Abstract
It has been known since work of Lichtenstein and Gunther in the 1920s that the 3D incompressible Euler equation is locally well-posed in the class of velocity fields with Hölder continuous gradient and suitable decay at infinity. It is shown here that these local solutions can develop singularities in finite time, even for some of the simplest three-dimensional flows.
-
[AHK]
H. Abidi, T. Hmidi, and S. Keraani, "On the global well-posedness for the axisymmetric Euler equations," Math. Ann., vol. 347, iss. 1, pp. 15-41, 2010.
@ARTICLE{AHK,
author = {Abidi, Hammadi and Hmidi, Taoufik and Keraani, Sahbi},
title = {On the global well-posedness for the axisymmetric {E}uler equations},
journal = {Math. Ann.},
fjournal = {Mathematische Annalen},
volume = {347},
year = {2010},
number = {1},
pages = {15--41},
issn = {0025-5831},
mrclass = {35Q35 (76B03)},
mrnumber = {2593281},
mrreviewer = {Boris Ettinger},
doi = {10.1007/s00208-009-0425-6},
url = {https://doi.org/10.1007/s00208-009-0425-6},
zblnumber = {1398.35159},
} -
[BardosTitiReview]
K. Bardos and È. S. Titi, "Euler equations for an ideal incompressible fluid," Uspekhi Mat. Nauk, vol. 62, iss. 3(375), pp. 5-46, 2007.
@ARTICLE{BardosTitiReview,
author = {Bardos, K. and Titi, È. S.},
title = {Euler equations for an ideal incompressible fluid},
journal = {Uspekhi Mat. Nauk},
fjournal = {Uspekhi Matematicheskikh Nauk},
volume = {62},
year = {2007},
number = {3(375)},
pages = {5--46},
issn = {0042-1316},
mrclass = {76B03 (35Q35 76E30 76F02)},
mrnumber = {2355417},
doi = {10.1070/RM2007v062n03ABEH004410},
url = {https://doi.org/10.1070/RM2007v062n03ABEH004410},
zblnumber = {},
} -
[BKM]
J. T. Beale, T. Kato, and A. Majda, "Remarks on the breakdown of smooth solutions for the $3$-D Euler equations," Comm. Math. Phys., vol. 94, iss. 1, pp. 61-66, 1984.
@ARTICLE{BKM,
author = {Beale, J. T. and Kato, T. and Majda, A.},
title = {Remarks on the breakdown of smooth solutions for the {$3$}-{D} {E}uler equations},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {94},
year = {1984},
number = {1},
pages = {61--66},
issn = {0010-3616},
mrclass = {35Q10 (76F99)},
mrnumber = {0763762},
doi = {10.1007/BF01212349},
url = {https://doi.org/10.1007/BF01212349},
zblnumber = {0573.76029},
} -
[BVReview]
T. Buckmaster and V. Vicol, "Convex integration and phenomenologies in turbulence," EMS Surv. Math. Sci., vol. 6, iss. 1-2, pp. 173-263, 2019.
@ARTICLE{BVReview,
author = {Buckmaster, Tristan and Vicol, Vlad},
title = {Convex integration and phenomenologies in turbulence},
journal = {EMS Surv. Math. Sci.},
fjournal = {EMS Surveys in Mathematical Sciences},
volume = {6},
year = {2019},
number = {1-2},
pages = {173--263},
issn = {2308-2151},
mrclass = {35Q35 (35-02 35Q30 35Q31 76B03 76D03)},
mrnumber = {4073888},
mrreviewer = {Maria Specovius-Neugebauer},
doi = {10.4171/emss/34},
url = {https://doi.org/10.4171/emss/34},
zblnumber = {1440.35231},
} -
[Chae2007]
D. Chae, "Nonexistence of self-similar singularities for the 3D incompressible Euler equations," Comm. Math. Phys., vol. 273, iss. 1, pp. 203-215, 2007.
@ARTICLE{Chae2007,
author = {Chae, Dongho},
title = {Nonexistence of self-similar singularities for the 3{D} incompressible {E}uler equations},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {273},
year = {2007},
number = {1},
pages = {203--215},
issn = {0010-3616},
mrclass = {35Q35 (35B40 76B03)},
mrnumber = {2308755},
mrreviewer = {Paolo Secchi},
doi = {10.1007/s00220-007-0249-8},
url = {https://doi.org/10.1007/s00220-007-0249-8},
zblnumber = {1157.35079},
} -
[ChaeShv]
D. Chae and R. Shvydkoy, "On formation of a locally self-similar collapse in the incompressible Euler equations," Arch. Ration. Mech. Anal., vol. 209, iss. 3, pp. 999-1017, 2013.
@ARTICLE{ChaeShv,
author = {Chae, Dongho and Shvydkoy, Roman},
title = {On formation of a locally self-similar collapse in the incompressible {E}uler equations},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {209},
year = {2013},
number = {3},
pages = {999--1017},
issn = {0003-9527},
mrclass = {35Q31 (35B44 35C06 35Q30 76B03)},
mrnumber = {3067830},
mrreviewer = {Zhaoyin Xiang},
doi = {10.1007/s00205-013-0630-z},
url = {https://doi.org/10.1007/s00205-013-0630-z},
zblnumber = {1285.35070},
} -
[Choi2017]
K. Choi, T. Y. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao, "On the finite-time blowup of a one-dimensional model for the three-dimensional axisymmetric Euler equations," Comm. Pure Appl. Math., vol. 70, iss. 11, pp. 2218-2243, 2017.
@ARTICLE{Choi2017,
author = {Choi, Kyudong and Hou, Thomas Y. and Kiselev, Alexander and Luo, Guo and Sverak, Vladimir and Yao, Yao},
title = {On the finite-time blowup of a one-dimensional model for the three-dimensional axisymmetric {E}uler equations},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {70},
year = {2017},
number = {11},
pages = {2218--2243},
issn = {0010-3640},
mrclass = {35Q31 (35B44 76B03)},
mrnumber = {3707493},
mrreviewer = {Francesco Fanelli},
doi = {10.1002/cpa.21697},
url = {https://doi.org/10.1002/cpa.21697},
zblnumber = {1377.35218},
} -
[ConstantinReview]
P. Constantin, "On the Euler equations of incompressible fluids," Bull. Amer. Math. Soc. (N.S.), vol. 44, iss. 4, pp. 603-621, 2007.
@ARTICLE{ConstantinReview,
author = {Constantin, Peter},
title = {On the {E}uler equations of incompressible fluids},
journal = {Bull. Amer. Math. Soc. (N.S.)},
fjournal = {American Mathematical Society. Bulletin. New Series},
volume = {44},
year = {2007},
number = {4},
pages = {603--621},
issn = {0273-0979},
mrclass = {76B03 (35Q35 76E99 76F02)},
mrnumber = {2338368},
mrreviewer = {Dongho Chae},
doi = {10.1090/S0273-0979-07-01184-6},
url = {https://doi.org/10.1090/S0273-0979-07-01184-6},
zblnumber = {1132.76009},
} -
[CLM]
P. Constantin, P. D. Lax, and A. Majda, "A simple one-dimensional model for the three-dimensional vorticity equation," Comm. Pure Appl. Math., vol. 38, iss. 6, pp. 715-724, 1985.
@ARTICLE{CLM,
author = {Constantin, Peter and Lax, P. D. and Majda, A.},
title = {A simple one-dimensional model for the three-dimensional vorticity equation},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {38},
year = {1985},
number = {6},
pages = {715--724},
issn = {0010-3640},
mrclass = {76C05 (35Q99)},
mrnumber = {0812343},
mrreviewer = {W. O. Criminale, Jr.},
doi = {10.1002/cpa.3160380605},
url = {https://doi.org/10.1002/cpa.3160380605},
zblnumber = {0615.76029},
} -
[ConstantinSun]
P. Constantin and W. Sun, "Remarks on Oldroyd-B and related complex fluid models," Commun. Math. Sci., vol. 10, iss. 1, pp. 33-73, 2012.
@ARTICLE{ConstantinSun,
author = {Constantin, Peter and Sun, Weiran},
title = {Remarks on {O}ldroyd-{B} and related complex fluid models},
journal = {Commun. Math. Sci.},
fjournal = {Communications in Mathematical Sciences},
volume = {10},
year = {2012},
number = {1},
pages = {33--73},
issn = {1539-6746},
mrclass = {35Q31 (35A01 35B44 35B65 35Q30)},
mrnumber = {2901300},
mrreviewer = {Joel David Avrin},
doi = {10.4310/CMS.2012.v10.n1.a3},
url = {https://doi.org/10.4310/CMS.2012.v10.n1.a3},
zblnumber = {1291.35201},
} -
[Con]
P. Constantin, "The Euler equations and nonlocal conservative Riccati equations," Internat. Math. Res. Notices, iss. 9, pp. 455-465, 2000.
@ARTICLE{Con,
author = {Constantin, Peter},
title = {The {E}uler equations and nonlocal conservative {R}iccati equations},
journal = {Internat. Math. Res. Notices},
fjournal = {International Mathematics Research Notices},
year = {2000},
number = {9},
pages = {455--465},
issn = {1073-7928},
mrclass = {76B03 (35Q35)},
mrnumber = {1756944},
mrreviewer = {J. Thomas Beale},
doi = {10.1155/S1073792800000258},
url = {https://doi.org/10.1155/S1073792800000258},
zblnumber = {0970.76017},
} -
[CFM96]
P. Constantin, C. Fefferman, and A. J. Majda, "Geometric constraints on potentially singular solutions for the $3$-D Euler equations," Comm. Partial Differential Equations, vol. 21, iss. 3-4, pp. 559-571, 1996.
@ARTICLE{CFM96,
author = {Constantin, Peter and Fefferman, Charles and Majda, Andrew J.},
title = {Geometric constraints on potentially singular solutions for the {$3$}-{D} {E}uler equations},
journal = {Comm. Partial Differential Equations},
fjournal = {Communications in Partial Differential Equations},
volume = {21},
year = {1996},
number = {3-4},
pages = {559--571},
issn = {0360-5302},
mrclass = {35Q30 (76C05)},
mrnumber = {1387460},
mrreviewer = {Rodolfo Salvi},
doi = {10.1080/03605309608821197},
url = {https://doi.org/10.1080/03605309608821197},
zblnumber = {0853.35091},
} -
[Danchin]
R. Danchin, "Axisymmetric incompressible flows with bounded vorticity," Uspekhi Mat. Nauk, vol. 62, iss. 3(375), pp. 73-94, 2007.
@ARTICLE{Danchin,
author = {Danchin, R.},
title = {Axisymmetric incompressible flows with bounded vorticity},
journal = {Uspekhi Mat. Nauk},
fjournal = {Uspekhi Matematicheskikh Nauk},
volume = {62},
year = {2007},
number = {3(375)},
pages = {73--94},
issn = {0042-1316},
mrclass = {76D03 (35Q35)},
mrnumber = {2355419},
mrreviewer = {Marek Capiński},
doi = {10.1070/RM2007v062n03ABEH004412},
url = {https://doi.org/10.1070/RM2007v062n03ABEH004412},
zblnumber = {1139.76011},
} -
[DSReview]
C. De Lellis and L. Székelyhidi Jr., "On turbulence and geometry: from Nash to Onsager," Notices of the American Mathematical Society, vol. 66, iss. 5, pp. 677-685, 2019.
@article {DSReview,
author = {De Lellis, Camillo and Székelyhidi, Jr., L\'{a}szló},
title = {On turbulence and geometry: from {N}ash to {O}nsager},
journal = {Notices Amer. Math. Soc.},
journal = {Notices of the American Mathematical Society},
volume = {66},
year = {2019},
number = {5},
pages = {677--685},
issn = {0002-9920},
mrclass = {76Fxx (35Q30 58Z05)},
mrnumber = {3929468},
doi = {10.1090/noti1868},
url = {https://doi.org/10.1090/noti1868},
zblnumber = {1436.76009},
} -
[JianHouYu]
J. Deng, T. Y. Hou, and X. Yu, "Geometric properties and nonblowup of 3D incompressible Euler flow," Comm. Partial Differential Equations, vol. 30, iss. 1-3, pp. 225-243, 2005.
@ARTICLE{JianHouYu,
author = {Deng, Jian and Hou, Thomas Y. and Yu, Xinwei},
title = {Geometric properties and nonblowup of 3{D} incompressible {E}uler flow},
journal = {Comm. Partial Differential Equations},
fjournal = {Communications in Partial Differential Equations},
volume = {30},
year = {2005},
number = {1-3},
pages = {225--243},
issn = {0360-5302},
mrclass = {35Q35 (35L60 76B03)},
mrnumber = {2131052},
mrreviewer = {Paolo Secchi},
doi = {10.1081/PDE-200044488},
url = {https://doi.org/10.1081/PDE-200044488},
zblnumber = {1142.35549},
} -
[Denisov1]
S. A. Denisov, "Infinite superlinear growth of the gradient for the two-dimensional Euler equation," Discrete Contin. Dyn. Syst., vol. 23, iss. 3, pp. 755-764, 2009.
@ARTICLE{Denisov1,
author = {Denisov, Sergey A.},
title = {Infinite superlinear growth of the gradient for the two-dimensional {E}uler equation},
journal = {Discrete Contin. Dyn. Syst.},
fjournal = {Discrete and Continuous Dynamical Systems. Series A},
volume = {23},
year = {2009},
number = {3},
pages = {755--764},
issn = {1078-0947},
mrclass = {35Q35 (35B45 35L65 76B99 76F99)},
mrnumber = {2461825},
mrreviewer = {Chao Cheng Huang},
doi = {10.3934/dcds.2009.23.755},
url = {https://doi.org/10.3934/dcds.2009.23.755},
zblnumber = {1156.76009},
} -
[Denisov2]
S. A. Denisov, "Double exponential growth of the vorticity gradient for the two-dimensional Euler equation," Proc. Amer. Math. Soc., vol. 143, iss. 3, pp. 1199-1210, 2015.
@ARTICLE{Denisov2,
author = {Denisov, Sergey A.},
title = {Double exponential growth of the vorticity gradient for the two-dimensional {E}uler equation},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the American Mathematical Society},
volume = {143},
year = {2015},
number = {3},
pages = {1199--1210},
issn = {0002-9939},
mrclass = {35Q31 (35B45 76B47)},
mrnumber = {3293735},
mrreviewer = {Francesco Fanelli},
doi = {10.1090/S0002-9939-2014-12286-6},
url = {https://doi.org/10.1090/S0002-9939-2014-12286-6},
zblnumber = {1315.35150},
} -
[TDo]
T. Do, "On vorticity gradient growth for the axisymmetric 3D Euler equations without swirl," Arch. Ration. Mech. Anal., vol. 234, iss. 1, pp. 181-209, 2019.
@ARTICLE{TDo,
author = {Do, Tam},
title = {On vorticity gradient growth for the axisymmetric 3{D} {E}uler equations without swirl},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {234},
year = {2019},
number = {1},
pages = {181--209},
issn = {0003-9527},
mrclass = {35Q31 (76B03)},
mrnumber = {3981396},
mrreviewer = {Francesco Fanelli},
doi = {10.1007/s00205-019-01388-3},
url = {https://doi.org/10.1007/s00205-019-01388-3},
zblnumber = {1444.76024},
} -
[EGM3dE] T. M. Elgindi, T. Ghoul, and N. Masmoudi, On the stability of self-similar blow-up for ${C}^{1,\alpha}$ solutions to the incompressible Euler equations on $\mathbb{R}^3$, 2019.
@MISC{EGM3dE,
author = {Elgindi, Tarek M. and Ghoul, Tej-Eddine and Masmoudi, Nader},
title = {On the stability of self-similar blow-up for ${C}^{1,\alpha}$ solutions to the incompressible {E}uler equations on {$\mathbb{R}^3$}},
year = {2019},
note = {preprint},
} -
[EGM]
T. M. Elgindi, T. Ghoul, and N. Masmoudi, "Stable self-similar blow-up for a family of nonlocal transport equations," Anal. PDE, vol. 14, iss. 3, pp. 891-908, 2021.
@ARTICLE{EGM,
author = {Elgindi, Tarek M. and Ghoul, Tej-Eddine and Masmoudi, Nader},
title = {Stable self-similar blow-up for a family of nonlocal transport equations},
journal = {Anal. PDE},
fjournal = {Analysis \& PDE},
volume = {14},
year = {2021},
number = {3},
pages = {891--908},
issn = {2157-5045},
mrclass = {35Q31 (35Q35)},
mrnumber = {4259877},
doi = {10.2140/apde.2021.14.891},
url = {https://doi.org/10.2140/apde.2021.14.891},
zblnumber = {07365585},
} -
[EJB]
T. M. Elgindi and I. Jeong, "Finite-time singularity formation for strong solutions to the Boussinesq system," Ann. PDE, vol. 6, iss. 1, p. 5, 2020.
@ARTICLE{EJB,
author = {Elgindi, Tarek M. and Jeong, In-Jee},
title = {Finite-time singularity formation for strong solutions to the {B}oussinesq system},
journal = {Ann. PDE},
fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
volume = {6},
year = {2020},
number = {1},
pages = {Paper No. 5, 50},
issn = {2524-5317},
mrclass = {76B03 (35B30 35B44 35D35 35L65 35Q35)},
mrnumber = {4098032},
mrreviewer = {Hee Chul Pak},
doi = {10.1007/s40818-020-00080-0},
url = {https://doi.org/10.1007/s40818-020-00080-0},
zblnumber = {1462.35287},
} -
[EJVP] T. M. Elgindi and I. Jeong, On singular vortex patches, I: Well-posedness issues, 2019.
@MISC{EJVP,
author = {Elgindi, Tarek M. and Jeong, In-Jee},
title = {On singular vortex patches, {I}: Well-posedness issues},
note = {preprint},
arxiv = {1903.00833},
year = {2019},
} -
[EJDG]
T. M. Elgindi and I. Jeong, "On the effects of advection and vortex stretching," Arch. Ration. Mech. Anal., vol. 235, iss. 3, pp. 1763-1817, 2020.
@ARTICLE{EJDG,
author = {Elgindi, Tarek M. and Jeong, In-Jee},
title = {On the effects of advection and vortex stretching},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {235},
year = {2020},
number = {3},
pages = {1763--1817},
issn = {0003-9527},
mrclass = {76B47 (35Q35 76B03)},
mrnumber = {4065651},
doi = {10.1007/s00205-019-01455-9},
url = {https://doi.org/10.1007/s00205-019-01455-9},
zblnumber = {1434.35091},
} -
[E1] T. M. Elgindi, Remarks on functions with bounded Laplacian, 2016.
@MISC{E1,
author = {Elgindi, Tarek M.},
title = {Remarks on functions with bounded {L}aplacian},
arxiv = {1605.05266},
year = {2016},
zblnumber = {},
} -
[EJE]
T. M. Elgindi and I. Jeong, "Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations," Ann. PDE, vol. 5, iss. 2, p. 16, 2019.
@ARTICLE{EJE,
author = {Elgindi, Tarek M. and Jeong, In-Jee},
title = {Finite-time singularity formation for strong solutions to the axi-symmetric 3{D} {E}uler equations},
journal = {Ann. PDE},
fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
volume = {5},
year = {2019},
number = {2},
pages = {Paper No. 16, 51},
issn = {2524-5317},
mrclass = {35Q31 (35D35)},
mrnumber = {4029562},
mrreviewer = {Simon Schulz},
doi = {10.1007/s40818-019-0071-6},
url = {https://doi.org/10.1007/s40818-019-0071-6},
zblnumber = {1436.35055},
} -
[EM1]
T. M. Elgindi and N. Masmoudi, "$L^\infty$ ill-posedness for a class of equations arising in hydrodynamics," Arch. Ration. Mech. Anal., vol. 235, iss. 3, pp. 1979-2025, 2020.
@ARTICLE{EM1,
author = {Elgindi, Tarek M. and Masmoudi, Nader},
title = {{$L^\infty$} ill-posedness for a class of equations arising in hydrodynamics},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {235},
year = {2020},
number = {3},
pages = {1979--2025},
issn = {0003-9527},
mrclass = {76B03 (35Q35)},
mrnumber = {4065655},
mrreviewer = {Francesco Fanelli},
doi = {10.1007/s00205-019-01457-7},
url = {https://doi.org/10.1007/s00205-019-01457-7},
zblnumber = {07170065},
} -
[Gibbon2008]
J. D. Gibbon, "The three-dimensional Euler equations: where do we stand?," Phys. D, vol. 237, iss. 14-17, pp. 1894-1904, 2008.
@ARTICLE{Gibbon2008,
author = {Gibbon, J. D.},
title = {The three-dimensional {E}uler equations: where do we stand?},
journal = {Phys. D},
fjournal = {Physica D. Nonlinear Phenomena},
volume = {237},
year = {2008},
number = {14-17},
pages = {1894--1904},
issn = {0167-2789},
mrclass = {76B03 (35Q35)},
mrnumber = {2449772},
doi = {10.1016/j.physd.2007.10.014},
url = {https://doi.org/10.1016/j.physd.2007.10.014},
zblnumber = {1143.76389},
} -
[GMS]
J. D. Gibbon, D. R. Moore, and J. T. Stuart, "Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations," Nonlinearity, vol. 16, iss. 5, pp. 1823-1831, 2003.
@ARTICLE{GMS,
author = {Gibbon, J. D. and Moore, D. R. and Stuart, J. T.},
title = {Exact, infinite energy, blow-up solutions of the three-dimensional {E}uler equations},
journal = {Nonlinearity},
fjournal = {Nonlinearity},
volume = {16},
year = {2003},
number = {5},
pages = {1823--1831},
issn = {0951-7715},
mrclass = {35Q35 (35B40 35C05 76B03 76F02)},
mrnumber = {1999581},
mrreviewer = {Ning Su},
doi = {10.1088/0951-7715/16/5/315},
url = {https://doi.org/10.1088/0951-7715/16/5/315},
zblnumber = {1040.35069},
} -
[problems] L. Grafakos, D. e Silva, M. Pramanik, A. Seeger, and B. Stovall, Some problems in harmonic analysis, 2017.
@MISC{problems,
author = {Grafakos, Loukas and e~Silva, Diogo~Oliveira and Pramanik, Malabika and Seeger, Andreas and Stovall, Betsy},
title = { Some problems in harmonic analysis},
arxiv = {1701.06637},
year = {2017},
zblnumber = {},
} -
[Gunther] N. Gunther, "On the motion of fluid in a moving container," Izvestia Akad. Nauk USSR, Ser. Fiz.–Mat., vol. 20, pp. 1323-1348, 1927.
@ARTICLE{Gunther,
author = {Gunther, N.},
title = {On the motion of fluid in a moving container},
journal = {Izvestia Akad. Nauk USSR, Ser. Fiz.--Mat.},
volume = {20},
pages = {1323--1348},
year = {1927},
jfmnumber = {53.0786.08},
} -
[HouLei]
T. Y. Hou and Z. Lei, "On the stabilizing effect of convection in three-dimensional incompressible flows," Comm. Pure Appl. Math., vol. 62, iss. 4, pp. 501-564, 2009.
@ARTICLE{HouLei,
author = {Hou, Thomas Y. and Lei, Zhen},
title = {On the stabilizing effect of convection in three-dimensional incompressible flows},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {62},
year = {2009},
number = {4},
pages = {501--564},
issn = {0010-3640},
mrclass = {35Q30 (35B35 35Q31 76E06)},
mrnumber = {2492706},
mrreviewer = {José Luiz Boldrini},
doi = {10.1002/cpa.20254},
url = {https://doi.org/10.1002/cpa.20254},
zblnumber = {1171.35095},
} -
[JSS]
H. Jia, S. Stewart, and V. Sverak, "On the De Gregorio modification of the Constantin-Lax-Majda model," Arch. Ration. Mech. Anal., vol. 231, iss. 2, pp. 1269-1304, 2019.
@ARTICLE{JSS,
author = {Jia, H. and Stewart, S. and Sverak, V.},
title = {On the {D}e {G}regorio modification of the {C}onstantin-{L}ax-{M}ajda model},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {231},
year = {2019},
number = {2},
pages = {1269--1304},
issn = {0003-9527},
mrclass = {35Q35},
mrnumber = {3900823},
mrreviewer = {Alberto Valli},
doi = {10.1007/s00205-018-1298-1},
url = {https://doi.org/10.1007/s00205-018-1298-1},
zblnumber = {1408.35152},
} -
[KatoPonce]
T. Kato and G. Ponce, "Commutator estimates and the Euler and Navier-Stokes equations," Comm. Pure Appl. Math., vol. 41, iss. 7, pp. 891-907, 1988.
@ARTICLE{KatoPonce,
author = {Kato, Tosio and Ponce, Gustavo},
title = {Commutator estimates and the {E}uler and {N}avier-{S}tokes equations},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {41},
year = {1988},
number = {7},
pages = {891--907},
issn = {0010-3640},
mrclass = {35Q10 (47F05 76D05)},
mrnumber = {0951744},
mrreviewer = {Josef Bemelmans},
doi = {10.1002/cpa.3160410704},
url = {https://doi.org/10.1002/cpa.3160410704},
zblnumber = {0671.35066},
} -
[Kato86] T. Kato, "Remarks on the Euler and Navier-Stokes equations in ${\bf R}^2$," in Nonlinear Functional Analysis and its Applications, Part 2, Amer. Math. Soc., Providence, RI, 1986, vol. 45, pp. 1-7.
@INCOLLECTION{Kato86,
author = {Kato, Tosio},
title = {Remarks on the {E}uler and {N}avier-{S}tokes equations in {${\bf R}^2$}},
booktitle = {Nonlinear Functional Analysis and its Applications, {P}art 2},
venue = {{B}erkeley, {C}alif., 1983},
series = {Proc. Sympos. Pure Math.},
volume = {45},
pages = {1--7},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1986},
mrclass = {35Q10 (76D05)},
mrnumber = {0843590},
mrreviewer = {L. Hsiao},
zblnumber = {0598.35093},
} -
[Ker1]
R. M. Kerr, "Evidence for a singularity of the three-dimensional, incompressible Euler equations," in Topological Aspects of the Dynamics of Fluids and Plasmas (Santa Barbara, CA, 1991), Kluwer Acad. Publ., Dordrecht, 1992, vol. 218, pp. 309-336.
@INCOLLECTION{Ker1,
author = {Kerr, R. M.},
title = {Evidence for a singularity of the three-dimensional, incompressible {E}uler equations},
booktitle = {Topological {A}spects of the {D}ynamics of {F}luids and {P}lasmas ({S}anta {B}arbara, {CA},
1991)},
series = {NATO Adv. Sci. Inst. Ser. E: Appl. Sci.},
volume = {218},
pages = {309--336},
publisher = {Kluwer Acad. Publ., Dordrecht},
year = {1992},
mrclass = {76C05 (76M25)},
mrnumber = {1232240},
doi = {10.1007/978-94-017-3550-6_18},
url = {https://doi.org/10.1007/978-94-017-3550-6_18},
zblnumber = {0800.76081},
} -
[Ker2]
R. M. Kerr, "Evidence for a singularity of the three-dimensional, incompressible Euler equations," Phys. Fluids A, vol. 5, iss. 7, pp. 1725-1746, 1993.
@ARTICLE{Ker2,
author = {Kerr, Robert M.},
title = {Evidence for a singularity of the three-dimensional, incompressible {E}uler equations},
journal = {Phys. Fluids A},
fjournal = {Physics of Fluids A. Fluid Dynamics},
volume = {5},
year = {1993},
number = {7},
pages = {1725--1746},
issn = {0899-8213},
mrclass = {76C05 (76D99 76M25)},
mrnumber = {1223050},
doi = {10.1063/1.858849},
url = {https://doi.org/10.1063/1.858849},
zblnumber = {0800.76083},
} -
[KiselevReview] A. Kiselev, Small scales and singularity formation in fluid dynamics, 2018.
@MISC{KiselevReview,
author = {Kiselev, Alexander},
title = {Small scales and singularity formation in fluid dynamics},
arxiv = {1807.00184},
year = {2018},
} -
[KRYZ]
A. Kiselev, L. Ryzhik, Y. Yao, and A. Zlatovs, "Finite time singularity for the modified SQG patch equation," Ann. of Math. (2), vol. 184, iss. 3, pp. 909-948, 2016.
@ARTICLE{KRYZ,
author = {Kiselev, Alexander and Ryzhik, Lenya and Yao, Yao and Zlatoš,
Andrej},
title = {Finite time singularity for the modified {SQG} patch equation},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {184},
year = {2016},
number = {3},
pages = {909--948},
issn = {0003-486X},
mrclass = {35Q86 (35B65 35Q31 76B03)},
mrnumber = {3549626},
mrreviewer = {Gabriela Planas},
doi = {10.4007/annals.2016.184.3.7},
url = {https://doi.org/10.4007/annals.2016.184.3.7},
zblnumber = {1360.35159},
} -
[KS]
A. Kiselev and V. vSverák, "Small scale creation for solutions of the incompressible two-dimensional Euler equation," Ann. of Math. (2), vol. 180, iss. 3, pp. 1205-1220, 2014.
@ARTICLE{KS,
author = {Kiselev, Alexander and Šver\'{a}k, Vladimir},
title = {Small scale creation for solutions of the incompressible two-dimensional {E}uler equation},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {180},
year = {2014},
number = {3},
pages = {1205--1220},
issn = {0003-486X},
mrclass = {35Q31 (35B45 76B03)},
mrnumber = {3245016},
mrreviewer = {Paolo Secchi},
doi = {10.4007/annals.2014.180.3.9},
url = {https://doi.org/10.4007/annals.2014.180.3.9},
zblnumber = {1304.35521},
} -
[LPTW]
A. Larios, M. R. Petersen, E. S. Titi, and B. Wingate, "A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization," Theor. Comput. Fluid Dyn., vol. 32, iss. 1, pp. 23-34, 2018.
@ARTICLE{LPTW,
author = {Larios, Adam and Petersen, Mark R. and Titi, Edriss S. and Wingate, Beth},
title = {A computational investigation of the finite-time blow-up of the 3{D} incompressible {E}uler equations based on the {V}oigt regularization},
journal = {Theor. Comput. Fluid Dyn.},
fjournal = {Theoretical and Computational Fluid Dynamics},
volume = {32},
year = {2018},
number = {1},
pages = {23--34},
issn = {0935-4964},
mrclass = {76B03 (35B44 35Q30 65M70)},
mrnumber = {3928694},
mrreviewer = {Yanguang (Charles) Li},
doi = {10.1007/s00162-017-0434-0},
url = {https://doi.org/10.1007/s00162-017-0434-0},
zblnumber = {},
} -
[LariosTiti]
A. Larios and E. S. Titi, "Global regularity versus finite-time singularities: some paradigms on the effect of boundary conditions and certain perturbations," in Recent Progress in the Theory of the Euler and Navier-Stokes Equations, Cambridge Univ. Press, Cambridge, 2016, vol. 430, pp. 96-125.
@INCOLLECTION{LariosTiti,
author = {Larios, Adam and Titi, Edriss S.},
title = {Global regularity versus finite-time singularities: some paradigms on the effect of boundary conditions and certain perturbations},
booktitle = {Recent Progress in the Theory of the {E}uler and {N}avier-{S}tokes Equations},
series = {London Math. Soc. Lecture Note Ser.},
volume = {430},
pages = {96--125},
publisher = {Cambridge Univ. Press, Cambridge},
year = {2016},
mrclass = {35Q53 (35B65 76B03 76D03)},
mrnumber = {3497689},
zblnumber = {1408.35166},
doi = {10.1017/CBO9781316407103.007},
url = {https://doi.org/10.1017/CBO9781316407103.007}
} -
[LeiLiuRen]
Z. Lei, J. Liu, and X. Ren, "On the Constantin-Lax-Majda model with convection," Comm. Math. Phys., vol. 375, iss. 1, pp. 765-783, 2020.
@ARTICLE{LeiLiuRen,
author = {Lei, Zhen and Liu, Jie and Ren, Xiao},
title = {On the {C}onstantin-{L}ax-{M}ajda model with convection},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {375},
year = {2020},
number = {1},
pages = {765--783},
issn = {0010-3616},
mrclass = {35Q35 (35Q31)},
mrnumber = {4082178},
mrreviewer = {Matthew R. I. Schrecker},
doi = {10.1007/s00220-019-03584-4},
url = {https://doi.org/10.1007/s00220-019-03584-4},
zblnumber = {1439.35402},
} -
[Lich25]
L. Lichtenstein, "Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze," Math. Z., vol. 23, iss. 1, pp. 89-154, 1925.
@ARTICLE{Lich25,
author = {Lichtenstein, Leon},
title = {Über einige {E}xistenzprobleme der {H}ydrodynamik homogener, unzusammendrückbarer, reibungsloser {F}lüssigkeiten und die {H}elmholtzschen {W}irbelsätze},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {23},
year = {1925},
number = {1},
pages = {89--154},
issn = {0025-5874},
mrclass = {DML},
mrnumber = {1544733},
doi = {10.1007/BF01506223},
url = {https://doi.org/10.1007/BF01506223},
jfmnumber = {51.0658.01},
} -
[HL]
G. Luo and T. Y. Hou, "Potentially singular solutions of the 3D axisymmetric Euler equations," Proc. Nat. Acad. Sci., vol. 111, iss. 36, pp. 12968-12973, 2014.
@ARTICLE{HL,
author = {Luo, Guo and Hou, Thomas Y.},
title = {Potentially singular solutions of the 3{D} axisymmetric {E}uler equations},
journal = {Proc. Nat. Acad. Sci.},
volume = {111},
number = {36},
pages = {12968--12973},
year = {2014},
doi = {10.1073/pnas.1405238111},
url = {https://doi.org/10.1073/pnas.1405238111},
zblnumber = {1431.35115},
} -
[HouLuo]
G. Luo and T. Y. Hou, "Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation," Multiscale Model. Simul., vol. 12, iss. 4, pp. 1722-1776, 2014.
@ARTICLE{HouLuo,
author = {Luo, Guo and Hou, Thomas Y.},
title = {Toward the finite-time blowup of the 3{D} axisymmetric {E}uler equations: a numerical investigation},
journal = {Multiscale Model. Simul.},
fjournal = {Multiscale Modeling \& Simulation. A SIAM Interdisciplinary Journal},
volume = {12},
year = {2014},
number = {4},
pages = {1722--1776},
issn = {1540-3459},
mrclass = {35Q31 (35B44 65M20 65M60 76B03)},
mrnumber = {3278833},
doi = {10.1137/140966411},
url = {https://doi.org/10.1137/140966411},
zblnumber = {1316.35235},
} -
[MB]
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, Cambridge, 2002, vol. 27.
@BOOK{MB,
author = {Majda, Andrew J. and Bertozzi, Andrea L.},
title = {Vorticity and Incompressible Flow},
series = {Cambridge Texts Appl. Math.},
volume = {27},
publisher = {Cambridge Univ. Press, Cambridge},
year = {2002},
pages = {xii+545},
isbn = {0-521-63057-6; 0-521-63948-4},
mrclass = {76-02 (35Q30 35Q35 76B03 76D03 76D05)},
mrnumber = {1867882},
mrreviewer = {Yuxi Zheng},
doi = {10.1017/CBO9780511613203},
url = {https://doi.org/10.1017/CBO9780511613203},
zblnumber = {0983.76001},
} -
[N]
N. S. Nadirashvili, "Wandering solutions of the two-dimensional Euler equation," Funktsional. Anal. i Prilozhen., vol. 25, iss. 3, pp. 70-71, 1991.
@ARTICLE{N,
author = {Nadirashvili, N. S.},
title = {Wandering solutions of the two-dimensional {E}uler equation},
journal = {Funktsional. Anal. i Prilozhen.},
fjournal = {Akademiya Nauk SSSR. Funktsional\cprime nyĭ Analiz i ego Prilozheniya},
volume = {25},
year = {1991},
number = {3},
pages = {70--71},
issn = {0374-1990},
mrclass = {35Q30},
mrnumber = {1139875},
doi = {10.1007/BF01085491},
url = {https://doi.org/10.1007/BF01085491},
zblnumber = {0769.35048},
} -
[NRS96]
J. Necas, M. Ruzicka, and V. Sverák, "On Leray’s self-similar solutions of the Navier-Stokes equations," Acta Math., vol. 176, iss. 2, pp. 283-294, 1996.
@ARTICLE{NRS96,
author = {Necas, J. and Ruzicka, M. and Sver{á}k, V.},
title = {On {L}eray's self-similar solutions of the {N}avier-{S}tokes equations},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {176},
year = {1996},
number = {2},
pages = {283--294},
issn = {0001-5962},
mrclass = {35Q30 (35D05 76D05)},
mrnumber = {1397564},
mrreviewer = {Michael Wiegner},
doi = {10.1007/BF02551584},
url = {https://doi.org/10.1007/BF02551584},
zblnumber = {0884.35115},
} -
[SaintRaymond]
X. Saint Raymond, "Remarks on axisymmetric solutions of the incompressible Euler system," Comm. Partial Differential Equations, vol. 19, iss. 1-2, pp. 321-334, 1994.
@ARTICLE{SaintRaymond,
author = {Saint Raymond, X.},
title = {Remarks on axisymmetric solutions of the incompressible {E}uler system},
journal = {Comm. Partial Differential Equations},
fjournal = {Communications in Partial Differential Equations},
volume = {19},
year = {1994},
number = {1-2},
pages = {321--334},
issn = {0360-5302},
mrclass = {35Q35 (76C99)},
mrnumber = {1257007},
mrreviewer = {Paolo Secchi},
doi = {10.1080/03605309408821018},
url = {https://doi.org/10.1080/03605309408821018},
zblnumber = {0795.35063},
} -
[SarriaSaxton]
A. Sarria and R. Saxton, "Blow-up of solutions to the generalized inviscid Proudman–Johnson equation," J. Math. Fluid Mech., vol. 15, iss. 3, pp. 493-523, 2013.
@ARTICLE{SarriaSaxton,
author = {Sarria, Alejandro and Saxton, Ralph},
title = {Blow-up of solutions to the generalized inviscid {P}roudman--{J}ohnson equation},
journal = {J. Math. Fluid Mech.},
fjournal = {Journal of Mathematical Fluid Mechanics},
volume = {15},
year = {2013},
number = {3},
pages = {493--523},
issn = {1422-6928},
mrclass = {35Q53 (35B44 76B03)},
mrnumber = {3084321},
doi = {10.1007/s00021-012-0126-x},
url = {https://doi.org/10.1007/s00021-012-0126-x},
zblnumber = {1277.35077},
} -
[Serfati3D] P. Serfati, "Régularité stratifiée et équation d’Euler $3$D à temps grand," C. R. Acad. Sci. Paris Sér. I Math., vol. 318, iss. 10, pp. 925-928, 1994.
@ARTICLE{Serfati3D,
author = {Serfati, Philippe},
title = {Régularité stratifiée et équation d'{E}uler {$3$}{D} à temps grand},
journal = {C. R. Acad. Sci. Paris Sér. I Math.},
fjournal = {Comptes Rendus de l'Académie des Sciences. Série I. Mathématique},
volume = {318},
year = {1994},
number = {10},
pages = {925--928},
issn = {0764-4442},
mrclass = {35Q30 (35B65 76C99 76V05)},
mrnumber = {1278153},
mrreviewer = {Yoshikazu Giga},
zblnumber = {0805.76009},
} -
[ShirotaY]
T. Shirota and T. Yanagisawa, "Note on global existence for axially symmetric solutions of the Euler system," Proc. Japan Acad. Ser. A Math. Sci., vol. 70, iss. 10, pp. 299-304, 1994.
@ARTICLE{ShirotaY,
author = {Shirota, Taira and Yanagisawa, Taku},
title = {Note on global existence for axially symmetric solutions of the {E}uler system},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
fjournal = {Japan Academy. Proceedings. Series A. Mathematical Sciences},
volume = {70},
year = {1994},
number = {10},
pages = {299--304},
issn = {0386-2194},
mrclass = {35Q30 (76B99 76C99)},
mrnumber = {1313183},
mrreviewer = {Paolo Secchi},
doi = {10.3792/pjaa.70.299},
url = {https://doi.org/10.3792/pjaa.70.299},
zblnumber = {0831.35141},
} -
[Stuart1988] J. T. Stuart, "Nonlinear Euler partial differential equations: singularities in their solution," in Applied Mathematics, Fluid Mechanics, Astrophysics, World Sci. Publishing, Singapore, 1988, pp. 81-95.
@INCOLLECTION{Stuart1988,
author = {Stuart, J. T.},
title = {Nonlinear {E}uler partial differential equations: singularities in their solution},
booktitle = {Applied Mathematics, Fluid Mechanics, Astrophysics},
venue = {{C}ambridge, {MA},
1987},
pages = {81--95},
publisher = {World Sci. Publishing, Singapore},
year = {1988},
mrclass = {76F10 (76D10 76E30)},
mrnumber = {0973917},
zblnumber = {},
} -
[Tao2] T. Tao, "On the universality of the incompressible Euler equation on compact manifolds, II. Non-rigidity of Euler flows," Pure Appl. Funct. Anal., vol. 5, iss. 6, pp. 1425-1443, 2020.
@ARTICLE{Tao2,
author = {Tao, Terence},
title = {On the universality of the incompressible {E}uler equation on compact manifolds, {II}. {N}on-rigidity of {E}uler flows},
journal = {Pure Appl. Funct. Anal.},
fjournal = {Pure and Applied Functional Analysis},
volume = {5},
year = {2020},
number = {6},
pages = {1425--1443},
issn = {2189-3756},
mrclass = {35Q35 (37N10 58J90 76B99)},
mrnumber = {4196152},
zblnumber = {07356207},
} -
[TaoManifold]
T. Tao, "On the universality of the incompressible Euler equation on compact manifolds," Discrete Contin. Dyn. Syst., vol. 38, iss. 3, pp. 1553-1565, 2018.
@ARTICLE{TaoManifold,
author = {Tao, Terence},
title = {On the universality of the incompressible {E}uler equation on compact manifolds},
journal = {Discrete Contin. Dyn. Syst.},
fjournal = {Discrete and Continuous Dynamical Systems. Series A},
volume = {38},
year = {2018},
number = {3},
pages = {1553--1565},
issn = {1078-0947},
mrclass = {35Q31 (35R01 37N10 76B03)},
mrnumber = {3809006},
doi = {10.3934/dcds.2018064},
url = {https://doi.org/10.3934/dcds.2018064},
zblnumber = {1397.35193},
} -
[Tao2016]
T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE, vol. 2, iss. 2, p. 9, 2016.
@ARTICLE{Tao2016,
author = {Tao, Terence},
title = {Finite time blowup for {L}agrangian modifications of the three-dimensional {E}uler equation},
journal = {Ann. PDE},
fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
volume = {2},
year = {2016},
number = {2},
pages = {Art. 9, 79},
issn = {2524-5317},
mrclass = {35Q31 (35A01 35B40 35B44)},
mrnumber = {3595455},
mrreviewer = {Francesco Fanelli},
doi = {10.1007/s40818-016-0019-z},
url = {https://doi.org/10.1007/s40818-016-0019-z},
zblnumber = {1397.35181},
} -
[Tsai1998]
T. Tsai, "On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates," Arch. Rational Mech. Anal., vol. 143, iss. 1, pp. 29-51, 1998.
@ARTICLE{Tsai1998,
author = {Tsai, Tai-Peng},
title = {On {L}eray's self-similar solutions of the {N}avier-{S}tokes equations satisfying local energy estimates},
journal = {Arch. Rational Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {143},
year = {1998},
number = {1},
pages = {29--51},
issn = {0003-9527},
mrclass = {35Q30 (76D05)},
mrnumber = {1643650},
mrreviewer = {Alexander Yurjevich Chebotarev},
doi = {10.1007/s002050050099},
url = {https://doi.org/10.1007/s002050050099},
zblnumber = {0916.35084},
} -
[UY]
M. R. Ukhovskii and V. I. Iudovich, "Axially symmetric flows of ideal and viscous fluids filling the whole space," J. Appl. Math. Mech., vol. 32, pp. 52-61, 1968.
@ARTICLE{UY,
author = {Ukhovskii, M. R. and Iudovich, V. I.},
title = {Axially symmetric flows of ideal and viscous fluids filling the whole space},
journal = {J. Appl. Math. Mech.},
fjournal = {Journal of Applied Mathematics and Mechanics},
volume = {32},
year = {1968},
pages = {52--61},
issn = {0021-8928},
mrclass = {35.79 (76.00)},
mrnumber = {0239293},
mrreviewer = {W. F. Ames},
doi = {10.1016/0021-8928(68)90147-0},
url = {https://doi.org/10.1016/0021-8928(68)90147-0},
zblnumber = {},
} -
[YLoss]
V. I. Yudovich, "On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid," Chaos, vol. 10, iss. 3, pp. 705-719, 2000.
@ARTICLE{YLoss,
author = {Yudovich, V. I.},
title = {On the loss of smoothness of the solutions of the {E}uler equations and the inherent instability of flows of an ideal fluid},
journal = {Chaos},
fjournal = {Chaos. An Interdisciplinary Journal of Nonlinear Science},
volume = {10},
year = {2000},
number = {3},
pages = {705--719},
issn = {1054-1500},
mrclass = {76B03 (35Q35 37N10 76E99)},
mrnumber = {1791984},
doi = {10.1063/1.1287066},
url = {https://doi.org/10.1063/1.1287066},
zblnumber = {0982.76014},
} -
[Z]
A. Zlatovs, "Exponential growth of the vorticity gradient for the Euler equation on the torus," Adv. Math., vol. 268, pp. 396-403, 2015.
@ARTICLE{Z,
author = {Zlatoš,
Andrej},
title = {Exponential growth of the vorticity gradient for the {E}uler equation on the torus},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {268},
year = {2015},
pages = {396--403},
issn = {0001-8708},
mrclass = {35Q31 (58J99)},
mrnumber = {3276599},
mrreviewer = {Michele Coti Zelati},
doi = {10.1016/j.aim.2014.08.012},
url = {https://doi.org/10.1016/j.aim.2014.08.012},
zblnumber = {1308.35194},
}