A proof of Carleson’s $\varepsilon^2$-conjecture

Abstract

In this paper we provide a proof of the Carleson $\varepsilon ^2$-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson $\varepsilon ^2$-square function.

  • [BL] Go to document M. Badger and S. Lewis, "Local set approximation: Mattila-Vuorinen type sets, Reifenberg type sets, and tangent sets," Forum Math. Sigma, vol. 3, p. 24, 2015.
    @ARTICLE{BL,
      author = {Badger, Matthew and Lewis, Stephen},
      title = {Local set approximation: {M}attila-{V}uorinen type sets, {R}eifenberg type sets, and tangent sets},
      journal = {Forum Math. Sigma},
      fjournal = {Forum of Mathematics. Sigma},
      volume = {3},
      year = {2015},
      pages = {Paper no. e24, 63},
      mrclass = {49Q15 (28A75 35R35 49J52)},
      mrnumber = {3482273},
      mrreviewer = {Stefan Steinerberger},
      doi = {10.1017/fms.2015.26},
      url = {https://doi.org/10.1017/fms.2015.26},
      zblnumber = {1348.49042},
      }
  • [Bishop-conjectures] Go to document C. J. Bishop, "Some questions concerning harmonic measure," in Partial Differential Equations with Minimal Smoothness and Applications, Springer, New York, 1992, vol. 42, pp. 89-97.
    @INCOLLECTION{Bishop-conjectures,
      author = {Bishop, Christopher J.},
      title = {Some questions concerning harmonic measure},
      booktitle = {Partial Differential Equations with Minimal Smoothness and Applications},
      venue = {{C}hicago, {IL},
      1990},
      series = {IMA Vol. Math. Appl.},
      volume = {42},
      pages = {89--97},
      publisher = {Springer, New York},
      year = {1992},
      mrclass = {30C85 (30C35 30C62 31A15)},
      mrnumber = {1155854},
      mrreviewer = {T. J. Lyons},
      doi = {10.1007/978-1-4612-2898-1\_7},
      url = {https://doi.org/10.1007/978-1-4612-2898-1_7},
      zblnumber = {0792.30005},
      }
  • [Bishop-Jones-schwartzian] Go to document C. J. Bishop and P. W. Jones, "Harmonic measure, $L^2$ estimates and the Schwarzian derivative," J. Anal. Math., vol. 62, pp. 77-113, 1994.
    @ARTICLE{Bishop-Jones-schwartzian,
      author = {Bishop, Christopher J. and Jones, Peter W.},
      title = {Harmonic measure, {$L^2$} estimates and the {S}chwarzian derivative},
      journal = {J. Anal. Math.},
      fjournal = {Journal d'Analyse Mathématique},
      volume = {62},
      year = {1994},
      pages = {77--113},
      issn = {0021-7670},
      mrclass = {30C85 (30C62 31A15)},
      mrnumber = {1269200},
      mrreviewer = {Juha Heinonen},
      doi = {10.1007/BF02835949},
      url = {https://doi.org/10.1007/BF02835949},
      zblnumber = {0801.30024},
      }
  • [David-vitus] Go to document G. David, "Unrectifiable $1$-sets have vanishing analytic capacity," Rev. Mat. Iberoamericana, vol. 14, iss. 2, pp. 369-479, 1998.
    @ARTICLE{David-vitus,
      author = {David, Guy},
      title = {Unrectifiable {$1$}-sets have vanishing analytic capacity},
      journal = {Rev. Mat. Iberoamericana},
      fjournal = {Revista Matem\'{a}tica Iberoamericana},
      volume = {14},
      year = {1998},
      number = {2},
      pages = {369--479},
      issn = {0213-2230},
      mrclass = {42B20 (30E20)},
      mrnumber = {1654535},
      mrreviewer = {Joan Verdera},
      doi = {10.4171/RMI/242},
      url = {https://doi.org/10.4171/RMI/242},
      zblnumber = {0913.30012},
      }
  • [DS1] G. David and S. Semmes, Singular Integrals and Rectifiable Sets in ${\bf R}^n$: Beyond Lipschitz Graphs, Math. Soc. France, Paris, 1991, vol. 193.
    @BOOK{DS1,
      author = {David, Guy and Semmes, S.},
      title = {Singular Integrals and Rectifiable Sets in {${\bf R}^n$}: {B}eyond {L}ipschitz Graphs},
      series = {Astérisque},
      volume = {193},
      publisher = {Math. Soc. France, Paris},
      year = {1991},
      pages = {152},
      issn = {0303-1179},
      mrclass = {42B20 (42B25)},
      mrnumber = {1113517},
      mrreviewer = {Stephen Buckley},
      zblnumber = {0743.49018},
      }
  • [DS2] Go to document G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Amer. Math. Soc., Providence, RI, 1993, vol. 38.
    @BOOK{DS2,
      author = {David, Guy and Semmes, Stephen},
      title = {Analysis of and on uniformly rectifiable sets},
      series = {Math. Surv. Monogr.},
      volume = {38},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1993},
      pages = {xii+356},
      isbn = {0-8218-1537-7},
      mrclass = {28A75 (30C65 30E20 42B20 42B25)},
      mrnumber = {1251061},
      mrreviewer = {Christopher Bishop},
      doi = {10.1090/surv/038},
      url = {https://doi.org/10.1090/surv/038},
      zblnumber = {0832.42008},
      }
  • [GM] Go to document J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005, vol. 2.
    @BOOK{GM,
      author = {Garnett, John B. and Marshall, Donald E.},
      title = {Harmonic Measure},
      series = {New Math. Monogr.},
      volume = {2},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2005},
      pages = {xvi+571},
      isbn = {978-0-521-47018-6; 0-521-47018-8},
      mrclass = {31-02 (31A15)},
      mrnumber = {2150803},
      mrreviewer = {Christopher Bishop},
      doi = {10.1017/CBO9780511546617},
      url = {https://doi.org/10.1017/CBO9780511546617},
      zblnumber = {1077.31001},
      }
  • [Jerison-Kenig] Go to document D. S. Jerison and C. E. Kenig, "Boundary behavior of harmonic functions in nontangentially accessible domains," Adv. in Math., vol. 46, iss. 1, pp. 80-147, 1982.
    @ARTICLE{Jerison-Kenig,
      author = {Jerison, David S. and Kenig, Carlos E.},
      title = {Boundary behavior of harmonic functions in nontangentially accessible domains},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {46},
      year = {1982},
      number = {1},
      pages = {80--147},
      issn = {0001-8708},
      mrclass = {31B25 (42B25)},
      mrnumber = {0676988},
      mrreviewer = {Yves Meyer},
      doi = {10.1016/0001-8708(82)90055-X},
      url = {https://doi.org/10.1016/0001-8708(82)90055-X},
      zblnumber = {0514.31003},
      }
  • [Jo] Go to document P. W. Jones, "Rectifiable sets and the traveling salesman problem," Invent. Math., vol. 102, iss. 1, pp. 1-15, 1990.
    @ARTICLE{Jo,
      author = {Jones, Peter W.},
      title = {Rectifiable sets and the traveling salesman problem},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {102},
      year = {1990},
      number = {1},
      pages = {1--15},
      issn = {0020-9910},
      mrclass = {26B15 (05C38 28A75 30E10 42C99 90C10)},
      mrnumber = {1069238},
      mrreviewer = {Pertti Mattila},
      doi = {10.1007/BF01233418},
      url = {https://doi.org/10.1007/BF01233418},
      zblnumber = {0731.30018},
      }
  • [Kenig-Toro-AENS] Go to document C. E. Kenig and T. Toro, "Poisson kernel characterization of Reifenberg flat chord arc domains," Ann. Sci. École Norm. Sup. (4), vol. 36, iss. 3, pp. 323-401, 2003.
    @ARTICLE{Kenig-Toro-AENS,
      author = {Kenig, Carlos E. and Toro, Tatiana},
      title = {Poisson kernel characterization of {R}eifenberg flat chord arc domains},
      journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {36},
      year = {2003},
      number = {3},
      pages = {323--401},
      issn = {0012-9593},
      mrclass = {31B25 (31A15 31B15 35R35)},
      mrnumber = {1977823},
      mrreviewer = {Luca Lorenzi},
      doi = {10.1016/S0012-9593(03)00012-0},
      url = {https://doi.org/10.1016/S0012-9593(03)00012-0},
      zblnumber = {1027.31005},
      }
  • [Leger] Go to document J. C. Léger, "Menger curvature and rectifiability," Ann. of Math. (2), vol. 149, iss. 3, pp. 831-869, 1999.
    @ARTICLE{Leger,
      author = {Léger, J. C.},
      title = {Menger curvature and rectifiability},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {149},
      year = {1999},
      number = {3},
      pages = {831--869},
      issn = {0003-486X},
      mrclass = {49Q15},
      mrnumber = {1709304},
      mrreviewer = {Karsten Grosse-Brauckmann},
      doi = {10.2307/121074},
      url = {https://doi.org/10.2307/121074},
      zblnumber = {0966.28003},
      }
  • [Mattila-book] Go to document P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Univ. Press, Cambridge, 1995, vol. 44.
    @BOOK{Mattila-book,
      author = {Mattila, Pertti},
      title = {Geometry of Sets and Measures in {E}uclidean Spaces. Fractals and Rectifiability},
      series = {Cambridge Stud. Adv. Math.},
      volume = {44},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1995},
      pages = {xii+343},
      isbn = {0-521-46576-1; 0-521-65595-1},
      mrclass = {28A75 (49Q20)},
      mrnumber = {1333890},
      mrreviewer = {Harold Parks},
      doi = {10.1017/CBO9780511623813},
      url = {https://doi.org/10.1017/CBO9780511623813},
      zblnumber = {0819.28004},
      }
  • [NToV] Go to document F. Nazarov, X. Tolsa, and A. Volberg, "On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1," Acta Math., vol. 213, iss. 2, pp. 237-321, 2014.
    @ARTICLE{NToV,
      author = {Nazarov, Fedor and Tolsa, Xavier and Volberg, Alexander},
      title = {On the uniform rectifiability of {AD}-regular measures with bounded {R}iesz transform operator: the case of codimension 1},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {213},
      year = {2014},
      number = {2},
      pages = {237--321},
      issn = {0001-5962},
      mrclass = {42B20 (31B10)},
      mrnumber = {3286036},
      mrreviewer = {Gerald B. Folland},
      doi = {10.1007/s11511-014-0120-7},
      url = {https://doi.org/10.1007/s11511-014-0120-7},
      zblnumber = {1311.28004},
      }
  • [Naber-Valtorta] Go to document A. Naber and D. Valtorta, "Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps," Ann. of Math. (2), vol. 185, iss. 1, pp. 131-227, 2017.
    @ARTICLE{Naber-Valtorta,
      author = {Naber, Aaron and Valtorta, Daniele},
      title = {Rectifiable-{R}eifenberg and the regularity of stationary and minimizing harmonic maps},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {185},
      year = {2017},
      number = {1},
      pages = {131--227},
      issn = {0003-486X},
      mrclass = {58E20 (53C43)},
      mrnumber = {3583353},
      mrreviewer = {Andreas Gastel},
      doi = {10.4007/annals.2017.185.1.3},
      url = {https://doi.org/10.4007/annals.2017.185.1.3},
      zblnumber = {1393.58009},
      }
  • [Tolsa-llibre] Go to document X. Tolsa, Analytic Capacity, the Cauchy Transform, and Non-Homogeneous Calderón-Zygmund Theory, Birkhäuser/Springer, Cham, 2014, vol. 307.
    @BOOK{Tolsa-llibre,
      author = {Tolsa, Xavier},
      title = {Analytic Capacity, the {C}auchy Transform, and Non-Homogeneous {C}alderón-{Z}ygmund Theory},
      series = {Progr. Math.},
      volume = {307},
      publisher = {Birkhäuser/Springer, Cham},
      year = {2014},
      pages = {xiv+396},
      isbn = {978-3-319-00595-9; 978-3-319-00596-6},
      mrclass = {42-02 (30C85 42B20 42B25 42B35)},
      mrnumber = {3154530},
      mrreviewer = {Tuomas P. Hytönen},
      doi = {10.1007/978-3-319-00596-6},
      url = {https://doi.org/10.1007/978-3-319-00596-6},
      zblnumber = {1290.42002},
      }

Authors

Benjamin Jaye

School of Mathematics, Georgia Tech, Atlanta, Georgia, 30332, USA

Xavier Tolsa

ICREA, Passeig Lluís Companys 23 08010 Barcelona, Catalonia; Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia; and Centre de Recerca Matemàtica, 08193 Bellaterra, Catalonia

Michele Villa

Department of Mathematics and Statistics, University of Jyväskylä, Finland and Research Unit of Mathematical Sciences, Oulu, Finland