Singularities of linear systems and boundedness of Fano varieties

Abstract

We study log canonical thresholds (also called global log canonical threshold or $\alpha $-invariant) of $\mathbb R$-linear systems. We prove existence of positive lower bounds in different settings, in particular, proving a conjecture of Ambro. We then show that the Borisov-Alexeev-Borisov conjecture holds; that is, given a natural number $d$ and a positive real number $\epsilon $, the set of Fano varieties of dimension $d$ with $\epsilon $-log canonical singularities forms a bounded family. This implies that birational automorphism groups of rationally connected varieties are Jordan which, in particular, answers a question of Serre. Next we show that if the log canonical threshold of the anti-canonical system of a Fano variety is at most one, then it is computed by some divisor, answering a question of Tian in this case.

  • [Alexeev] Go to document V. Alexeev, "Boundedness and $K^2$ for log surfaces," Internat. J. Math., vol. 5, iss. 6, pp. 779-810, 1994.
    @ARTICLE{Alexeev,
      author = {Alexeev, Valery},
      title = {Boundedness and {$K^2$} for log surfaces},
      journal = {Internat. J. Math.},
      fjournal = {International Journal of Mathematics},
      volume = {5},
      year = {1994},
      number = {6},
      pages = {779--810},
      issn = {0129-167X},
      mrclass = {14J10 (14J25)},
      mrnumber = {1298994},
      mrreviewer = {Mark Gross},
      doi = {10.1142/S0129167X94000395},
      url = {https://doi.org/10.1142/S0129167X94000395},
      zblnumber = {0838.14028},
      }
  • [Alexeev-Brion] V. A. Alexeev and M. Brion, "Boundedness of spherical Fano varieties," in The Fano Conference, Univ. Torino, Turin, 2004, pp. 69-80.
    @INCOLLECTION{Alexeev-Brion,
      author = {Alexeev, Valery A. and Brion, Michel},
      title = {Boundedness of spherical {F}ano varieties},
      booktitle = {The {F}ano {C}onference},
      pages = {69--80},
      publisher = {Univ. Torino, Turin},
      year = {2004},
      mrclass = {14J45 (14M17 14M25)},
      mrnumber = {2112568},
      mrreviewer = {Franz Pauer},
      zblnumber = {1087.14028},
      }
  • [Ambro] Go to document F. Ambro, "Variation of log canonical thresholds in linear systems," Int. Math. Res. Not. IMRN, iss. 14, pp. 4418-4448, 2016.
    @ARTICLE{Ambro,
      author = {Ambro, Florin},
      title = {Variation of log canonical thresholds in linear systems},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2016},
      number = {14},
      pages = {4418--4448},
      issn = {1073-7928},
      mrclass = {14E30 (14J45 14M25)},
      mrnumber = {3556423},
      mrreviewer = {Alex Massarenti},
      doi = {10.1093/imrn/rnv284},
      url = {https://doi.org/10.1093/imrn/rnv284},
      zblnumber = {1404.14020},
      }
  • [B-lcy-fibs] C. Birkar, Log Calabi-Yau fibrations, 2018.
    @MISC{B-lcy-fibs,
      author = {Birkar, Caucher},
      title = {Log {C}alabi-{Y}au fibrations},
      year = {2018},
      arxiv = {1811.10709},
      zblnumber = {},
      }
  • [B-compl] Go to document C. Birkar, "Anti-pluricanonical systems on Fano varieties," Ann. of Math. (2), vol. 190, iss. 2, pp. 345-463, 2019.
    @ARTICLE{B-compl,
      author = {Birkar, Caucher},
      title = {Anti-pluricanonical systems on {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {190},
      year = {2019},
      number = {2},
      pages = {345--463},
      issn = {0003-486X},
      mrclass = {14J45 (14C20 14E05 14E30)},
      mrnumber = {3997127},
      doi = {10.4007/annals.2019.190.2.1},
      url = {https://doi.org/10.4007/annals.2019.190.2.1},
      zblnumber = {07107180},
      }
  • [BCHM] Go to document C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type," J. Amer. Math. Soc., vol. 23, iss. 2, pp. 405-468, 2010.
    @ARTICLE{BCHM,
      author = {Birkar, Caucher and Cascini, Paolo and Hacon, Christopher D. and McKernan, James},
      title = {Existence of minimal models for varieties of log general type},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {23},
      year = {2010},
      number = {2},
      pages = {405--468},
      issn = {0894-0347},
      mrclass = {14E30 (14E05)},
      mrnumber = {2601039},
      mrreviewer = {Mark Gross},
      doi = {10.1090/S0894-0347-09-00649-3},
      url = {https://doi.org/10.1090/S0894-0347-09-00649-3},
      zblnumber = {1210.14019},
      }
  • [A-Borisov] Go to document A. Borisov, "Boundedness of Fano threefolds with log-terminal singularities of given index," J. Math. Sci. Univ. Tokyo, vol. 8, iss. 2, pp. 329-342, 2001.
    @ARTICLE{A-Borisov,
      author = {Borisov, Alexandr},
      title = {Boundedness of {F}ano threefolds with log-terminal singularities of given index},
      journal = {J. Math. Sci. Univ. Tokyo},
      fjournal = {The Univ. of Tokyo. Journal of Mathematical Sciences},
      volume = {8},
      year = {2001},
      number = {2},
      pages = {329--342},
      issn = {1340-5705},
      mrclass = {14J45 (14E05 14E30 14J30)},
      mrnumber = {1837167},
      mrreviewer = {Yuri G. Prokhorov},
      url = {https://www.ms.u-tokyo.ac.jp/journal/abstract/jms080208.html},
      zblnumber = {1073.14539},
      }
  • [A-L-Borisov] Go to document A. A. Borisov and L. A. Borisov, "Singular toric Fano varieties," Sb. Math., vol. 75, iss. 1, pp. 277-283, 1993.
    @ARTICLE{A-L-Borisov,
      author = {Borisov, A. A. and Borisov, L. A.},
      title = {Singular toric {F}ano varieties},
      journal = {Sb. Math.},
      fjournal = {Russian Academy of Sciences. Sbornik Mathematics},
      volume = {75},
      year = {1993},
      number = {1},
      pages = {277--283},
      issn = {0368-8666},
      mrclass = {14J45 (14M25)},
      mrnumber = {1166957},
      mrreviewer = {Yuri G. Prokhorov},
      doi = {10.1070/SM1993v075n01ABEH003385},
      url = {https://doi.org/10.1070/SM1993v075n01ABEH003385},
      zblnumber = {0786.14028},
      }
  • [Campana] Go to document F. Campana, "Une version géométrique généralisée du théorème du produit de Nadel," Bull. Soc. Math. France, vol. 119, iss. 4, pp. 479-493, 1991.
    @ARTICLE{Campana,
      author = {Campana, F.},
      title = {Une version géométrique généralisée du théorème du produit de {N}adel},
      journal = {Bull. Soc. Math. France},
      fjournal = {Bulletin de la Société Mathématique de France},
      volume = {119},
      year = {1991},
      number = {4},
      pages = {479--493},
      issn = {0037-9484},
      mrclass = {14J45 (14C20)},
      mrnumber = {1136848},
      mrreviewer = {Vasile Br\^ınz\u{a}nescu},
      doi = {10.24033/bsmf.2176},
      url = {https://doi.org/10.24033/bsmf.2176},
      zblnumber = {0783.14023},
      }
  • [cheltsov-shramov] Go to document I. A. Chelcprimetsov and K. A. Shramov, "Log-canonical thresholds for nonsingular Fano threefolds," Uspekhi Mat. Nauk, vol. 63, iss. 5(383), pp. 73-180, 2008.
    @ARTICLE{cheltsov-shramov,
      author = {Chel{\cprime}tsov, I. A. and Shramov, K. A.},
      title = {Log-canonical thresholds for nonsingular {F}ano threefolds},
      journal = {Uspekhi Mat. Nauk},
      fjournal = {Uspekhi Matematicheskikh Nauk},
      volume = {63},
      year = {2008},
      number = {5(383)},
      pages = {73--180},
      issn = {0042-1316},
      mrclass = {14J45 (14J30 32Q20)},
      mrnumber = {2484031},
      mrreviewer = {Alexandr V. Pukhlikov},
      doi = {10.1070/RM2008v063n05ABEH004561},
      url = {https://doi.org/10.1070/RM2008v063n05ABEH004561},
      zblnumber = {1167.14024},
      }
  • [toric-cox-etal] Go to document D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties, Amer. Math. Soc., Providence, RI, 2011, vol. 124.
    @BOOK{toric-cox-etal,
      author = {Cox, David A. and Little, John B. and Schenck, Henry K.},
      title = {Toric Varieties},
      series = {Grad. Stud. in Math.},
      volume = {124},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2011},
      pages = {xxiv+841},
      isbn = {978-0-8218-4819-7},
      mrclass = {14M25 (05A15 05E45 52B12)},
      mrnumber = {2810322},
      mrreviewer = {Ivan Arzhantsev},
      doi = {10.1090/gsm/124},
      url = {https://doi.org/10.1090/gsm/124},
      zblnumber = {1223.14001},
      }
  • [HMX2] Go to document C. D. Hacon, J. McKernan, and C. Xu, "ACC for log canonical thresholds," Ann. of Math. (2), vol. 180, iss. 2, pp. 523-571, 2014.
    @ARTICLE{HMX2,
      author = {Hacon, Christopher D. and McKernan, James and Xu, Chenyang},
      title = {A{CC} for log canonical thresholds},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {180},
      year = {2014},
      number = {2},
      pages = {523--571},
      issn = {0003-486X},
      mrclass = {14E05 (14C20 14E30)},
      mrnumber = {3224718},
      mrreviewer = {Alexandr V. Pukhlikov},
      doi = {10.4007/annals.2014.180.2.3},
      url = {https://doi.org/10.4007/annals.2014.180.2.3},
      zblnumber = {1320.14023},
      }
  • [HX] Go to document C. D. Hacon and C. Xu, "Boundedness of log Calabi-Yau pairs of Fano type," Math. Res. Lett., vol. 22, iss. 6, pp. 1699-1716, 2015.
    @ARTICLE{HX,
      author = {Hacon, Christopher D. and Xu, Chenyang},
      title = {Boundedness of log {C}alabi-{Y}au pairs of {F}ano type},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {22},
      year = {2015},
      number = {6},
      pages = {1699--1716},
      issn = {1073-2780},
      mrclass = {14E05},
      mrnumber = {3507257},
      mrreviewer = {Lei Zhang},
      doi = {10.4310/MRL.2015.v22.n6.a8},
      url = {https://doi.org/10.4310/MRL.2015.v22.n6.a8},
      zblnumber = {1362.14018},
      }
  • [Isk-Prokh] V. A. Iskovskikh and Y. G. Prokhorov, "Fano varieties," in Algebraic Geometry, V, Springer, Berlin, 1999, vol. 47, pp. 1-247.
    @INCOLLECTION{Isk-Prokh,
      author = {Iskovskikh, V. A. and Prokhorov, Yu. G.},
      title = {Fano varieties},
      booktitle = {Algebraic Geometry, {V}},
      series = {Encyclopaedia Math. Sci.},
      volume = {47},
      pages = {1--247},
      publisher = {Springer, Berlin},
      year = {1999},
      mrclass = {14J45 (14E07 14F22 14K30)},
      mrnumber = {1668579},
      mrreviewer = {Takao Fujita},
      zblnumber = {0912.14013},
      }
  • [Jiang-3] Go to document C. Jiang, "Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below," Ann. Sci. Éc. Norm. Supér. (4), vol. 53, iss. 5, pp. 1235-1248, 2020.
    @ARTICLE{Jiang-3,
      author = {Jiang, Chen},
      title = {Boundedness of {$\Bbb Q$}-{F}ano varieties with degrees and alpha-invariants bounded from below},
      journal = {Ann. Sci. \'{E}c. Norm. Supér. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {53},
      year = {2020},
      number = {5},
      pages = {1235--1248},
      issn = {0012-9593},
      mrclass = {14J45 (14L24)},
      mrnumber = {4174851},
      doi = {},
      url = {},
      zblnumber = {},
      }
  • [Jiang-2] C. Jiang, Boundedness of anti-canonical volumes of singular log Fano threefolds, 2014.
    @MISC{Jiang-2,
      author = {Jiang, Chen},
      title = {Boundedness of anti-canonical volumes of singular log {F}ano threefolds},
      note = {to appear in \emph{Comm. Anal. Geom.}},
      year = {2014},
      arxiv = {1411.6728v2},
      zblnumber = {},
      }
  • [Jiang] Go to document C. Jiang, "On birational boundedness of Fano fibrations," Amer. J. Math., vol. 140, iss. 5, pp. 1253-1276, 2018.
    @ARTICLE{Jiang,
      author = {Jiang, Chen},
      title = {On birational boundedness of {F}ano fibrations},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {140},
      year = {2018},
      number = {5},
      pages = {1253--1276},
      issn = {0002-9327},
      mrclass = {14E05 (14D06 14J45)},
      mrnumber = {3862064},
      mrreviewer = {Alex Massarenti},
      doi = {10.1353/ajm.2018.0030},
      url = {https://doi.org/10.1353/ajm.2018.0030},
      zblnumber = {1404.14021},
      }
  • [kawakita] Go to document M. Kawakita, "Inversion of adjunction on log canonicity," Invent. Math., vol. 167, iss. 1, pp. 129-133, 2007.
    @ARTICLE{kawakita,
      author = {Kawakita, Masayuki},
      title = {Inversion of adjunction on log canonicity},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {167},
      year = {2007},
      number = {1},
      pages = {129--133},
      issn = {0020-9910},
      mrclass = {14E30 (14N30)},
      mrnumber = {2264806},
      mrreviewer = {Carla Novelli},
      doi = {10.1007/s00222-006-0008-z},
      url = {https://doi.org/10.1007/s00222-006-0008-z},
      zblnumber = {1114.14009},
      }
  • [kawamata-bnd-ext-ray] Go to document Y. Kawamata, "On the length of an extremal rational curve," Invent. Math., vol. 105, iss. 3, pp. 609-611, 1991.
    @ARTICLE{kawamata-bnd-ext-ray,
      author = {Kawamata, Yujiro},
      title = {On the length of an extremal rational curve},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {105},
      year = {1991},
      number = {3},
      pages = {609--611},
      issn = {0020-9910},
      mrclass = {14E30 (14E99)},
      mrnumber = {1117153},
      mrreviewer = {Peter Nielsen},
      doi = {10.1007/BF01232281},
      url = {https://doi.org/10.1007/BF01232281},
      zblnumber = {0751.14007},
      }
  • [kawamata-term-3-folds] Go to document Y. Kawamata, "Boundedness of $\Bbb Q$-Fano threefolds," in Proceedings of the International Conference on Algebra, Part 3, 1992, pp. 439-445.
    @INPROCEEDINGS{kawamata-term-3-folds,
      author = {Kawamata, Yujiro},
      title = {Boundedness of {$\bold Q$}-{F}ano threefolds},
      booktitle = {Proceedings of the {I}nternational {C}onference on {A}lgebra, {P}art 3},
      venue = {{N}ovosibirsk, 1989},
      series = {Contemp. Math.},
      volume = {131.3},
      pages = {439--445},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1992},
      mrclass = {14J45 (14E30)},
      mrnumber = {1175897},
      mrreviewer = {Jaros\l aw A. Wi\'{s}niewski},
      doi = {10.1090/conm/131.3/1175897},
      url = {https://doi.org/10.1090/conm/131.3/1175897},
      zblnumber = {0785.14024},
      }
  • [Kedlaya] Go to document K. S. Kedlaya, "More étale covers of affine spaces in positive characteristic," J. Algebraic Geom., vol. 14, iss. 1, pp. 187-192, 2005.
    @ARTICLE{Kedlaya,
      author = {Kedlaya, Kiran S.},
      title = {More étale covers of affine spaces in positive characteristic},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {14},
      year = {2005},
      number = {1},
      pages = {187--192},
      issn = {1056-3911},
      mrclass = {14E20 (13A35)},
      mrnumber = {2092132},
      mrreviewer = {Gordon Heier},
      doi = {10.1090/S1056-3911-04-00381-9},
      url = {https://doi.org/10.1090/S1056-3911-04-00381-9},
      zblnumber = {1065.14020},
      }
  • [Kollar-toroidal] Go to document J. Kollár, "Partial resolution by toroidal blow-ups," Tunis. J. Math., vol. 1, iss. 1, pp. 3-12, 2019.
    @ARTICLE{Kollar-toroidal,
      author = {Koll\'{a}r, J\'{a}nos},
      title = {Partial resolution by toroidal blow-ups},
      journal = {Tunis. J. Math.},
      fjournal = {Tunisian Journal of Mathematics},
      volume = {1},
      year = {2019},
      number = {1},
      pages = {3--12},
      issn = {2576-7658},
      mrclass = {14E30 (14E15)},
      mrnumber = {3907731},
      mrreviewer = {Yu-Chao Tu},
      doi = {10.2140/tunis.2019.1.3},
      url = {https://doi.org/10.2140/tunis.2019.1.3},
      zblnumber = {1408.14060},
      }
  • [Kollar-flip-abundance] Flips and Abundance for Algebraic Threefolds, Kollár, J., Ed., Soc. Math. France, Paris, 1992, vol. 211.
    @BOOK{Kollar-flip-abundance, editor = {Koll\'{a}r, J\'{a}nos},
      title = {Flips and Abundance for Algebraic Threefolds},
      note = {A summer seminar at the University of Utah, Salt Lake City, 1991},
      series = {Astérisque},
      publisher={Soc. Math. France, Paris},
      volume = {211},
      pages = {258 pp.},
      mrnumber = {1225842},
      year = {1992},
      zblnumber = {0782.00075},
      }
  • [KMM-smooth-fano] Go to document J. Kollár, Y. Miyaoka, and S. Mori, "Rational connectedness and boundedness of Fano manifolds," J. Differential Geom., vol. 36, iss. 3, pp. 765-779, 1992.
    @ARTICLE{KMM-smooth-fano,
      author = {Koll\'{a}r, J\'{a}nos and Miyaoka, Yoichi and Mori, Shigefumi},
      title = {Rational connectedness and boundedness of {F}ano manifolds},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {36},
      year = {1992},
      number = {3},
      pages = {765--779},
      issn = {0022-040X},
      mrclass = {14J45},
      mrnumber = {1189503},
      mrreviewer = {Yuri G. Prokhorov},
      url = {http://projecteuclid.org/euclid.jdg/1214453188},
      zblnumber = {0759.14032},
      }
  • [KMMT-can-3-folds] Go to document J. Kollár, Y. Miyaoka, S. Mori, and H. Takagi, "Boundedness of canonical $\Bbb Q$-Fano 3-folds," Proc. Japan Acad. Ser. A Math. Sci., vol. 76, iss. 5, pp. 73-77, 2000.
    @ARTICLE{KMMT-can-3-folds,
      author = {Koll\'{a}r, J\'{a}nos and Miyaoka, Yoichi and Mori, Shigefumi and Takagi, Hiromichi},
      title = {Boundedness of canonical {$\bold Q$}-{F}ano 3-folds},
      journal = {Proc. Japan Acad. Ser. A Math. Sci.},
      fjournal = {Japan Academy. Proceedings. Series A. Mathematical Sciences},
      volume = {76},
      year = {2000},
      number = {5},
      pages = {73--77},
      issn = {0386-2194},
      mrclass = {14J45 (14E30)},
      mrnumber = {1771144},
      mrreviewer = {Yuri G. Prokhorov},
      url = {http://projecteuclid.org/euclid.pja/1148393517},
      zblnumber = {},
      }
  • [kollar-mori] Go to document J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Univ. Press, Cambridge, 1998, vol. 134.
    @BOOK{kollar-mori,
      author = {Koll\'{a}r, J\'{a}nos and Mori, Shigefumi},
      title = {Birational Geometry of Algebraic Varieties},
      series = {Cambridge Tracts in Math.},
      volume = {134},
      note = {with the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1998},
      pages = {viii+254},
      isbn = {0-521-63277-3},
      mrclass = {14E30},
      mrnumber = {1658959},
      mrreviewer = {Mark Gross},
      doi = {10.1017/CBO9780511662560},
      url = {https://doi.org/10.1017/CBO9780511662560},
      zblnumber = {},
      }
  • [Lazar] Go to document R. Lazarsfeld, Positivity in Algebraic Geometry. II. Positivity for Vector Bundles, and Multiplier Ideals, Springer-Verlag, Berlin, 2004, vol. 49.
    @BOOK{Lazar,
      author = {Lazarsfeld, Robert},
      title = {Positivity in Algebraic Geometry. {II}. Positivity for Vector Bundles, and Multiplier Ideals},
      series = {Ergeb. Mathe. Grenzgeb.},
      volume = {49},
      publisher = {Springer-Verlag, Berlin},
      year = {2004},
      pages = {xviii+385},
      isbn = {3-540-22534-X},
      mrclass = {14-02 (14C20 14F05 14F17)},
      mrnumber = {2095472},
      mrreviewer = {Mihnea Popa},
      doi = {10.1007/978-3-642-18810-7},
      url = {https://doi.org/10.1007/978-3-642-18810-7},
      zblnumber = {1093.14500},
      }
  • [Lin] Go to document J. Lin, "Birational unboundedness of $\Bbb Q$-Fano threefolds," Int. Math. Res. Not., iss. 6, pp. 301-312, 2003.
    @ARTICLE{Lin,
      author = {Lin, Jiayuan},
      title = {Birational unboundedness of {$\Bbb Q$}-{F}ano threefolds},
      journal = {Int. Math. Res. Not.},
      fjournal = {International Mathematics Research Notices},
      year = {2003},
      number = {6},
      pages = {301--312},
      issn = {1073-7928},
      mrclass = {14J45 (14E30 14J30)},
      mrnumber = {1939018},
      mrreviewer = {Takao Fujita},
      doi = {10.1155/S1073792803108070},
      url = {https://doi.org/10.1155/S1073792803108070},
      zblnumber = {1019.14005},
      }
  • [MP] Go to document J. McKernan and Y. Prokhorov, "Threefold thresholds," Manuscripta Math., vol. 114, iss. 3, pp. 281-304, 2004.
    @ARTICLE{MP,
      author = {McKernan, James and Prokhorov, Yuri},
      title = {Threefold thresholds},
      journal = {Manuscripta Math.},
      fjournal = {Manuscripta Mathematica},
      volume = {114},
      year = {2004},
      number = {3},
      pages = {281--304},
      issn = {0025-2611},
      mrclass = {14E30 (14B05 14E05 14J30)},
      mrnumber = {2075967},
      mrreviewer = {Massimiliano Mella},
      doi = {10.1007/s00229-004-0457-x},
      url = {https://doi.org/10.1007/s00229-004-0457-x},
      zblnumber = {1060.14022},
      }
  • [Nadel] Go to document A. M. Nadel, "The boundedness of degree of Fano varieties with Picard number one," J. Amer. Math. Soc., vol. 4, iss. 4, pp. 681-692, 1991.
    @ARTICLE{Nadel,
      author = {Nadel, Alan Michael},
      title = {The boundedness of degree of {F}ano varieties with {P}icard number one},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {4},
      year = {1991},
      number = {4},
      pages = {681--692},
      issn = {0894-0347},
      mrclass = {14J45},
      mrnumber = {1115788},
      mrreviewer = {Harry D'Souza},
      doi = {10.2307/2939285},
      url = {https://doi.org/10.2307/2939285},
      zblnumber = {0754.14026},
      }
  • [Nikulin-3] Go to document V. V. Nikulin, "Del Pezzo surfaces with log-terminal singularities. III," Izv. Akad. Nauk SSSR Ser. Mat., vol. 53, iss. 6, pp. 1316-1334, 1338, 1989.
    @ARTICLE{Nikulin-3,
      author = {Nikulin, V. V.},
      title = {Del {P}ezzo surfaces with log-terminal singularities. {III}},
      journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {53},
      year = {1989},
      number = {6},
      pages = {1316--1334, 1338},
      note = {translation in {\em Math. USSR-Izv}. \textbf{35} (1990), no. 3, 657--675},
      issn = {0373-2436},
      mrclass = {14J26 (14J05 14J17)},
      mrnumber = {1039966},
      mrreviewer = {I. Dolgachev},
      doi = {10.1070/IM1990v035n03ABEH000721},
      url = {https://doi.org/10.1070/IM1990v035n03ABEH000721},
      zblnumber = {0711.14018},
      }
  • [Nikulin-2] Go to document V. V. Nikulin, "Del Pezzo surfaces with log-terminal singularities. II," Izv. Akad. Nauk SSSR Ser. Mat., vol. 52, iss. 5, pp. 1032-1050, 1119, 1988.
    @ARTICLE{Nikulin-2,
      author = {Nikulin, V. V.},
      title = {Del {P}ezzo surfaces with log-terminal singularities. {II}},
      journal = {Izv. Akad. Nauk SSSR Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {52},
      year = {1988},
      number = {5},
      pages = {1032--1050, 1119},
      note = {translation in {\em Math. USSR-Izv}. \textbf{33} (1989), no. 2, 355--372},
      issn = {0373-2436},
      mrclass = {14J26 (14J05 14J17)},
      mrnumber = {0972094},
      mrreviewer = {I. Dolgachev},
      doi = {10.1070/IM1989v033n02ABEH000836},
      url = {https://doi.org/10.1070/IM1989v033n02ABEH000836},
      zblnumber = {0704.14030},
      }
  • [Nikulin] Go to document V. V. Nikulin, "Del Pezzo surfaces with log-terminal singularities," Mat. Sb., vol. 180, iss. 2, pp. 226-243, 304, 1989.
    @ARTICLE{Nikulin,
      author = {Nikulin, V. V.},
      title = {Del {P}ezzo surfaces with log-terminal singularities},
      journal = {Mat. Sb.},
      fjournal = {Matematicheskiĭ Sbornik},
      volume = {180},
      year = {1989},
      number = {2},
      pages = {226--243, 304},
      issn = {0368-8666},
      mrclass = {14J26 (14E30 14J05)},
      mrnumber = {0993456},
      mrreviewer = {I. Dolgachev},
      note = {translation in {\em Math. USSR-Sb.},
      \textbf{66} (1990), no. 1, 231--248},
      doi = {10.1070/SM1990v066n01ABEH001314},
      url = {https://doi.org/10.1070/SM1990v066n01ABEH001314},
      zblnumber = {0674.14024},
      }
  • [Prokhorov-plt-blowups] Go to document Y. G. Prokhorov, "Blow-ups of canonical singularities," in Algebra, de Gruyter, Berlin, 2000, pp. 301-317.
    @INCOLLECTION{Prokhorov-plt-blowups,
      author = {Prokhorov, Yu. G.},
      title = {Blow-ups of canonical singularities},
      booktitle = {Algebra},
      venue = {{M}oscow, 1998},
      pages = {301--317},
      publisher = {de Gruyter, Berlin},
      year = {2000},
      mrclass = {14E30 (14B05 14E05 14J30)},
      mrnumber = {1754677},
      mrreviewer = {Massimiliano Mella},
      doi = {10.1515/9783110805697},
      url = {https://doi.org/10.1515/9783110805697},
      zblnumber = {1003.14005},
      }
  • [PSh-II] Go to document Y. G. Prokhorov and V. V. Shokurov, "Towards the second main theorem on complements," J. Algebraic Geom., vol. 18, iss. 1, pp. 151-199, 2009.
    @ARTICLE{PSh-II,
      author = {Prokhorov, Yu. G. and Shokurov, V. V.},
      title = {Towards the second main theorem on complements},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {18},
      year = {2009},
      number = {1},
      pages = {151--199},
      issn = {1056-3911},
      mrclass = {14C20 (14J45)},
      mrnumber = {2448282},
      mrreviewer = {Alexandr V. Pukhlikov},
      doi = {10.1090/S1056-3911-08-00498-0},
      url = {https://doi.org/10.1090/S1056-3911-08-00498-0},
      zblnumber = {1159.14020},
      }
  • [PSh-I] Go to document Y. G. Prokhorov and V. V. Shokurov, "The first fundamental theorem on complements: from global to local," Izv. Ross. Akad. Nauk Ser. Mat., vol. 65, iss. 6, pp. 99-128, 2001.
    @ARTICLE{PSh-I,
      author = {Prokhorov, Yu. G. and Shokurov, V. V.},
      title = {The first fundamental theorem on complements: from global to local},
      journal = {Izv. Ross. Akad. Nauk Ser. Mat.},
      fjournal = {Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya},
      volume = {65},
      year = {2001},
      number = {6},
      pages = {99--128},
      issn = {1607-0046},
      mrclass = {14E30 (14J40)},
      mrnumber = {1892905},
      mrreviewer = {Adrian Langer},
      doi = {10.1070/IM2001v065n06ABEH000366},
      url = {https://doi.org/10.1070/IM2001v065n06ABEH000366},
      zblnumber = {1068.14018},
      }
  • [Prokhorov-Shramov] Go to document Y. Prokhorov and C. Shramov, "Jordan property for Cremona groups," Amer. J. Math., vol. 138, iss. 2, pp. 403-418, 2016.
    @ARTICLE{Prokhorov-Shramov,
      author = {Prokhorov, Yuri and Shramov, Constantin},
      title = {Jordan property for {C}remona groups},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {138},
      year = {2016},
      number = {2},
      pages = {403--418},
      issn = {0002-9327},
      mrclass = {14E07},
      mrnumber = {3483470},
      mrreviewer = {Zinovy Reichstein},
      doi = {10.1353/ajm.2016.0017},
      url = {https://doi.org/10.1353/ajm.2016.0017},
      zblnumber = {1343.14010},
      }
  • [Prokhorov-Shramov-2] Go to document Y. Prokhorov and C. Shramov, "Jordan property for groups of birational selfmaps," Compos. Math., vol. 150, iss. 12, pp. 2054-2072, 2014.
    @ARTICLE{Prokhorov-Shramov-2,
      author = {Prokhorov, Yuri and Shramov, Constantin},
      title = {Jordan property for groups of birational selfmaps},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {150},
      year = {2014},
      number = {12},
      pages = {2054--2072},
      issn = {0010-437X},
      mrclass = {14E07},
      mrnumber = {3292293},
      mrreviewer = {Anne-Sophie Kaloghiros},
      doi = {10.1112/S0010437X14007581},
      url = {https://doi.org/10.1112/S0010437X14007581},
      zblnumber = {1314.14022},
      }
  • [Serre] Go to document . J-P. Serre, "A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field," Mosc. Math. J., vol. 9, iss. 1, pp. 193-208, back matter, 2009.
    @ARTICLE{Serre,
      author = {Serre, {\relax J-P}},
      title = {A {M}inkowski-style bound for the orders of the finite subgroups of the {C}remona group of rank 2 over an arbitrary field},
      journal = {Mosc. Math. J.},
      fjournal = {Moscow Mathematical Journal},
      volume = {9},
      year = {2009},
      number = {1},
      pages = {193--208, back matter},
      issn = {1609-3321},
      mrclass = {14E07 (14J26)},
      mrnumber = {2567402},
      mrreviewer = {Alberto Calabri},
      doi = {10.17323/1609-4514-2009-9-1-183-198},
      url = {https://doi.org/10.17323/1609-4514-2009-9-1-183-198},
      zblnumber = {1203.14017},
      }
  • [Tian] Go to document G. Tian, "On a set of polarized Kähler metrics on algebraic manifolds," J. Differential Geom., vol. 32, iss. 1, pp. 99-130, 1990.
    @ARTICLE{Tian,
      author = {Tian, Gang},
      title = {On a set of polarized {K}ähler metrics on algebraic manifolds},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {32},
      year = {1990},
      number = {1},
      pages = {99--130},
      issn = {0022-040X},
      mrclass = {32L07 (32C17 53C55)},
      mrnumber = {1064867},
      mrreviewer = {John M. Lee},
      doi = {10.4310/jdg/1214445039},
      url = {https://doi.org/10.4310/jdg/1214445039},
      zblnumber = {0706.53036},
      }
  • [Viehweg] Go to document E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, Springer-Verlag, Berlin, 1995, vol. 30.
    @BOOK{Viehweg,
      author = {Viehweg, Eckart},
      title = {Quasi-Projective Moduli for Polarized Manifolds},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {30},
      publisher = {Springer-Verlag, Berlin},
      year = {1995},
      pages = {viii+320},
      isbn = {3-540-59255-5},
      mrclass = {14-02 (14D20 14D22)},
      mrnumber = {1368632},
      mrreviewer = {P. E. Newstead},
      doi = {10.1007/978-3-642-79745-3},
      url = {https://doi.org/10.1007/978-3-642-79745-3},
      zblnumber = {0844.14004},
      }
  • [Xu-plt] Go to document C. Xu, "Finiteness of algebraic fundamental groups," Compos. Math., vol. 150, iss. 3, pp. 409-414, 2014.
    @ARTICLE{Xu-plt,
      author = {Xu, Chenyang},
      title = {Finiteness of algebraic fundamental groups},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {150},
      year = {2014},
      number = {3},
      pages = {409--414},
      issn = {0010-437X},
      mrclass = {14J17 (14J45)},
      mrnumber = {3187625},
      mrreviewer = {Andrzej Kozlowski},
      doi = {10.1112/S0010437X13007562},
      url = {https://doi.org/10.1112/S0010437X13007562},
      zblnumber = {1291.14057},
      }
  • [Zarhin] Go to document Y. G. Zarhin, "Theta groups and products of abelian and rational varieties," Proc. Edinb. Math. Soc. (2), vol. 57, iss. 1, pp. 299-304, 2014.
    @ARTICLE{Zarhin,
      author = {Zarhin, Yuri G.},
      title = {Theta groups and products of abelian and rational varieties},
      journal = {Proc. Edinb. Math. Soc. (2)},
      fjournal = {Proceedings of the Edinburgh Mathematical Society. Series II},
      volume = {57},
      year = {2014},
      number = {1},
      pages = {299--304},
      issn = {0013-0915},
      mrclass = {14E07 (14K05)},
      mrnumber = {3165026},
      mrreviewer = {Vladimir L. Popov},
      doi = {10.1017/S0013091513000862},
      url = {https://doi.org/10.1017/S0013091513000862},
      zblnumber = {1311.14018},
      }

Authors

Caucher Birkar

DPMMS, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK