On Zagier-Hoffman’s conjectures in positive characteristic

Abstract

We study Todd-Thakur’s analogues of Zagier-Hoffman’s conjectures in positive characteristic. These conjectures predict the dimension and an explicit basis $\mathcal{T}_w$ of the span of characteristic $p$ multiple zeta values of fixed weight $w$ which were introduced by Thakur as analogues of classical multiple zeta values of Euler.

In the present paper we first establish the algebraic part of these conjectures which states that the span of characteristic $p$ multiple zeta values of weight $w$ is generated by the set $\mathcal{T}_w$. As a consequence, we obtain upper bounds for the dimension. This is the analogue of Brown’s theorem and also those of Deligne-Goncharov and Terasoma.

We then prove two results towards the transcendental part of these conjectures. First, we establish the linear independence for a large subset of $\mathcal{T}_w$ and yield lower bounds for the dimension. Second, for small weights we prove the linear independence for the whole set $\mathcal{T}_w$ and completely solve Zagier-Hoffman’s conjectures in positive characteristic. Our key tool is the Anderson-Brownawell-Papanikolas criterion for linear independence in positive characteristic.

  • [And86] Go to document G. W. Anderson, "$t$-motives," Duke Math. J., vol. 53, iss. 2, pp. 457-502, 1986.
    @ARTICLE{And86,
      author = {Anderson, Greg W.},
      title = {{$t$}-motives},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {53},
      year = {1986},
      number = {2},
      pages = {457--502},
      issn = {0012-7094},
      mrclass = {11F67 (11G05 11R58 14K05)},
      mrnumber = {0850546},
      mrreviewer = {David Goss},
      doi = {10.1215/S0012-7094-86-05328-7},
      url = {https://doi.org/10.1215/S0012-7094-86-05328-7},
      zblnumber = {0679.14001},
      }
  • [ABP04] Go to document G. W. Anderson, D. W. Brownawell, and M. A. Papanikolas, "Determination of the algebraic relations among special $\Gamma$-values in positive characteristic," Ann. of Math. (2), vol. 160, iss. 1, pp. 237-313, 2004.
    @ARTICLE{ABP04,
      author = {Anderson, Greg W. and Brownawell, W. Dale and Papanikolas, Matthew A.},
      title = {Determination of the algebraic relations among special {$\Gamma$}-values in positive characteristic},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {160},
      year = {2004},
      number = {1},
      pages = {237--313},
      issn = {0003-486X},
      mrclass = {11J93 (11G09 11R60 33E50)},
      mrnumber = {2119721},
      mrreviewer = {David Goss},
      doi = {10.4007/annals.2004.160.237},
      url = {https://doi.org/10.4007/annals.2004.160.237},
      zblnumber = {1064.11055},
      }
  • [AT90] Go to document G. W. Anderson and D. S. Thakur, "Tensor powers of the Carlitz module and zeta values," Ann. of Math. (2), vol. 132, iss. 1, pp. 159-191, 1990.
    @ARTICLE{AT90,
      author = {Anderson, Greg W. and Thakur, Dinesh S.},
      title = {Tensor powers of the {C}arlitz module and zeta values},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {132},
      year = {1990},
      number = {1},
      pages = {159--191},
      issn = {0003-486X},
      mrclass = {11G09 (11F67 11J91 11R58)},
      mrnumber = {1059938},
      mrreviewer = {Jing Yu},
      doi = {10.2307/1971503},
      url = {https://doi.org/10.2307/1971503},
      zblnumber = {0713.11082},
      }
  • [AT09] Go to document G. W. Anderson and D. S. Thakur, "Multizeta values for $\Bbb F_q[t]$, their period interpretation, and relations between them," Int. Math. Res. Not. IMRN, iss. 11, pp. 2038-2055, 2009.
    @ARTICLE{AT09,
      author = {Anderson, Greg W. and Thakur, Dinesh S.},
      title = {Multizeta values for {$\Bbb F_q[t]$},
      their period interpretation, and relations between them},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2009},
      number = {11},
      pages = {2038--2055},
      issn = {1073-7928},
      mrclass = {11M32 (11M38 11R58)},
      mrnumber = {2507109},
      mrreviewer = {M. Ram Murty},
      doi = {10.1093/imrp/rnp010},
      url = {https://doi.org/10.1093/imrp/rnp010},
      zblnumber = {1183.11052},
      }
  • [BGF] J. I. Burgos Gil and J. Frésan, Multiple zeta values: from numbers to motives.
    @MISC{BGF,
      author = {{Burgos Gil},
      J. I. and Fr{é}san, J.},
      title = {Multiple zeta values: from numbers to motives},
      note = {to appear in \emph{Clay Math. Proc.}},
      zblnumber = {},
      }
  • [Bro12] Go to document F. Brown, "Mixed Tate motives over $\Bbb Z$," Ann. of Math. (2), vol. 175, iss. 2, pp. 949-976, 2012.
    @ARTICLE{Bro12,
      author = {Brown, Francis},
      title = {Mixed {T}ate motives over {$\Bbb Z$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {2},
      pages = {949--976},
      issn = {0003-486X},
      mrclass = {11S20 (11M32 14F42)},
      mrnumber = {2993755},
      mrreviewer = {Pierre A. Lochak},
      doi = {10.4007/annals.2012.175.2.10},
      url = {https://doi.org/10.4007/annals.2012.175.2.10},
      zblnumber = {1278.19008},
      }
  • [BP20] Go to document D. Brownawell and M. Papanikolas, "A rapid introduction to Drinfeld modules, $t$-modules and $t$-motives," in $t$-Motives: Hodge Structures, Transcendence and other Motivic Aspects, European Math. Soc., 2020, pp. 3-30.
    @INCOLLECTION{BP20,
      author = {Brownawell, D. and Papanikolas, M.},
      title = {A rapid introduction to {D}rinfeld modules, $t$-modules and $t$-motives},
      note = {G. Böckle, D. Goss, U. Hartl, and M. Papanikolas, editors},
      booktitle = {{$t$}-Motives: Hodge Structures, Transcendence and other Motivic Aspects},
      series = {EMS Ser. Congr. Reports},
      pages = {3--30},
      publisher = {European Math. Soc.},
      year = {2020},
      doi = {10.4171/198-1/1},
      url = {https://doi.org/10.4171/198-1/1},
      zblnumber = {1440.14020},
      }
  • [Car35] Go to document L. Carlitz, "On certain functions connected with polynomials in a Galois field," Duke Math. J., vol. 1, iss. 2, pp. 137-168, 1935.
    @ARTICLE{Car35,
      author = {Carlitz, Leonard},
      title = {On certain functions connected with polynomials in a {G}alois field},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {1},
      year = {1935},
      number = {2},
      pages = {137--168},
      issn = {0012-7094},
      mrclass = {DML},
      mrnumber = {1545872},
      doi = {10.1215/S0012-7094-35-00114-4},
      url = {https://doi.org/10.1215/S0012-7094-35-00114-4},
      zblnumber = {0012.04904},
      }
  • [Cha14] Go to document C. Chang, "Linear independence of monomials of multizeta values in positive characteristic," Compos. Math., vol. 150, iss. 11, pp. 1789-1808, 2014.
    @ARTICLE{Cha14,
      author = {Chang, Chieh-Yu},
      title = {Linear independence of monomials of multizeta values in positive characteristic},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {150},
      year = {2014},
      number = {11},
      pages = {1789--1808},
      issn = {0010-437X},
      mrclass = {11J91 (11J93)},
      mrnumber = {3279257},
      mrreviewer = {Michel Laurent},
      doi = {10.1112/S0010437X1400743X},
      url = {https://doi.org/10.1112/S0010437X1400743X},
      zblnumber = {1306.11058},
      }
  • [CPY19] Go to document C. Chang, M. A. Papanikolas, and J. Yu, "An effective criterion for Eulerian multizeta values in positive characteristic," J. Eur. Math. Soc. (JEMS), vol. 21, iss. 2, pp. 405-440, 2019.
    @ARTICLE{CPY19,
      author = {Chang, Chieh-Yu and Papanikolas, Matthew A. and Yu, Jing},
      title = {An effective criterion for {E}ulerian multizeta values in positive characteristic},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {21},
      year = {2019},
      number = {2},
      pages = {405--440},
      issn = {1435-9855},
      mrclass = {11J93 (11G09 11M32 11R58)},
      mrnumber = {3896206},
      mrreviewer = {Ambrus P\'{a}l},
      doi = {10.4171/JEMS/840},
      url = {https://doi.org/10.4171/JEMS/840},
      zblnumber = {1417.11139},
      }
  • [Che15] Go to document H. Chen, "On shuffle of double zeta values over $\Bbb{F}_q[t]$," J. Number Theory, vol. 148, pp. 153-163, 2015.
    @ARTICLE{Che15,
      author = {Chen, Huei-Jeng},
      title = {On shuffle of double zeta values over {$\Bbb{F}_q[t]$}},
      journal = {J. Number Theory},
      fjournal = {Journal of Number Theory},
      volume = {148},
      year = {2015},
      pages = {153--163},
      issn = {0022-314X},
      mrclass = {11M32},
      mrnumber = {3283173},
      mrreviewer = {Shingo Saito},
      doi = {10.1016/j.jnt.2014.09.016},
      url = {https://doi.org/10.1016/j.jnt.2014.09.016},
      zblnumber = {1381.11081},
      }
  • [Del13] P. Deligne, "Multizêtas, d’après Francis Brown," in Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058, Math. Soc. France, 2013, vol. 352, p. exp. no. 1048, viii, 161-185.
    @INCOLLECTION{Del13,
      author = {Deligne, Pierre},
      title = {Multiz\^{e}tas, d'après {F}rancis {B}rown},
      booktitle = {Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043--1058},
      series = {Astérisque},
      publisher = {Math. Soc. France},
      volume = {352},
      year = {2013},
      pages = {Exp. No. 1048, viii, 161--185},
      issn = {0303-1179},
      isbn = {978-2-85629-371-3},
      mrclass = {11S40 (11G09 14C15 14F35)},
      mrnumber = {3087346},
      mrreviewer = {Damian Rössler},
      zblnumber = {1346.14059},
      }
  • [DG05] Go to document P. Deligne and A. B. Goncharov, "Groupes fondamentaux motiviques de Tate mixte," Ann. Sci. École Norm. Sup. (4), vol. 38, iss. 1, pp. 1-56, 2005.
    @ARTICLE{DG05,
      author = {Deligne, Pierre and Goncharov, Alexander B.},
      title = {Groupes fondamentaux motiviques de {T}ate mixte},
      journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {38},
      year = {2005},
      number = {1},
      pages = {1--56},
      issn = {0012-9593},
      mrclass = {11G55 (14F42 14G10 19F27)},
      mrnumber = {2136480},
      mrreviewer = {Tam\'{a}s Szamuely},
      doi = {10.1016/j.ansens.2004.11.001},
      url = {https://doi.org/10.1016/j.ansens.2004.11.001},
      zblnumber = {1084.14024},
      }
  • [Gos96] Go to document D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, Berlin, 1996, vol. 35.
    @BOOK{Gos96,
      author = {Goss, David},
      title = {Basic Structures of Function Field Arithmetic},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {35},
      publisher = {Springer-Verlag, Berlin},
      year = {1996},
      pages = {xiv+422},
      isbn = {3-540-61087-1},
      mrclass = {11G09 (11L05 11R58)},
      mrnumber = {1423131},
      mrreviewer = {Jeremy T. Teitelbaum},
      doi = {10.1007/978-3-642-61480-4},
      url = {https://doi.org/10.1007/978-3-642-61480-4},
      zblnumber = {0874.11004},
      }
  • [HJ20] Go to document U. Hartl and A. K. Juschka, "Pink’s theory of Hodge structures and the Hodge conjectures over function fields," in $t$-Motives: Hodge Structures, Transcendence and other Motivic Aspects, European Math. Soc., 2020, pp. 31-182.
    @INCOLLECTION{HJ20,
      author = {Hartl, U. and Juschka, A. K.},
      title = {Pink's theory of {H}odge structures and the {H}odge conjectures over function fields},
      note = {G. Böckle, D. Goss, U. Hartl, and M. Papanikolas, editors},
      booktitle = {{$t$}-Motives: Hodge Structures, Transcendence and other Motivic Aspects},
      series = {EMS Ser. Congr. Reports},
      pages = {31--182},
      publisher = {European Math. Soc.},
      year = {2020},
      doi = {10.4171/198-1/2},
      url = {https://doi.org/10.4171/198-1/2},
      zblnumber = {},
      }
  • [Hof97] Go to document M. E. Hoffman, "The algebra of multiple harmonic series," J. Algebra, vol. 194, iss. 2, pp. 477-495, 1997.
    @ARTICLE{Hof97,
      author = {Hoffman, Michael E.},
      title = {The algebra of multiple harmonic series},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {194},
      year = {1997},
      number = {2},
      pages = {477--495},
      issn = {0021-8693},
      mrclass = {11M41 (05E05)},
      mrnumber = {1467164},
      doi = {10.1006/jabr.1997.7127},
      url = {https://doi.org/10.1006/jabr.1997.7127},
      zblnumber = {0881.11067},
      }
  • [KL16] Go to document Y. Kuan and Y. Lin, "Criterion for deciding zeta-like multizeta values in positive characteristic," Exp. Math., vol. 25, iss. 3, pp. 246-256, 2016.
    @ARTICLE{KL16,
      author = {Kuan, Yen-Liang and Lin, Yi-Hsuan},
      title = {Criterion for deciding zeta-like multizeta values in positive characteristic},
      journal = {Exp. Math.},
      fjournal = {Experimental Mathematics},
      volume = {25},
      year = {2016},
      number = {3},
      pages = {246--256},
      issn = {1058-6458},
      mrclass = {11M32 (11G09 11M38 11R58)},
      mrnumber = {3478325},
      mrreviewer = {José Alejandro Lara Rodr\'ıguez},
      doi = {10.1080/10586458.2015.1069228},
      url = {https://doi.org/10.1080/10586458.2015.1069228},
      zblnumber = {1415.11117},
      }
  • [LRT14] Go to document J. A. Lara Rodr’iguez and D. S. Thakur, "Zeta-like multizeta values for $\Bbb{F}_q[t]$," Indian J. Pure Appl. Math., vol. 45, iss. 5, pp. 787-801, 2014.
    @ARTICLE{LRT14,
      author = {Lara Rodr\'ıguez, José Alejandro and Thakur, Dinesh S.},
      title = {Zeta-like multizeta values for {$\Bbb{F}_q[t]$}},
      journal = {Indian J. Pure Appl. Math.},
      fjournal = {Indian Journal of Pure and Applied Mathematics},
      volume = {45},
      year = {2014},
      number = {5},
      pages = {787--801},
      issn = {0019-5588},
      mrclass = {11M32},
      mrnumber = {3286087},
      mrreviewer = {Bin Zhang},
      doi = {10.1007/s13226-014-0089-0},
      url = {https://doi.org/10.1007/s13226-014-0089-0},
      zblnumber = {1365.11104},
      }
  • [Mis15] Go to document Y. Mishiba, "Algebraic independence of the Carlitz period and the positive characteristic multizeta values at $n$ and $(n,n)$," Proc. Amer. Math. Soc., vol. 143, iss. 9, pp. 3753-3763, 2015.
    @ARTICLE{Mis15,
      author = {Mishiba, Yoshinori},
      title = {Algebraic independence of the {C}arlitz period and the positive characteristic multizeta values at {$n$} and {$(n,n)$}},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {143},
      year = {2015},
      number = {9},
      pages = {3753--3763},
      issn = {0002-9939},
      mrclass = {11J93 (11G09 11M38)},
      mrnumber = {3359567},
      mrreviewer = {Chieh-Yu Chang},
      doi = {10.1090/S0002-9939-2015-12532-4},
      url = {https://doi.org/10.1090/S0002-9939-2015-12532-4},
      zblnumber = {1322.11082},
      }
  • [Pap08] Go to document M. A. Papanikolas, "Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms," Invent. Math., vol. 171, iss. 1, pp. 123-174, 2008.
    @ARTICLE{Pap08,
      author = {Papanikolas, Matthew A.},
      title = {Tannakian duality for {A}nderson-{D}rinfeld motives and algebraic independence of {C}arlitz logarithms},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {171},
      year = {2008},
      number = {1},
      pages = {123--174},
      issn = {0020-9910},
      mrclass = {11J93 (11G09 12H10 14L17)},
      mrnumber = {2358057},
      mrreviewer = {Liang-Chung Hsia},
      doi = {10.1007/s00222-007-0073-y},
      url = {https://doi.org/10.1007/s00222-007-0073-y},
      zblnumber = {1235.11074},
      }
  • [Ter02] Go to document T. Terasoma, "Mixed Tate motives and multiple zeta values," Invent. Math., vol. 149, iss. 2, pp. 339-369, 2002.
    @ARTICLE{Ter02,
      author = {Terasoma, Tomohide},
      title = {Mixed {T}ate motives and multiple zeta values},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {149},
      year = {2002},
      number = {2},
      pages = {339--369},
      issn = {0020-9910},
      mrclass = {11G55 (11M41 19F27)},
      mrnumber = {1918675},
      mrreviewer = {Jan Nekov\'{a}\v{r}},
      doi = {10.1007/s002220200218},
      url = {https://doi.org/10.1007/s002220200218},
      zblnumber = {1042.11043},
      }
  • [Tha04] Go to document D. S. Thakur, Function Field Arithmetic, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
    @BOOK{Tha04,
      author = {Thakur, Dinesh S.},
      title = {Function Field Arithmetic},
      publisher = {World Scientific Publishing Co., Inc., River Edge, NJ},
      year = {2004},
      pages = {xvi+388},
      isbn = {981-238-839-7},
      mrclass = {11G09 (11J93 11M38 11R58)},
      mrnumber = {2091265},
      mrreviewer = {Mihran Papikian},
      doi = {10.1142/9789812562388},
      url = {https://doi.org/10.1142/9789812562388},
      zblnumber = {1061.11001},
      }
  • [Tha09] Go to document D. S. Thakur, "Relations between multizeta values for $\Bbb F_q[t]$," Int. Math. Res. Not. IMRN, iss. 12, pp. 2318-2346, 2009.
    @ARTICLE{Tha09,
      author = {Thakur, Dinesh S.},
      title = {Relations between multizeta values for {$\Bbb F_q[t]$}},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2009},
      number = {12},
      pages = {2318--2346},
      issn = {1073-7928},
      mrclass = {11M38 (11M32)},
      mrnumber = {2511913},
      mrreviewer = {Mihran Papikian},
      doi = {10.1093/imrn/rnp018},
      url = {https://doi.org/10.1093/imrn/rnp018},
      zblnumber = {1189.11032},
      }
  • [Tha09b] Go to document D. S. Thakur, "Power sums with applications to multizeta and zeta zero distribution for $\Bbb F_q[t]$," Finite Fields Appl., vol. 15, iss. 4, pp. 534-552, 2009.
    @ARTICLE{Tha09b,
      author = {Thakur, Dinesh S.},
      title = {Power sums with applications to multizeta and zeta zero distribution for {$\Bbb F_q[t]$}},
      journal = {Finite Fields Appl.},
      fjournal = {Finite Fields and their Applications},
      volume = {15},
      year = {2009},
      number = {4},
      pages = {534--552},
      issn = {1071-5797},
      mrclass = {11M38 (11M32)},
      mrnumber = {2535594},
      mrreviewer = {Mateja Prešern},
      doi = {10.1016/j.ffa.2009.04.002},
      url = {https://doi.org/10.1016/j.ffa.2009.04.002},
      zblnumber = {1228.11139},
      }
  • [Tha10] Go to document D. S. Thakur, "Shuffle relations for function field multizeta values," Int. Math. Res. Not. IMRN, iss. 11, pp. 1973-1980, 2010.
    @ARTICLE{Tha10,
      author = {Thakur, Dinesh S.},
      title = {Shuffle relations for function field multizeta values},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2010},
      number = {11},
      pages = {1973--1980},
      issn = {1073-7928},
      mrclass = {11M32 (11R58)},
      mrnumber = {2646351},
      mrreviewer = {M. Ram Murty},
      doi = {10.1093/imrn/rnp202},
      url = {https://doi.org/10.1093/imrn/rnp202},
      zblnumber = {1198.11077},
      }
  • [Tha17] Go to document D. S. Thakur, "Multizeta values for function fields: a survey," J. Théor. Nombres Bordeaux, vol. 29, iss. 3, pp. 997-1023, 2017.
    @ARTICLE{Tha17,
      author = {Thakur, Dinesh S.},
      title = {Multizeta values for function fields: a survey},
      journal = {J. Théor. Nombres Bordeaux},
      fjournal = {Journal de Théorie des Nombres de Bordeaux},
      volume = {29},
      year = {2017},
      number = {3},
      pages = {997--1023},
      issn = {1246-7405},
      mrclass = {11M32 (11G09)},
      mrnumber = {3745257},
      mrreviewer = {Nils Matthes},
      doi = {10.5802/jtnb.1009},
      url = {https://doi.org/10.5802/jtnb.1009},
      zblnumber = {1430.11119},
      }
  • [Tha20] D. S. Thakur, "Multizeta in function field arithmetic," in $t$-Motives: Hodge Structures, Transcendence and other Motivic Aspects, European Math. Soc., 2020, pp. 441-452.
    @INCOLLECTION{Tha20,
      author = {Thakur, Dinesh S.},
      title = {Multizeta in function field arithmetic},
      note = {G. Böckle, D. Goss, U. Hartl, and M. Papanikolas, editors},
      booktitle = {{$t$}-Motives: Hodge Structures, Transcendence and other Motivic Aspects},
      series = {EMS Ser. Congr. Reports},
      pages = {441--452},
      publisher = {European Math. Soc.},
      year = {2020},
      zblnumber = {1441.11222},
      }
  • [Tod18] Go to document G. Todd, "A conjectural characterization for $\Bbb F_q(t)$-linear relations between multizeta values," J. Number Theory, vol. 187, pp. 264-287, 2018.
    @ARTICLE{Tod18,
      author = {Todd, George},
      title = {A conjectural characterization for {$\Bbb F_q(t)$}-linear relations between multizeta values},
      journal = {J. Number Theory},
      fjournal = {Journal of Number Theory},
      volume = {187},
      year = {2018},
      pages = {264--287},
      issn = {0022-314X},
      mrclass = {11M32 (11R58)},
      mrnumber = {3766911},
      mrreviewer = {Tapas Chatterjee},
      doi = {10.1016/j.jnt.2017.09.028},
      url = {https://doi.org/10.1016/j.jnt.2017.09.028},
      zblnumber = {1401.11125},
      }
  • [Wad41] Go to document L. I. Wade, "Certain quantities transcendental over $GF(p^n,x)$," Duke Math. J., vol. 8, pp. 701-720, 1941.
    @ARTICLE{Wad41,
      author = {Wade, L. I.},
      title = {Certain quantities transcendental over {$GF(p^n,x)$}},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {8},
      year = {1941},
      pages = {701--720},
      issn = {0012-7094},
      mrclass = {09.1X},
      mrnumber = {0006157},
      mrreviewer = {M. A. Zorn},
      url = {http://projecteuclid.org/euclid.dmj/1077492941},
      zblnumber = {0063.08101},
      }
  • [Yu91] Go to document J. Yu, "Transcendence and special zeta values in characteristic $p$," Ann. of Math. (2), vol. 134, iss. 1, pp. 1-23, 1991.
    @ARTICLE{Yu91,
      author = {Yu, Jing},
      title = {Transcendence and special zeta values in characteristic {$p$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {134},
      year = {1991},
      number = {1},
      pages = {1--23},
      issn = {0003-486X},
      mrclass = {11J89 (11G09 11T55)},
      mrnumber = {1114606},
      mrreviewer = {Ernst-Ulrich Gekeler},
      doi = {10.2307/2944331},
      url = {https://doi.org/10.2307/2944331},
      zblnumber = {0734.11040},
      }
  • [Zag94] D. Zagier, "Values of zeta functions and their applications," in First European Congress of Mathematics, Vol. II (Paris, 1992), Birkhäuser, Basel, 1994, vol. 120, pp. 497-512.
    @INCOLLECTION{Zag94,
      author = {Zagier, Don},
      title = {Values of zeta functions and their applications},
      booktitle = {First {E}uropean {C}ongress of {M}athematics, {V}ol. {II} ({P}aris, 1992)},
      series = {Progr. Math.},
      volume = {120},
      pages = {497--512},
      publisher = {Birkhäuser, Basel},
      year = {1994},
      mrclass = {11M41 (11F67 11G40 19F27)},
      mrnumber = {1341859},
      mrreviewer = {Fernando Rodr\'ıguez Villegas},
      zblnumber = {0822.11001},
      }

Authors

Tuan Ngo Dac

Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Camille Jordan, Villeurbanne, France