On property (T) for $\mathrm {Aut}(F_n)$ and $\mathrm {SL}_n(\mathbb {Z})$

Abstract

We prove that $\mathrm {Aut}(F_n)$ has Kazhdan’s property (T) for every $n \geqslant 6$. Together with a previous result of Kaluba, Nowak, and Ozawa, this gives the same statement for $n\geqslant 5$. We also provide explicit lower bounds for the Kazhdan constants of $\mathrm {SAut}(F_n)$ (with $n \geqslant 6$) and of $\mathrm {SL}_n(\mathbb {Z})$ (with $n \geqslant 3$) with respect to natural generating sets. In the latter case, these bounds improve upon previously known lower bounds whenever $n > 6$.

  • [BachmuthMochizuki1982] Go to document S. Bachmuth and H. Y. Mochizuki, "The nonfinite generation of ${ Aut}(G)$, $G$ free metabelian of rank $3$," Trans. Amer. Math. Soc., vol. 270, iss. 2, pp. 693-700, 1982.
    @ARTICLE{BachmuthMochizuki1982,
      author = {Bachmuth, S. and Mochizuki, H. Y.},
      title = {The nonfinite generation of {${\rm Aut}(G)$},
      {$G$} free metabelian of rank {$3$}},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {270},
      year = {1982},
      number = {2},
      pages = {693--700},
      issn = {0002-9947},
      mrclass = {20F28 (20F16)},
      mrnumber = {0645339},
      mrreviewer = {S. Andreadakis},
      doi = {10.2307/1999870},
      url = {https://doi.org/10.2307/1999870},
      zblnumber = {0482.20025},
      }
  • [BachmuthMochizuki1985] Go to document S. Bachmuth and H. Y. Mochizuki, "${ Aut}(F)\to{ Aut}(F/F”)$ is surjective for free group $F$ of rank $\geq 4$," Trans. Amer. Math. Soc., vol. 292, iss. 1, pp. 81-101, 1985.
    @ARTICLE{BachmuthMochizuki1985,
      author = {Bachmuth, Seymour and Mochizuki, Horace Y.},
      title = {{${\rm Aut}(F)\to{\rm Aut}(F/F'')$} is surjective for free group {$F$} of rank {$\geq 4$}},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {292},
      year = {1985},
      number = {1},
      pages = {81--101},
      issn = {0002-9947},
      mrclass = {20E36 (20F28)},
      mrnumber = {0805954},
      mrreviewer = {S. Andreadakis},
      doi = {10.2307/2000171},
      url = {https://doi.org/10.2307/2000171},
      zblnumber = {0575.20031},
      }
  • [Bekkaetal2008] Go to document B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T), Cambridge Univ. Press, Cambridge, 2008, vol. 11.
    @BOOK{Bekkaetal2008,
      author = {Bekka, Bachir and de la Harpe, Pierre and Valette, Alain},
      title = {Kazhdan's Property ({T})},
      series = {New Math. Monogr.},
      volume = {11},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2008},
      pages = {xiv+472},
      isbn = {978-0-521-88720-5},
      mrclass = {22-02 (22E40 28D15 37A15 43A07 43A35)},
      mrnumber = {2415834},
      mrreviewer = {Markus Neuhauser},
      doi = {10.1017/CBO9780511542749},
      url = {https://doi.org/10.1017/CBO9780511542749},
      zblnumber = {1146.22009},
      }
  • [Julia2017] Go to document J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: a fresh approach to numerical computing," SIAM Rev., vol. 59, iss. 1, pp. 65-98, 2017.
    @ARTICLE{Julia2017,
      author = {Bezanson, Jeff and Edelman, Alan and Karpinski, Stefan and Shah, Viral B.},
      title = {Julia: a fresh approach to numerical computing},
      journal = {SIAM Rev.},
      fjournal = {SIAM Review},
      volume = {59},
      year = {2017},
      number = {1},
      pages = {65--98},
      issn = {0036-1445},
      mrclass = {68N15 (65Y05 97P40)},
      mrnumber = {3605826},
      doi = {10.1137/141000671},
      url = {https://doi.org/10.1137/141000671},
      zblnumber = {1356.68030},
      }
  • [BogopolskiVikentiev2010] Go to document O. Bogopolski and R. Vikentiev, "Subgroups of small index in ${ Aut}(F_n)$ and Kazhdan’s property (T)," in Combinatorial and Geometric Group Theory, Birkhäuser/Springer Basel AG, Basel, 2010, pp. 1-17.
    @INCOLLECTION{BogopolskiVikentiev2010,
      author = {Bogopolski, O. and Vikentiev, R.},
      title = {Subgroups of small index in {${\rm Aut}(F_n)$} and {K}azhdan's property ({T})},
      booktitle = {Combinatorial and Geometric Group Theory},
      series = {Trends Math.},
      pages = {1--17},
      publisher = {Birkhäuser/Springer Basel AG, Basel},
      year = {2010},
      mrclass = {20F28 (20E05 20E15 57S25)},
      mrnumber = {2744013},
      mrreviewer = {H. Heineken},
      doi = {10.1007/978-3-7643-9911-5_1},
      url = {https://doi.org/10.1007/978-3-7643-9911-5_1},
      zblnumber = {1206.20043},
      }
  • [Breuillard2014] Go to document E. Breuillard, "Expander graphs, property $(\tau)$ and approximate groups," in Geometric Group Theory, Amer. Math. Soc., Providence, RI, 2014, vol. 21, pp. 325-377.
    @INCOLLECTION{Breuillard2014,
      author = {Breuillard, Emmanuel},
      title = {Expander graphs, property {$(\tau)$} and approximate groups},
      booktitle = {Geometric Group Theory},
      series = {IAS/Park City Math. Ser.},
      volume = {21},
      pages = {325--377},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2014},
      mrclass = {20F65 (22D10 60B15 60G50)},
      mrnumber = {3329732},
      mrreviewer = {Ben Joseph Green},
      doi = {10.1090/pcms/021/10},
      url = {https://doi.org/10.1090/pcms/021/10},
      zblnumber = {1440.20010},
      }
  • [BridsonVogtmann2006] Go to document M. R. Bridson and K. Vogtmann, "Automorphism groups of free groups, surface groups and free abelian groups," in Problems on Mapping Class Groups and Related Topics, Amer. Math. Soc., Providence, RI, 2006, vol. 74, pp. 301-316.
    @INCOLLECTION{BridsonVogtmann2006,
      author = {Bridson, Martin R. and Vogtmann, Karen},
      title = {Automorphism groups of free groups, surface groups and free abelian groups},
      booktitle = {Problems on Mapping Class Groups and Related Topics},
      series = {Proc. Sympos. Pure Math.},
      volume = {74},
      pages = {301--316},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2006},
      mrclass = {20F65 (20F28 57M07)},
      mrnumber = {2264548},
      doi = {10.1090/pspum/074/2264548},
      url = {https://doi.org/10.1090/pspum/074/2264548},
      zblnumber = {1184.20034},
      }
  • [Celleretal1995] Go to document F. Celler, C. R. Leedham-Green, S. H. Murray, A. C. Niemeyer, and E. A. O’Brien, "Generating random elements of a finite group," Comm. Algebra, vol. 23, iss. 13, pp. 4931-4948, 1995.
    @ARTICLE{Celleretal1995,
      author = {Celler, Frank and Leedham-Green, Charles R. and Murray, Scott H. and Niemeyer, Alice C. and O'Brien, E. A.},
      title = {Generating random elements of a finite group},
      journal = {Comm. Algebra},
      fjournal = {Communications in Algebra},
      volume = {23},
      year = {1995},
      number = {13},
      pages = {4931--4948},
      issn = {0092-7872},
      mrclass = {20P05 (20D99 68Q20)},
      mrnumber = {1356111},
      mrreviewer = {P. P. P\'{a}lfy},
      doi = {10.1080/00927879508825509},
      url = {https://doi.org/10.1080/00927879508825509},
      zblnumber = {0836.20094},
      }
  • [JuMP2017] Go to document I. Dunning, J. Huchette, and M. Lubin, "JuMP: a modeling language for mathematical optimization," SIAM Rev., vol. 59, iss. 2, pp. 295-320, 2017.
    @ARTICLE{JuMP2017,
      author = {Dunning, Iain and Huchette, Joey and Lubin, Miles},
      title = {Ju{MP}: a modeling language for mathematical optimization},
      journal = {SIAM Rev.},
      fjournal = {SIAM Review},
      volume = {59},
      year = {2017},
      number = {2},
      pages = {295--320},
      issn = {0036-1445},
      mrclass = {90-04 (65Y15 90C05 90C06 90C30)},
      mrnumber = {3646493},
      doi = {10.1137/15M1020575},
      url = {https://doi.org/10.1137/15M1020575},
      zblnumber = {1368.90002},
      }
  • [Nemo2017] Go to document C. Fieker, W. Hart, T. Hofmann, and F. Johansson, "Nemo/Hecke: computer algebra and number theory packages for the Julia programming language," in ISSAC’17—Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, 2017, pp. 157-164.
    @INPROCEEDINGS{Nemo2017,
      author = {Fieker, Claus and Hart, William and Hofmann, Tommy and Johansson, Fredrik},
      title = {Nemo/{H}ecke: computer algebra and number theory packages for the {J}ulia programming language},
      booktitle = {I{SSAC}'17---{P}roceedings of the 2017 {ACM} {I}nternational {S}ymposium on {S}ymbolic and {A}lgebraic {C}omputation},
      pages = {157--164},
      publisher = {ACM, New York},
      year = {2017},
      mrclass = {68W30 (11-04)},
      mrnumber = {3703682},
      doi = {10.1145/3087604.3087611},
      url = {https://doi.org/10.1145/3087604.3087611},
      zblnumber = {07245225},
      }
  • [Fisher-IMRN] Go to document D. Fisher, "${ Out}(F_n)$ and the spectral gap conjecture," Int. Math. Res. Not., p. I, 2006.
    @ARTICLE{Fisher-IMRN,
      author = {Fisher, David},
      title = {{${\rm Out}(F_n)$} and the spectral gap conjecture},
      journal = {Int. Math. Res. Not.},
      fjournal = {International Mathematics Research Notices},
      year = {2006},
      pages = {Art. ID 26028, 9},
      issn = {1073-7928},
      mrclass = {22D40 (22D10 37A15 37A30)},
      mrnumber = {2250018},
      mrreviewer = {Bachir Bekka},
      doi = {10.1155/IMRN/2006/26028},
      url = {https://doi.org/10.1155/IMRN/2006/26028},
      zblnumber = {1113.22007},
      }
  • [Fujiwara2017] Go to document K. Fujiwara and Y. Kabaya, "Computing Kazhdan constants by semidefinite programming," Exp. Math., vol. 28, iss. 3, pp. 301-312, 2019.
    @ARTICLE{Fujiwara2017,
      author = {Fujiwara, Koji and Kabaya, Yuichi},
      title = {Computing {K}azhdan constants by semidefinite programming},
      journal = {Exp. Math.},
      fjournal = {Experimental Mathematics},
      volume = {28},
      year = {2019},
      number = {3},
      pages = {301--312},
      issn = {1058-6458},
      mrclass = {22D10 (16S34 20C07 20C40 90C22)},
      mrnumber = {3985835},
      mrreviewer = {Uriya A. First},
      doi = {10.1080/10586458.2017.1396509},
      url = {https://doi.org/10.1080/10586458.2017.1396509},
      zblnumber = {1420.22007},
      }
  • [Gilman1977] Go to document R. Gilman, "Finite quotients of the automorphism group of a free group," Canadian J. Math., vol. 29, iss. 3, pp. 541-551, 1977.
    @ARTICLE{Gilman1977,
      author = {Gilman, Robert},
      title = {Finite quotients of the automorphism group of a free group},
      journal = {Canadian J. Math.},
      fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      volume = {29},
      year = {1977},
      number = {3},
      pages = {541--551},
      issn = {0008-414X},
      mrclass = {20F05},
      mrnumber = {0435226},
      mrreviewer = {M. J. Dunwoody},
      doi = {10.4153/CJM-1977-056-3},
      url = {https://doi.org/10.4153/CJM-1977-056-3},
      zblnumber = {0332.20010},
      }
  • [GrunewaldLubotzky2006] Go to document F. Grunewald and A. Lubotzky, "Linear representations of the automorphism group of a free group," Geom. Funct. Anal., vol. 18, iss. 5, pp. 1564-1608, 2009.
    @ARTICLE{GrunewaldLubotzky2006,
      author = {Grunewald, Fritz and Lubotzky, Alexander},
      title = {Linear representations of the automorphism group of a free group},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {18},
      year = {2009},
      number = {5},
      pages = {1564--1608},
      issn = {1016-443X},
      mrclass = {20F28 (20E05 20G05)},
      mrnumber = {2481737},
      mrreviewer = {Valeriy G. Bardakov},
      doi = {10.1007/s00039-009-0702-2},
      url = {https://doi.org/10.1007/s00039-009-0702-2},
      zblnumber = {1175.20028},
      }
  • [Kaluba2018] Go to document M. Kaluba, D. Kielak, and P. W. Nowak, Approximate sum of squares decompositions for $\operatorname{Adj}_5 + k\cdot\operatorname{Op}_5 – \lambda \Delta_5 \in I\operatorname{SAut}(F_5)$, 2020.
    @MISC{Kaluba2018,
      author = {Kaluba, Marek and Kielak, D. and Nowak, P. W.},
      title = {Approximate sum of squares decompositions for {$\operatorname{Adj}_5 + k\cdot\operatorname{Op}_5 - \lambda \Delta_5 \in I\operatorname{SAut}(F_5)$}},
      year = {2020},
      doi = {10.5281/zenodo.1958996},
      zblnumber = {},
      }
  • [KalubaNowak2018] Go to document M. Kaluba and P. W. Nowak, "Certifying numerical estimates of spectral gaps," Groups Complex. Cryptol., vol. 10, iss. 1, pp. 33-41, 2018.
    @ARTICLE{KalubaNowak2018,
      author = {Kaluba, Marek and Nowak, Piotr W.},
      title = {Certifying numerical estimates of spectral gaps},
      journal = {Groups Complex. Cryptol.},
      fjournal = {Groups. Complexity. Cryptology},
      volume = {10},
      year = {2018},
      number = {1},
      pages = {33--41},
      issn = {1867-1144},
      mrclass = {22D10 (20C07 20C40 94A60)},
      mrnumber = {3794918},
      doi = {10.1515/gcc-2018-0004},
      url = {https://doi.org/10.1515/gcc-2018-0004},
      zblnumber = {1394.22008},
      }
  • [Kaluba2017a] Go to document M. Kaluba, P. W. Nowak, and N. Ozawa, An approximation of the spectral gap for the Laplace operator on $\operatorname{SAut}(\mathbb{F}_5)$, 2017.
    @MISC{Kaluba2017a,
      author = {Kaluba, Marek and Nowak, Piotr W. and Ozawa, N.},
      title = {An approximation of the spectral gap for the {L}aplace operator on {$\operatorname{SAut}(\mathbb{F}_5)$}},
      year = {2017},
      doi = {10.5281/zenodo.1913734},
      zblnumber = {},
      }
  • [Kalubaetal2017] Go to document M. Kaluba, P. W. Nowak, and N. Ozawa, "${ Aut}(\Bbb F_5)$ has property $(T)$," Math. Ann., vol. 375, iss. 3-4, pp. 1169-1191, 2019.
    @ARTICLE{Kalubaetal2017,
      author = {Kaluba, Marek and Nowak, Piotr W. and Ozawa, Narutaka},
      title = {{${\rm Aut}(\Bbb F_5)$} has property {$(T)$}},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {375},
      year = {2019},
      number = {3-4},
      pages = {1169--1191},
      issn = {0025-5831},
      mrclass = {20F28 (20C15)},
      mrnumber = {4023374},
      mrreviewer = {Fausto De Mari},
      doi = {10.1007/s00208-019-01874-9},
      url = {https://doi.org/10.1007/s00208-019-01874-9},
      zblnumber = {07126529},
      }
  • [Kassabov2005] Go to document M. Kassabov, "Kazhdan constants for ${ SL}_n({\Bbb Z})$," Internat. J. Algebra Comput., vol. 15, iss. 5-6, pp. 971-995, 2005.
    @ARTICLE{Kassabov2005,
      author = {Kassabov, Martin},
      title = {Kazhdan constants for {${\rm SL}_n({\Bbb Z})$}},
      journal = {Internat. J. Algebra Comput.},
      fjournal = {International Journal of Algebra and Computation},
      volume = {15},
      year = {2005},
      number = {5-6},
      pages = {971--995},
      issn = {0218-1967},
      mrclass = {22E40},
      mrnumber = {2197816},
      mrreviewer = {Markus Neuhauser},
      doi = {10.1142/S0218196705002712},
      url = {https://doi.org/10.1142/S0218196705002712},
      zblnumber = {1097.22007},
      }
  • [LubotzkyPak2001] Go to document A. Lubotzky and I. Pak, "The product replacement algorithm and Kazhdan’s property (T)," J. Amer. Math. Soc., vol. 14, iss. 2, pp. 347-363, 2001.
    @ARTICLE{LubotzkyPak2001,
      author = {Lubotzky, Alexander and Pak, Igor},
      title = {The product replacement algorithm and {K}azhdan's property ({T})},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {14},
      year = {2001},
      number = {2},
      pages = {347--363},
      issn = {0894-0347},
      mrclass = {60B15 (05C25 22D10 60J10)},
      mrnumber = {1815215},
      mrreviewer = {Piotr Graczyk},
      doi = {10.1090/S0894-0347-00-00356-8},
      url = {https://doi.org/10.1090/S0894-0347-00-00356-8},
      zblnumber = {0980.20078},
      }
  • [McCool1989] Go to document J. McCool, "A faithful polynomial representation of ${ Out}\,F_3$," Math. Proc. Cambridge Philos. Soc., vol. 106, iss. 2, pp. 207-213, 1989.
    @ARTICLE{McCool1989,
      author = {McCool, James},
      title = {A faithful polynomial representation of {${\rm Out}\,F_3$}},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {106},
      year = {1989},
      number = {2},
      pages = {207--213},
      issn = {0305-0041},
      mrclass = {20F28},
      mrnumber = {1002533},
      mrreviewer = {W. Metzler},
      doi = {10.1017/S0305004100078026},
      url = {https://doi.org/10.1017/S0305004100078026},
      zblnumber = {0733.20031},
      }
  • [Netzer2015] Go to document T. Netzer and A. Thom, "Kazhdan’s property (T) via semidefinite optimization," Exp. Math., vol. 24, iss. 3, pp. 371-374, 2015.
    @ARTICLE{Netzer2015,
      author = {Netzer, Tim and Thom, Andreas},
      title = {Kazhdan's property ({T}) via semidefinite optimization},
      journal = {Exp. Math.},
      fjournal = {Experimental Mathematics},
      volume = {24},
      year = {2015},
      number = {3},
      pages = {371--374},
      issn = {1058-6458},
      mrclass = {16S34 (20C07 22D10)},
      mrnumber = {3359223},
      doi = {10.1080/10586458.2014.999149},
      url = {https://doi.org/10.1080/10586458.2014.999149},
      zblnumber = {1391.16031},
      }
  • [Donny2016] Go to document B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, "Conic optimization via operator splitting and homogeneous self-dual embedding," J. Optim. Theory Appl., vol. 169, iss. 3, pp. 1042-1068, 2016.
    @ARTICLE{Donny2016,
      author = {O'Donoghue, Brendan and Chu, Eric and Parikh, Neal and Boyd, Stephen},
      title = {Conic optimization via operator splitting and homogeneous self-dual embedding},
      journal = {J. Optim. Theory Appl.},
      fjournal = {Journal of Optimization Theory and Applications},
      volume = {169},
      year = {2016},
      number = {3},
      pages = {1042--1068},
      issn = {0022-3239},
      mrclass = {90C25 (49M05 49M29 90C06)},
      mrnumber = {3501397},
      mrreviewer = {Jingyong Tang},
      doi = {10.1007/s10957-016-0892-3},
      url = {https://doi.org/10.1007/s10957-016-0892-3},
      zblnumber = {1342.90136},
      }
  • [Ozawa2016] Go to document N. Ozawa, "Noncommutative real algebraic geometry of Kazhdan’s property (T)," J. Inst. Math. Jussieu, vol. 15, iss. 1, pp. 85-90, 2016.
    @ARTICLE{Ozawa2016,
      author = {Ozawa, Narutaka},
      title = {Noncommutative real algebraic geometry of {K}azhdan's property ({T})},
      journal = {J. Inst. Math. Jussieu},
      fjournal = {Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu},
      volume = {15},
      year = {2016},
      number = {1},
      pages = {85--90},
      issn = {1474-7480},
      mrclass = {22D10 (20F10 22D15 46L89)},
      mrnumber = {3427595},
      mrreviewer = {Alain Valette},
      doi = {10.1017/S1474748014000309},
      url = {https://doi.org/10.1017/S1474748014000309},
      zblnumber = {1336.22008},
      }
  • [Shalom1999] Go to document Y. Shalom, "Bounded generation and Kazhdan’s property (T)," Inst. Hautes Études Sci. Publ. Math., iss. 90, pp. 145-168 (2001), 1999.
    @ARTICLE{Shalom1999,
      author = {Shalom, Yehuda},
      title = {Bounded generation and {K}azhdan's property ({T})},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
      number = {90},
      year = {1999},
      pages = {145--168 (2001)},
      issn = {0073-8301},
      mrclass = {22E46 (22E67)},
      mrnumber = {1813225},
      mrreviewer = {Paul Jolissaint},
      url = {http://www.numdam.org/item?id=PMIHES_1999__90__145_0},
      zblnumber = {0980.22017},
      }
  • [GAP] Go to document R. GAP Group, GAP — Groups, algorithms, and programming, version 4.7.8, 2015.
    @MISC{GAP, key = {GAP},
      author = {\relax{The {GAP G}roup}},
      title = {GAP -- Groups, algorithms, and programming, version 4.7.8},
      year = {2015},
      url = {http://www.gap-system.org},
      zblnumber = {},
      }

Authors

Marek Kaluba

Adam Mickiewicz University, Poznań, Poland

Dawid Kielak

Universität Bielefeld, Bielefeld, Germany

Current address:

Mathematical Institute, University of Oxford, Oxford, United Kingdom Piotr W. Nowak

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland