex potentials. II," Ann. of Math. (2), vol. 144, iss. 3, pp. 453-496, 1996.
    @ARTICLE{C96,
      author = {Caffarelli, Luis A.},
      title = {Boundary regularity of maps with convex potentials. {II}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {144},
      year = {1996},
      number = {3},
      pages = {453--496},
      issn = {0003-486X},
      mrclass = {35B65 (35J60 35J65)},
      mrnumber = {1426885},
      mrreviewer = {John Urbas},
      doi = {10.2307/2118564},
      url = {https://doi.org/10.2307/2118564},
      zblnumber = {0916.35016},
      }
  • [CM] Go to document L. A. Caffarelli and R. J. McCann, "Free boundaries in optimal transport and Monge-Ampère obstacle problems," Ann. of Math. (2), vol. 171, iss. 2, pp. 673-730, 2010.
    @ARTICLE{CM,
      author = {Caffarelli, Luis A. and McCann, Robert J.},
      title = {Free boundaries in optimal transport and {M}onge-{A}mpère obstacle problems},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {171},
      year = {2010},
      number = {2},
      pages = {673--730},
      issn = {0003-486X},
      mrclass = {49Q20 (35K96)},
      mrnumber = {2630054},
      mrreviewer = {Luca Granieri},
      doi = {10.4007/annals.2010.171.673},
      url = {https://doi.org/10.4007/annals.2010.171.673},
      zblnumber = {1196.35231},
      }
  • [CNS] Go to document L. A. Caffarelli, L. Nirenberg, and J. Spruck, "The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation," Comm. Pure Appl. Math., vol. 37, iss. 3, pp. 369-402, 1984.
    @ARTICLE{CNS,
      author = {Caffarelli, Luis A. and Nirenberg, L. and Spruck, J.},
      title = {The {D}irichlet problem for nonlinear second-order elliptic equations. {I}. {M}onge-{A}mpère equation},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {37},
      year = {1984},
      number = {3},
      pages = {369--402},
      issn = {0010-3640},
      mrclass = {35J65 (58G30)},
      mrnumber = {0739925},
      mrreviewer = {Philippe Delanoë},
      doi = {10.1002/cpa.3160370306},
      url = {https://doi.org/10.1002/cpa.3160370306},
      zblnumber = {0598.35047},
      }
  • [CF] Go to document S. Chen and A. Figalli, "Partial $W^{2,p}$ regularity for optimal transport maps," J. Funct. Anal., vol. 272, iss. 11, pp. 4588-4605, 2017.
    @ARTICLE{CF,
      author = {Chen, Shibing and Figalli, Alessio},
      title = {Partial {$W^{2,p}$} regularity for optimal transport maps},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {272},
      year = {2017},
      number = {11},
      pages = {4588--4605},
      issn = {0022-1236},
      mrclass = {49Q20 (49N60)},
      mrnumber = {3630634},
      mrreviewer = {Luca Granieri},
      doi = {10.1016/j.jfa.2017.02.025},
      url = {https://doi.org/10.1016/j.jfa.2017.02.025},
      zblnumber = {1364.35058},
      }
  • [CLW2] S. Chen, J. Liu, and X. Wang, Boundary regularity for the second boundary-value problem of Monge-Ampère equations in dimension two, 2018.
    @MISC{CLW2,
      author = {Chen, Shibing and Liu, Jiakun and Wang, Xu-Jia},
      title = {Boundary regularity for the second boundary-value problem of {M}onge-{A}mpère equations in dimension two},
      arxiv = {1806.09482},
      year = {2018},
      zblnumber = {},
      }
  • [CLW3] Go to document S. Chen, J. Liu, and X. Wang, "Global regularity of optimal mappings in non-convex domains," Sci. China Math., vol. 62, iss. 11, pp. 2057-2072, 2019.
    @ARTICLE{CLW3,
      author = {Chen, Shibing and Liu, Jiakun and Wang, Xu-Jia},
      title = {Global regularity of optimal mappings in non-convex domains},
      journal = {Sci. China Math.},
      fjournal = {Science China. Mathematics},
      volume = {62},
      year = {2019},
      number = {11},
      pages = {2057--2072},
      issn = {1674-7283},
      mrclass = {35J96 (35B65 35J25)},
      mrnumber = {4028263},
      mrreviewer = {Connor Mooney},
      doi = {10.1007/s11425-018-9465-8},
      url = {https://doi.org/10.1007/s11425-018-9465-8},
      zblnumber = {1427.35090},
      }
  • [CLW-free] S. Chen, J. Liu, and X. Wang, $C^{2,\alpha}$ regularity of free boundaries in optimal transportation, 2019.
    @MISC{CLW-free,
      author = {Chen, Shibing and Liu, Jiakun and Wang, Xu-Jia},
      title = {{$C^{2,\alpha}$} regularity of free boundaries in optimal transportation},
      arxiv = {1911.10503v2},
      year = {2019},
      zblnumber = {},
      }
  • [DF] Go to document G. De Philippis and A. Figalli, "The Monge-Ampère equation and its link to optimal transportation," Bull. Amer. Math. Soc. (N.S.), vol. 51, iss. 4, pp. 527-580, 2014.
    @ARTICLE{DF,
      author = {De Philippis, Guido and Figalli, Alessio},
      title = {The {M}onge-{A}mpère equation and its link to optimal transportation},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {Amer. Math. Soc.. Bulletin. New Series},
      volume = {51},
      year = {2014},
      number = {4},
      pages = {527--580},
      issn = {0273-0979},
      mrclass = {35J96 (35B65 35J60 35J66)},
      mrnumber = {3237759},
      mrreviewer = {John Urbas},
      doi = {10.1090/S0273-0979-2014-01459-4},
      url = {https://doi.org/10.1090/S0273-0979-2014-01459-4},
      zblnumber = {06377770},
      }
  • [D91] Go to document P. Delanoë, "Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator," Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 8, iss. 5, pp. 443-457, 1991.
    @ARTICLE{D91,
      author = {Delanoë,
      P.},
      title = {Classical solvability in dimension two of the second boundary-value problem associated with the {M}onge-{A}mpère operator},
      journal = {Ann. Inst. H. Poincaré Anal. Non Linéaire},
      fjournal = {Annales de l'Institut Henri Poincaré. Analyse Non Linéaire},
      volume = {8},
      year = {1991},
      number = {5},
      pages = {443--457},
      issn = {0294-1449},
      mrclass = {35J65 (53C45)},
      mrnumber = {1136351},
      mrreviewer = {Themistocles M. Rassias},
      doi = {10.1016/j.anihpc.2007.03.001},
      url = {https://doi.org/10.1016/j.anihpc.2007.03.001},
      zblnumber = {0778.35037},
      }
  • [E99] L. C. Evans, "Partial differential equations and Monge-Kantorovich mass transfer," in Current Developments in Mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, pp. 65-126.
    @INCOLLECTION{E99,
      author = {Evans, Lawrence C.},
      title = {Partial differential equations and {M}onge-{K}antorovich mass transfer},
      booktitle = {Current {D}evelopments in {M}athematics, 1997 ({C}ambridge, {MA})},
      pages = {65--126},
      publisher = {Int. Press, Boston, MA},
      year = {1999},
      mrclass = {49-02 (35J60 49J10)},
      mrnumber = {1698853},
      mrreviewer = {Thomas J. Hillen},
      zblnumber = {0954.35011},
      }
  • [Fig] Go to document A. Figalli, The Monge-Ampère equation and its applications, European Mathematical Society (EMS), Zürich, 2017.
    @BOOK{Fig,
      author = {Figalli, Alessio},
      title = {The {M}onge-{A}mpère equation and its applications},
      series = {Zurich Lect. Adv. Math.},
      publisher = {European Mathematical Society (EMS), Zürich},
      year = {2017},
      pages = {x+200},
      isbn = {978-3-03719-170-5},
      mrclass = {35-02 (35B65 35J60 35J96 53C45)},
      mrnumber = {3617963},
      mrreviewer = {Xiaobing Henry Feng},
      doi = {10.4171/170},
      url = {https://doi.org/10.4171/170},
      zblnumber = {1435.35003},
      }
  • [GT] Go to document D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second ed., Springer-Verlag, Berlin, 1983, vol. 224.
    @BOOK{GT,
      author = {Gilbarg, David and Trudinger, Neil S.},
      title = {Elliptic Partial Differential Equations of Second Order},
      series = {Grundlehren Math. Wissen.},
      volume = {224},
      edition = {Second},
      publisher = {Springer-Verlag, Berlin},
      year = {1983},
      pages = {xiii+513},
      isbn = {3-540-13025-X},
      mrclass = {35Jxx (35-01)},
      mrnumber = {0737190},
      mrreviewer = {O. John},
      doi = {10.1007/978-3-642-61798-0},
      url = {https://doi.org/10.1007/978-3-642-61798-0},
      zblnumber = {1042.35002},
      }
  • [Gut] Go to document C. E. Gutiérrez, The Monge-Ampère Equation, Birkhäuser Boston, Inc., Boston, MA, 2001, vol. 44.
    @BOOK{Gut,
      author = {Gutiérrez, Cristian E.},
      title = {The {M}onge-{A}mpère Equation},
      series = {Progr. Nonlinear Diff. Eq. Appl.},
      volume = {44},
      publisher = {Birkhäuser Boston, Inc., Boston, MA},
      year = {2001},
      pages = {xii+127},
      isbn = {0-8176-4177-7},
      mrclass = {35J60 (35B45 35B50 35D05 35D10 35J65 53A15 53C45)},
      mrnumber = {1829162},
      mrreviewer = {John Urbas},
      doi = {10.1007/978-1-4612-0195-3},
      url = {https://doi.org/10.1007/978-1-4612-0195-3},
      zblnumber = {0989.35052},
      }
  • [Jh] Go to document Y. Jhaveri, "On the (in)stability of the identity map in optimal transportation," Calc. Var. Partial Differential Equations, vol. 58, iss. 3, p. 96, 2019.
    @ARTICLE{Jh,
      author = {Jhaveri, Yash},
      title = {On the (in)stability of the identity map in optimal transportation},
      journal = {Calc. Var. Partial Differential Equations},
      fjournal = {Calculus of Variations and Partial Differential Equations},
      volume = {58},
      year = {2019},
      number = {3},
      pages = {Paper No. 96, 25},
      issn = {0944-2669},
      mrclass = {35J96 (35B35 35B65)},
      mrnumber = {3948988},
      mrreviewer = {Xiaobing Henry Feng},
      doi = {10.1007/s00526-019-1536-x},
      url = {https://doi.org/10.1007/s00526-019-1536-x},
      zblnumber = {1418.35208},
      }
  • [JW] Go to document H. Jian and X. Wang, "Continuity estimates for the Monge-Ampère equation," SIAM J. Math. Anal., vol. 39, iss. 2, pp. 608-626, 2007.
    @ARTICLE{JW,
      author = {Jian, Huai-Yu and Wang, Xu-Jia},
      title = {Continuity estimates for the {M}onge-{A}mpère equation},
      journal = {SIAM J. Math. Anal.},
      fjournal = {SIAM Journal on Mathematical Analysis},
      volume = {39},
      year = {2007},
      number = {2},
      pages = {608--626},
      issn = {0036-1410},
      mrclass = {35J60 (35B65)},
      mrnumber = {2338423},
      mrreviewer = {Qinian Jin},
      doi = {10.1137/060669036},
      url = {https://doi.org/10.1137/060669036},
      zblnumber = {1138.35326},
      }
  • [LGA] N. Lei, Y. Guo, D. An, X. Qi, Z. Luo, S. -T. Yau, and X. Gu, Mode collapse and regularity of optimal transportation maps, 2019.
    @MISC{LGA,
      author = {Lei, N. and Guo, Y. and An, D. and Qi, X. and Luo, Z. and Yau, S.-T. and Gu, X.},
      title = {Mode collapse and regularity of optimal transportation maps},
      arxiv = {1902.02934},
      year = {2019},
      zblnumber = {},
      }
  • [LTU] Go to document P. -L. Lions, N. S. Trudinger, and J. I. E. Urbas, "The Neumann problem for equations of Monge-Ampère type," Comm. Pure Appl. Math., vol. 39, iss. 4, pp. 539-563, 1986.
    @ARTICLE{LTU,
      author = {Lions, P.-L. and Trudinger, N. S. and Urbas, J. I. E.},
      title = {The {N}eumann problem for equations of {M}onge-{A}mpère type},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {39},
      year = {1986},
      number = {4},
      pages = {539--563},
      issn = {0010-3640},
      mrclass = {35J25 (35B45 35B50 53C45)},
      mrnumber = {0840340},
      mrreviewer = {Philippe Delanoë},
      doi = {10.1002/cpa.3160390405},
      url = {https://doi.org/10.1002/cpa.3160390405},
      zblnumber = {0604.35027},
      }
  • [MTW] Go to document X. Ma, N. S. Trudinger, and X. Wang, "Regularity of potential functions of the optimal transportation problem," Arch. Ration. Mech. Anal., vol. 177, iss. 2, pp. 151-183, 2005.
    @ARTICLE{MTW,
      author = {Ma, Xi-Nan and Trudinger, Neil S. and Wang, Xu-Jia},
      title = {Regularity of potential functions of the optimal transportation problem},
      journal = {Arch. Ration. Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {177},
      year = {2005},
      number = {2},
      pages = {151--183},
      issn = {0003-9527},
      mrclass = {35J60 (35B65 35J20 49Q20)},
      mrnumber = {2188047},
      mrreviewer = {Luisa Moschini},
      doi = {10.1007/s00205-005-0362-9},
      url = {https://doi.org/10.1007/s00205-005-0362-9},
      zblnumber = {1072.49035},
      }
  • [P69] A. V. Pogorelov, The Extrinsic Geometry of Convex Surfaces, Izdat. Nauka, Moscow, 1969.
    @BOOK{P69,
      author = {Pogorelov, A. V.},
      title = {The Extrinsic Geometry of Convex Surfaces},
      publisher = {Izdat. Nauka, Moscow},
      year = {1969},
      pages = {759},
      mrclass = {53.75},
      mrnumber = {0244909},
      mrreviewer = {H. Busemann},
      zblnumber = {},
      }
  • [RR] Go to document S. T. Rachev and L. Rüschendorf, Mass Transportation Problems. Vol. II. Applications, Springer-Verlag, New York, 1998.
    @BOOK{RR,
      author = {Rachev, Svetlozar T. and Rüschendorf, Ludger},
      title = {Mass Transportation Problems. {V}ol. {II}. Applications},
      series = {Prob. Appl. (New York)},
      publisher = {Springer-Verlag, New York},
      year = {1998},
      pages = {xxvi+430},
      isbn = {0-387-98352-X},
      mrclass = {28A35 (28C15 49K27 60B05 60B10 90C48)},
      mrnumber = {1619171},
      mrreviewer = {Vladimir L. Levin},
      zblnumber = {1277.35192},
      doi = {10.1007/b98894},
      url = {https://doi.org/10.1007/b98894},
      }
  • [Sa] Go to document O. Savin, "Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation," J. Amer. Math. Soc., vol. 26, iss. 1, pp. 63-99, 2013.
    @ARTICLE{Sa,
      author = {Savin, O.},
      title = {Pointwise {$C^{2,\alpha}$} estimates at the boundary for the {M}onge-{A}mpère equation},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {26},
      year = {2013},
      number = {1},
      pages = {63--99},
      issn = {0894-0347},
      mrclass = {35J60 (35B65)},
      mrnumber = {2983006},
      mrreviewer = {José Carmona Tapia},
      doi = {10.1090/S0894-0347-2012-00747-4},
      url = {https://doi.org/10.1090/S0894-0347-2012-00747-4},
      zblnumber = {1275.35115},
      }
  • [Sa1] Go to document O. Savin, "Global $W^{2,p}$ estimates for the Monge-Ampère equation," Proc. Amer. Math. Soc., vol. 141, iss. 10, pp. 3573-3578, 2013.
    @ARTICLE{Sa1,
      author = {Savin, O.},
      title = {Global {$W^{2,p}$} estimates for the {M}onge-{A}mpère equation},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the Amer. Math. Soc.},
      volume = {141},
      year = {2013},
      number = {10},
      pages = {3573--3578},
      issn = {0002-9939},
      mrclass = {35J96 (35B45 35B65)},
      mrnumber = {3080179},
      mrreviewer = {John Urbas},
      doi = {10.1090/S0002-9939-2013-11748-X},
      url = {https://doi.org/10.1090/S0002-9939-2013-11748-X},
      zblnumber = {1277.35192},
      }
  • [SY] Go to document O. Savin and H. Yu, "Regularity of optimal transport between planar convex domains," Duke Math. J., vol. 169, iss. 7, pp. 1305-1327, 2020.
    @ARTICLE{SY,
      author = {Savin, Ovidiu and Yu, Hui},
      title = {Regularity of optimal transport between planar convex domains},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {169},
      year = {2020},
      number = {7},
      pages = {1305--1327},
      issn = {0012-7094},
      mrclass = {35J60 (35J96)},
      mrnumber = {4094737},
      mrreviewer = {Yuxin Ge},
      doi = {10.1215/00127094-2019-0068},
      url = {https://doi.org/10.1215/00127094-2019-0068},
      zblnumber = {1440.35118},
      }
  • [SF] Go to document J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and L. Guibas, "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains," ACM Transactions on Graphics, vol. 34, p. 66:1-66:11, 2015.
    @ARTICLE{SF,
      author = {Solomon, J. and de Goes, F. and Peyré, G. and Cuturi, M. and Butscher, A. and Nguyen, A. and Du, T. and Guibas, L.},
      title = {Convolutional {W}asserstein Distances: Efficient Optimal Transportation on Geometric Domains},
      journal = {ACM Transactions on Graphics},
      volume = {34},
      year = {2015},
      pages = {66:1--66:11},
      doi = {10.1145/2766963},
      url = {https://doi.org/10.1145/2766963},
      zblnumber = {1334.68267},
      }
  • [TW08a] Go to document N. S. Trudinger and X. Wang, "Boundary regularity for the Monge-Ampère and affine maximal surface equations," Ann. of Math. (2), vol. 167, iss. 3, pp. 993-1028, 2008.
    @ARTICLE{TW08a,
      author = {Trudinger, Neil S. and Wang, Xu-Jia},
      title = {Boundary regularity for the {M}onge-{A}mpère and affine maximal surface equations},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {167},
      year = {2008},
      number = {3},
      pages = {993--1028},
      issn = {0003-486X},
      mrclass = {35J96 (35B65 35J60 35J93 53A10)},
      mrnumber = {2415390},
      mrreviewer = {Ahmed Mohammed},
      doi = {10.4007/annals.2008.167.993},
      url = {https://doi.org/10.4007/annals.2008.167.993},
      zblnumber = {1176.35046},
      }
  • [U1] Go to document J. Urbas, "On the second boundary value problem for equations of Monge-Ampère type," J. Reine Angew. Math., vol. 487, pp. 115-124, 1997.
    @ARTICLE{U1,
      author = {Urbas, John},
      title = {On the second boundary value problem for equations of {M}onge-{A}mpère type},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {487},
      year = {1997},
      pages = {115--124},
      issn = {0075-4102},
      mrclass = {35J65},
      mrnumber = {1454261},
      mrreviewer = {Jia Xing Hong},
      doi = {10.1515/crll.1997.487.115},
      url = {https://doi.org/10.1515/crll.1997.487.115},
      zblnumber = {0880.35031},
      }
  • [V1] Go to document C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2003, vol. 58.
    @BOOK{V1,
      author = {Villani, Cédric},
      title = {Topics in Optimal Transportation},
      series = {Grad. Stud. Math.},
      volume = {58},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2003},
      pages = {xvi+370},
      isbn = {0-8218-3312-X},
      mrclass = {90-02 (28D05 35B65 35J60 49N90 49Q20 90B20)},
      mrnumber = {1964483},
      doi = {10.1090/gsm/058},
      url = {https://doi.org/10.1090/gsm/058},
      zblnumber = {1106.90001},
      }
  • [V2] Go to document C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009.
    @BOOK{V2,
      author = {Villani, Cédric},
      title = {Optimal Transport, Old and New},
      series = {Grundlehren Math. Wissen.},
      note = {},
      publisher = {Springer-Verlag, Berlin},
      year = {2009},
      pages = {xxii+973},
      isbn = {978-3-540-71049-3},
      mrclass = {49-02 (28A75 37J50 49Q20 53C23 58E30)},
      mrnumber = {2459454},
      mrreviewer = {Dario Cordero-Erausquin},
      doi = {10.1007/978-3-540-71050-9},
      url = {https://doi.org/10.1007/978-3-540-71050-9},
      zblnumber = {1156.53003},
      }

Authors

Shibing Chen

School of Mathematical Sciences, University of Science and Technology of China, Hefei, P.R. China

Jiakun Liu

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia

Xu-Jia Wang

Centre for Mathematics and Its Application, The Australian National University, Canberra, Australia