On positivity of the CM line bundle on K-moduli spaces

Abstract

In this paper, we consider the CM line bundle on the $\mathrm {K}$-moduli space, i.e., the moduli space parametrizing $\mathrm {K}$-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly $\mathrm {K}$-stable Fano varieties that conjecturally should be the entire moduli space. As a corollary, we prove that the moduli space parametrizing smoothable $\mathrm {K}$-polystable Fano varieties is projective.

During the course of proof, we develop a new invariant for filtrations that can be used to test various $\mathrm {K}$-stability notions of Fano varieties.

  • [AHLH18] J. Alper, D. Halphern-Leistner, and J. Heinloth, Existence of moduli spaces for algebraic stacks, 2018.
    @MISC{AHLH18,
      author = {Alper, J. and Halphern-Leistner, D. and Heinloth, J.},
      title = {Existence of moduli spaces for algebraic stacks},
      year = {2018},
      arxiv = {1812.01128},
      zblnumber = {},
      }
  • [ADL19] K. Ascher, K. DeVleming, and Y. Liu, Wall crossing for K-moduli spaces of plane curves, 2019.
    @MISC{ADL19,
      author = {Ascher, K. and DeVleming, K. and Liu, Y.},
      title = {Wall crossing for {K}-moduli spaces of plane curves},
      year = {2019},
      arxiv = {1909.04576},
      zblnumber = {},
      }
  • [BBJ15] R. Berman, S. Boucksom, and M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, 2015.
    @MISC{BBJ15,
      author = {Berman, Robert and Boucksom, Sébastien and Jonsson, Mattias},
      title = {A variational approach to the {Y}au-{T}ian-{D}onaldson conjecture},
      year = {2015},
      arxiv = {1509.04561},
      zblnumber = {},
      }
  • [Bir19] Go to document C. Birkar, "Anti-pluricanonical systems on Fano varieties," Ann. of Math. (2), vol. 190, iss. 2, pp. 345-463, 2019.
    @ARTICLE{Bir19,
      author = {Birkar, Caucher},
      title = {Anti-pluricanonical systems on {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {190},
      year = {2019},
      number = {2},
      pages = {345--463},
      issn = {0003-486X},
      mrclass = {14J45 (14C20 14E05 14E30)},
      mrnumber = {3997127},
      doi = {10.4007/annals.2019.190.2.1},
      url = {https://doi.org/10.4007/annals.2019.190.2.1},
      zblnumber = {07107180},
      }
  • [BCHM] Go to document C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type," J. Amer. Math. Soc., vol. 23, iss. 2, pp. 405-468, 2010.
    @ARTICLE{BCHM,
      author = {Birkar, Caucher and Cascini, Paolo and Hacon, Christopher D. and McKernan, James},
      title = {Existence of minimal models for varieties of log general type},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {23},
      year = {2010},
      number = {2},
      pages = {405--468},
      issn = {0894-0347},
      mrclass = {14E30 (14E05)},
      mrnumber = {2601039},
      mrreviewer = {Mark Gross},
      doi = {10.1090/S0894-0347-09-00649-3},
      url = {https://doi.org/10.1090/S0894-0347-09-00649-3},
      zblnumber = {1210.14019},
      }
  • [BJ17] Go to document H. Blum and M. Jonsson, "Thresholds, valuations, and K-stability," Adv. Math., vol. 365, p. 107062, 2020.
    @ARTICLE{BJ17,
      author = {Blum, Harold and Jonsson, Mattias},
      title = {Thresholds, valuations, and {K}-stability},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {365},
      year = {2020},
      pages = {107062, 57},
      issn = {0001-8708},
      mrclass = {14C20 (14M25)},
      mrnumber = {4067358},
      doi = {10.1016/j.aim.2020.107062},
      url = {https://doi.org/10.1016/j.aim.2020.107062},
      zblnumber = {07184864},
      }
  • [BL18] H. Blum and Y. Liu, Openness of uniform K-stability in families of $\mathbb{Q}$-Fano varieties, 2018.
    @MISC{BL18,
      author = {Blum, Harold and Liu, Yuchen},
      title = { Openness of uniform {K}-stability in families of $\mathbb{Q}$-{F}ano varieties},
      year = {2018},
      note = {to appear in \emph{Ann. Sci. Éc. Norm. Supér.}},
      arxiv = {1808.09070},
      zblnumber = {},
      }
  • [BLX19] H. Blum, Y. Liu, and C. Xu, Openness of K-semistability for Fano varieties, 2019.
    @MISC{BLX19,
      author = {Blum, Harold and Liu, Yuchen and Xu, C.},
      title = {Openness of {K}-semistability for {F}ano varieties},
      year = {2019},
      arxiv = {1907.02408},
      zblnumber = {},
      }
  • [BX19] Go to document H. Blum and C. Xu, "Uniqueness of K-polystable degenerations of Fano varieties," Ann. of Math. (2), vol. 190, iss. 2, pp. 609-656, 2019.
    @ARTICLE{BX19,
      author = {Blum, Harold and Xu, Chenyang},
      title = {Uniqueness of {K}-polystable degenerations of {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {190},
      year = {2019},
      number = {2},
      pages = {609--656},
      issn = {0003-486X},
      mrclass = {14J45 (14D20 14E30)},
      mrnumber = {3997130},
      mrreviewer = {James McKernan},
      doi = {10.4007/annals.2019.190.2.4},
      url = {https://doi.org/10.4007/annals.2019.190.2.4},
      zblnumber = {1427.14084},
      }
  • [BC11] Go to document S. Boucksom and H. Chen, "Okounkov bodies of filtered linear series," Compos. Math., vol. 147, iss. 4, pp. 1205-1229, 2011.
    @ARTICLE{BC11,
      author = {Boucksom, Sébastien and Chen, Huayi},
      title = {Okounkov bodies of filtered linear series},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {147},
      year = {2011},
      number = {4},
      pages = {1205--1229},
      issn = {0010-437X},
      mrclass = {14G25 (11G50 14C20)},
      mrnumber = {2822867},
      mrreviewer = {Dennis Eriksson},
      doi = {10.1112/S0010437X11005355},
      url = {https://doi.org/10.1112/S0010437X11005355},
      zblnumber = {1231.14020},
      }
  • [BDPP] Go to document S. Boucksom, J. Demailly, M. Puaun, and T. Peternell, "The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension," J. Algebraic Geom., vol. 22, iss. 2, pp. 201-248, 2013.
    @ARTICLE{BDPP,
      author = {Boucksom, Sébastien and Demailly, Jean-Pierre and P\u{a}un, Mihai and Peternell, Thomas},
      title = {The pseudo-effective cone of a compact {K}ähler manifold and varieties of negative {K}odaira dimension},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {22},
      year = {2013},
      number = {2},
      pages = {201--248},
      issn = {1056-3911},
      mrclass = {14E99 (32J18 32L05 53C26)},
      mrnumber = {3019449},
      mrreviewer = {Thomas Eckl},
      doi = {10.1090/S1056-3911-2012-00574-8},
      url = {https://doi.org/10.1090/S1056-3911-2012-00574-8},
      zblnumber = {1267.32017},
      }
  • [BFJ09] Go to document S. Boucksom, C. Favre, and M. Jonsson, "Differentiability of volumes of divisors and a problem of Teissier," J. Algebraic Geom., vol. 18, iss. 2, pp. 279-308, 2009.
    @ARTICLE{BFJ09,
      author = {Boucksom, Sébastien and Favre, Charles and Jonsson, Mattias},
      title = {Differentiability of volumes of divisors and a problem of {T}eissier},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {18},
      year = {2009},
      number = {2},
      pages = {279--308},
      issn = {1056-3911},
      mrclass = {14C20 (14C17)},
      mrnumber = {2475816},
      mrreviewer = {James McKernan},
      doi = {10.1090/S1056-3911-08-00490-6},
      url = {https://doi.org/10.1090/S1056-3911-08-00490-6},
      zblnumber = {1162.14003},
      }
  • [BHJ17] Go to document S. Boucksom, T. Hisamoto, and M. Jonsson, "Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs," Ann. Inst. Fourier (Grenoble), vol. 67, iss. 2, pp. 743-841, 2017.
    @ARTICLE{BHJ17,
      author = {Boucksom, Sébastien and Hisamoto, Tomoyuki and Jonsson, Mattias},
      title = {Uniform {K}-stability, {D}uistermaat-{H}eckman measures and singularities of pairs},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {67},
      year = {2017},
      number = {2},
      pages = {743--841},
      issn = {0373-0956},
      mrclass = {32Q26 (14E30 14G22)},
      mrnumber = {3669511},
      mrreviewer = {Yuji Odaka},
      url = {http://aif.cedram.org/item?id=AIF_2017__67_2_743_0},
      zblnumber = {1391.14090},
      }
  • [CDB13] Go to document S. Cacciola and L. Di Biagio, "Asymptotic base loci on singular varieties," Math. Z., vol. 275, iss. 1-2, pp. 151-166, 2013.
    @ARTICLE{CDB13,
      author = {Cacciola, Salvatore and Di Biagio, Lorenzo},
      title = {Asymptotic base loci on singular varieties},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {275},
      year = {2013},
      number = {1-2},
      pages = {151--166},
      issn = {0025-5874},
      mrclass = {14C20 (14F18)},
      mrnumber = {3101802},
      mrreviewer = {John Christian Ottem},
      doi = {10.1007/s00209-012-1128-3},
      url = {https://doi.org/10.1007/s00209-012-1128-3},
      zblnumber = {1282.14011},
      }
  • [Che10] H. Chen, "Convergence des polygones de Harder-Narasimhan," Mém. Soc. Math. Fr. (N.S.), iss. 120, p. 116, 2010.
    @ARTICLE{Che10,
      author = {Chen, Huayi},
      title = {Convergence des polygones de {H}arder-{N}arasimhan},
      journal = {Mém. Soc. Math. Fr. (N.S.)},
      fjournal = {Mémoires de la Société Mathématique de France. Nouvelle Série},
      number = {120},
      year = {2010},
      pages = {116},
      issn = {0249-633X},
      isbn = {978-2-85629-296-9},
      mrclass = {14G40 (14F05)},
      mrnumber = {2768967},
      mrreviewer = {\'{E}ric Gaudron},
      zblnumber = {1208.14001},
      }
  • [Che18] Go to document W. Chen, "Boundedness of weak Fano pairs with alpha-invariants and volumes bounded below," Publ. Res. Inst. Math. Sci., vol. 56, iss. 3, pp. 539-559, 2020.
    @ARTICLE{Che18,
      author = {Chen, Weichung},
      title = {Boundedness of weak {F}ano pairs with alpha-invariants and volumes bounded below},
      journal = {Publ. Res. Inst. Math. Sci.},
      fjournal = {Publications of the Research Institute for Mathematical Sciences},
      volume = {56},
      year = {2020},
      number = {3},
      pages = {539--559},
      issn = {0034-5318},
      mrclass = {14J45 (14C20)},
      mrnumber = {4116691},
      doi = {10.4171/PRIMS/56-3-4},
      url = {https://doi.org/10.4171/PRIMS/56-3-4},
      zblnumber = {07227759},
      }
  • [CDS] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 199-234, 235, 2015.
    @ARTICLE{CDS,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {199--234, 235--278},
      issn = {0894-0347},
      mrclass = {53C55 (53C25)},
      mrnumber = {3264767},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00800-6},
      url = {https://doi.org/10.1090/S0894-0347-2014-00800-6},
      zblnumber = {1312.53097},
      }
  • [CP18] G. Codogni and Z. Patakfalvi, Positivity of the CM line bundle for families of K-stable klt Fanos, 2018.
    @MISC{CP18,
      author = {Codogni, G. and Patakfalvi, Z.},
      title = {Positivity of the {CM} line bundle for families of {K}-stable klt {F}anos},
      year = {2018},
      note = {to appear in \emph{Invent. Math.}},
      arxiv = {1806.07180},
      zblnumber = {},
      }
  • [Don01] Go to document S. K. Donaldson, "Scalar curvature and stability of toric varieties," J. Differential Geom., vol. 62, iss. 2, pp. 289-349, 2002.
    @ARTICLE{Don01,
      author = {Donaldson, S. K.},
      title = {Scalar curvature and stability of toric varieties},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {62},
      year = {2002},
      number = {2},
      pages = {289--349},
      issn = {0022-040X},
      mrclass = {32Q15 (14M25 53C21 53C55)},
      mrnumber = {1988506},
      doi = {10.4310/jdg/1090950195},
      url = {https://doi.org/10.4310/jdg/1090950195},
      zblnumber = {1074.53059},
      }
  • [Don18a] S. Donaldson, "Some recent developments in Kähler geometry and exceptional holonomy," in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, 2018, pp. 425-452.
    @INPROCEEDINGS{Don18a,
      author = {Donaldson, Simon},
      title = {Some recent developments in {K}ähler geometry and exceptional holonomy},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{R}io de {J}aneiro 2018. {V}ol. {I}. {P}lenary lectures},
      pages = {425--452},
      publisher = {World Sci. Publ., Hackensack, NJ},
      year = {2018},
      mrclass = {53C55 (53C25 53C26 53C29)},
      mrnumber = {3966735},
      zblnumber = {},
      }
  • [Don18] S. K. Donaldson, "Stability of algebraic varieties and Kähler geometry," in Algebraic geometry: Salt Lake City 2015, Amer. Math. Soc., Providence, RI, 2018, vol. 97, pp. 199-221.
    @INCOLLECTION{Don18,
      author = {Donaldson, S. K.},
      title = {Stability of algebraic varieties and {K}ähler geometry},
      booktitle = {Algebraic geometry: {S}alt {L}ake {C}ity 2015},
      series = {Proc. Sympos. Pure Math.},
      volume = {97},
      pages = {199--221},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2018},
      mrclass = {53C55 (14L24)},
      mrnumber = {3821150},
      mrreviewer = {Giulio Codogni},
      zblnumber = {},
      }
  • [DS14] Go to document S. Donaldson and S. Sun, "Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry," Acta Math., vol. 213, iss. 1, pp. 63-106, 2014.
    @ARTICLE{DS14,
      author = {Donaldson, Simon and Sun, Song},
      title = {Gromov-{H}ausdorff limits of {K}ähler manifolds and algebraic geometry},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {213},
      year = {2014},
      number = {1},
      pages = {63--106},
      issn = {0001-5962},
      mrclass = {53C55 (32Q20 53C23)},
      mrnumber = {3261011},
      mrreviewer = {Valentino Tosatti},
      doi = {10.1007/s11511-014-0116-3},
      url = {https://doi.org/10.1007/s11511-014-0116-3},
      zblnumber = {1318.53037},
      }
  • [ELMNP09] Go to document L. Ein, R. Lazarsfeld, M. Mustactua, M. Nakamaye, and M. Popa, "Restricted volumes and base loci of linear series," Amer. J. Math., vol. 131, iss. 3, pp. 607-651, 2009.
    @ARTICLE{ELMNP09,
      author = {Ein, Lawrence and Lazarsfeld, Robert and Musta\c{t}\u{a},
      Mircea and Nakamaye, Michael and Popa, Mihnea},
      title = {Restricted volumes and base loci of linear series},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {131},
      year = {2009},
      number = {3},
      pages = {607--651},
      issn = {0002-9327},
      mrclass = {14C20},
      mrnumber = {2530849},
      mrreviewer = {Tomasz Szemberg},
      doi = {10.1353/ajm.0.0054},
      url = {https://doi.org/10.1353/ajm.0.0054},
      zblnumber = {1179.14006},
      }
  • [FR06] Go to document J. Fine and J. Ross, "A note on positivity of the CM line bundle," Int. Math. Res. Not., p. I, 2006.
    @ARTICLE{FR06,
      author = {Fine, J. and Ross, J.},
      title = {A note on positivity of the {CM} line bundle},
      journal = {Int. Math. Res. Not.},
      fjournal = {International Mathematics Research Notices},
      year = {2006},
      pages = {Art. ID 95875, 14},
      issn = {1073-7928},
      mrclass = {32L10 (32Q15)},
      mrnumber = {2250009},
      mrreviewer = {Adam Gregory Harris},
      doi = {10.1155/IMRN/2006/95875},
      url = {https://doi.org/10.1155/IMRN/2006/95875},
      zblnumber = {1114.14023},
      }
  • [FS90] Go to document A. Fujiki and G. Schumacher, "The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics," Publ. Res. Inst. Math. Sci., vol. 26, iss. 1, pp. 101-183, 1990.
    @ARTICLE{FS90,
      author = {Fujiki, Akira and Schumacher, Georg},
      title = {The moduli space of extremal compact {K}ähler manifolds and generalized {W}eil-{P}etersson metrics},
      journal = {Publ. Res. Inst. Math. Sci.},
      fjournal = {Kyoto Univ.. Research Institute for Mathematical Sciences. Publications},
      volume = {26},
      year = {1990},
      number = {1},
      pages = {101--183},
      issn = {0034-5318},
      mrclass = {32G13 (32L07 58G26)},
      mrnumber = {1053910},
      mrreviewer = {P. E. Newstead},
      doi = {10.2977/prims/1195171664},
      url = {https://doi.org/10.2977/prims/1195171664},
      zblnumber = {0714.32007},
      }
  • [Fuj17] Go to document O. Fujino, "Notes on the weak positivity theorems," in Algebraic varieties and automorphism groups, Math. Soc. Japan, Tokyo, 2017, vol. 75, pp. 73-118.
    @INCOLLECTION{Fuj17,
      author = {Fujino, Osamu},
      title = {Notes on the weak positivity theorems},
      booktitle = {Algebraic varieties and automorphism groups},
      series = {Adv. Stud. Pure Math.},
      volume = {75},
      pages = {73--118},
      publisher = {Math. Soc. Japan, Tokyo},
      year = {2017},
      mrclass = {14C20 (14D07 32S35)},
      mrnumber = {3793363},
      mrreviewer = {Halszka Tutaj-Gasińska},
      doi = {10.2969/aspm/07510073},
      url = {https://doi.org/10.2969/aspm/07510073},
      zblnumber = {1396.14032},
      }
  • [Fuj18] Go to document O. Fujino, "Semipositivity theorems for moduli problems," Ann. of Math. (2), vol. 187, iss. 3, pp. 639-665, 2018.
    @ARTICLE{Fuj18,
      author = {Fujino, Osamu},
      title = {Semipositivity theorems for moduli problems},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {187},
      year = {2018},
      number = {3},
      pages = {639--665},
      issn = {0003-486X},
      mrclass = {14J10 (14D07 14E30)},
      mrnumber = {3779955},
      mrreviewer = {Zhi Jiang},
      doi = {10.4007/annals.2018.187.3.1},
      url = {https://doi.org/10.4007/annals.2018.187.3.1},
      zblnumber = {1403.14069},
      }
  • [Fuj18b] Go to document K. Fujita, "Optimal bounds for the volumes of Kähler-Einstein Fano manifolds," Amer. J. Math., vol. 140, iss. 2, pp. 391-414, 2018.
    @ARTICLE{Fuj18b,
      author = {Fujita, Kento},
      title = {Optimal bounds for the volumes of {K}ähler-{E}instein {F}ano manifolds},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {140},
      year = {2018},
      number = {2},
      pages = {391--414},
      issn = {0002-9327},
      mrclass = {32Q25 (14J45 53C25 53C55)},
      mrnumber = {3783213},
      mrreviewer = {Cristiano Spotti},
      doi = {10.1353/ajm.2018.0009},
      url = {https://doi.org/10.1353/ajm.2018.0009},
      zblnumber = {1400.14105},
      }
  • [Fuj19] Go to document K. Fujita, "A valuative criterion for uniform K-stability of $\Bbb Q$-Fano varieties," J. Reine Angew. Math., vol. 751, pp. 309-338, 2019.
    @ARTICLE{Fuj19,
      author = {Fujita, Kento},
      title = {A valuative criterion for uniform {K}-stability of {$\Bbb Q$}-{F}ano varieties},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {751},
      year = {2019},
      pages = {309--338},
      issn = {0075-4102},
      mrclass = {14E05 (14J45 32Q26)},
      mrnumber = {3956698},
      doi = {10.1515/crelle-2016-0055},
      url = {https://doi.org/10.1515/crelle-2016-0055},
      zblnumber = {1435.14039},
      }
  • [FO18] Go to document K. Fujita and Y. Odaka, "On the K-stability of Fano varieties and anticanonical divisors," Tohoku Math. J. (2), vol. 70, iss. 4, pp. 511-521, 2018.
    @ARTICLE{FO18,
      author = {Fujita, Kento and Odaka, Yuji},
      title = {On the {K}-stability of {F}ano varieties and anticanonical divisors},
      journal = {Tohoku Math. J. (2)},
      fjournal = {The Tohoku Mathematical Journal. Second Series},
      volume = {70},
      year = {2018},
      number = {4},
      pages = {511--521},
      issn = {0040-8735},
      mrclass = {14J45 (32Q26 53C55)},
      mrnumber = {3896135},
      mrreviewer = {Andreas Höring},
      doi = {10.2748/tmj/1546570823},
      url = {https://doi.org/10.2748/tmj/1546570823},
      zblnumber = {1422.14047},
      }
  • [HMX13] Go to document C. D. Hacon, J. McKernan, and C. Xu, "On the birational automorphisms of varieties of general type," Ann. of Math. (2), vol. 177, iss. 3, pp. 1077-1111, 2013.
    @ARTICLE{HMX13,
      author = {Hacon, Christopher D. and McKernan, James and Xu, Chenyang},
      title = {On the birational automorphisms of varieties of general type},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {177},
      year = {2013},
      number = {3},
      pages = {1077--1111},
      issn = {0003-486X},
      mrclass = {14E05},
      mrnumber = {3034294},
      mrreviewer = {Alexandr V. Pukhlikov},
      doi = {10.4007/annals.2013.177.3.6},
      url = {https://doi.org/10.4007/annals.2013.177.3.6},
      zblnumber = {1281.14036},
      }
  • [Har77] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, vol. 52.
    @BOOK{Har77,
      author = {Hartshorne, Robin},
      title = {Algebraic {G}eometry},
      note = {Grad. Texts in Math.},
      volume = {52},
      publisher = {Springer-Verlag, New York},
      year = {1977},
      pages = {xvi+496},
      isbn = {0-387-90244-9},
      mrclass = {14-01},
      mrnumber = {0463157},
      mrreviewer = {Robert Speiser},
      zblnumber = {0531.14001},
      }
  • [HK04] Go to document B. Hassett and S. J. Kovács, "Reflexive pull-backs and base extension," J. Algebraic Geom., vol. 13, iss. 2, pp. 233-247, 2004.
    @ARTICLE{HK04,
      author = {Hassett, Brendan and Kov\'{a}cs, S\'{a}ndor J.},
      title = {Reflexive pull-backs and base extension},
      journal = {J. Algebraic Geom.},
      fjournal = {Journal of Algebraic Geometry},
      volume = {13},
      year = {2004},
      number = {2},
      pages = {233--247},
      issn = {1056-3911},
      mrclass = {14D22},
      mrnumber = {2047697},
      mrreviewer = {Arvid Siqveland},
      doi = {10.1090/S1056-3911-03-00331-X},
      url = {https://doi.org/10.1090/S1056-3911-03-00331-X},
      zblnumber = {1081.14017},
      }
  • [His16] T. Hisamoto, Stability and coercivity for toric polarizations, 2016.
    @MISC{His16,
      author = {Hisamoto, T.},
      title = {Stability and coercivity for toric polarizations},
      year = {2016},
      arxiv = {1610.07998},
      zblnumber = {},
      }
  • [HL00] Go to document D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Second ed., Cambridge Univ. Press, Cambridge, 2010.
    @BOOK{HL00,
      author = {Huybrechts, Daniel and Lehn, Manfred},
      title = {The geometry of moduli spaces of sheaves},
      series = {Cambridge Math. Library},
      edition = {Second},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2010},
      pages = {xviii+325},
      isbn = {978-0-521-13420-0},
      mrclass = {14D20 (14F05)},
      mrnumber = {2665168},
      doi = {10.1017/CBO9780511711985},
      url = {https://doi.org/10.1017/CBO9780511711985},
      zblnumber = {1206.14027},
      }
  • [Jia17] C. Jiang, Boundedness of $\mathbb{Q}$-Fano varieties with degrees and alpha-invariants bounded from below, 2017.
    @misc{Jia17,
      author = {Jiang, C.},
      title = {Boundedness of {$\mathbb{Q}$}-{F}ano varieties with degrees and alpha-invariants bounded from below},
      year = {2017},
      note = {to appear in \emph{Ann. Sci. \'{E}c. Norm. Supér.}},
      arxiv = {1705.02740},
      zblnumber = {},
      }
  • [JM12] Go to document M. Jonsson and M. Mustactua, "Valuations and asymptotic invariants for sequences of ideals," Ann. Inst. Fourier (Grenoble), vol. 62, iss. 6, pp. 2145-2209, 2012.
    @ARTICLE{JM12,
      author = {Jonsson, Mattias and Musta\c{t}\u{a},
      Mircea},
      title = {Valuations and asymptotic invariants for sequences of ideals},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {62},
      year = {2012},
      number = {6},
      pages = {2145--2209},
      issn = {0373-0956},
      mrclass = {14F18 (12J20 14B05)},
      mrnumber = {3060755},
      mrreviewer = {Carlos Galindo},
      doi = {10.5802/aif.2746},
      url = {https://doi.org/10.5802/aif.2746},
      zblnumber = {1272.14016},
      }
  • [Koi83] Go to document N. Koiso, "Einstein metrics and complex structures," Invent. Math., vol. 73, iss. 1, pp. 71-106, 1983.
    @ARTICLE{Koi83,
      author = {Koiso, N.},
      title = {Einstein metrics and complex structures},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {73},
      year = {1983},
      number = {1},
      pages = {71--106},
      issn = {0020-9910},
      mrclass = {58D17 (53C25 53C55)},
      mrnumber = {0707349},
      mrreviewer = {N. J. Hitchin},
      doi = {10.1007/BF01393826},
      url = {https://doi.org/10.1007/BF01393826},
      zblnumber = {0515.53040},
      }
  • [Kol90] Go to document J. Kollár, "Projectivity of complete moduli," J. Differential Geom., vol. 32, iss. 1, pp. 235-268, 1990.
    @ARTICLE{Kol90,
      author = {Koll\'{a}r, J\'{a}nos},
      title = {Projectivity of complete moduli},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {32},
      year = {1990},
      number = {1},
      pages = {235--268},
      issn = {0022-040X},
      mrclass = {14D22 (14H10 14J10)},
      mrnumber = {1064874},
      mrreviewer = {Autorreferat},
      doi = {10.4310/jdg/1214445046},
      url = {https://doi.org/10.4310/jdg/1214445046},
      zblnumber = {0684.14002},
      }
  • [Kol07] Go to document J. Kollár, "Kodaira’s canonical bundle formula and adjunction," in Flips for 3-folds and 4-folds, Oxford Univ. Press, Oxford, 2007, vol. 35, pp. 134-162.
    @INCOLLECTION{Kol07,
      author = {Koll\'{a}r, J\'{a}nos},
      title = {Kodaira's canonical bundle formula and adjunction},
      booktitle = {Flips for 3-folds and 4-folds},
      series = {Oxford Lecture Ser. Math. Appl.},
      volume = {35},
      pages = {134--162},
      publisher = {Oxford Univ. Press, Oxford},
      year = {2007},
      mrclass = {14E30 (14N30)},
      mrnumber = {2359346},
      doi = {10.1093/acprof:oso/9780198570615.003.0008},
      url = {https://doi.org/10.1093/acprof:oso/9780198570615.003.0008},
      zblnumber = {1286.14027},
      }
  • [Kol17] Go to document J. Kollár, Moduli of Varieties of General Type, 2020.
    @MISC{Kol17,
      author = {Koll\'{a}r, J\'{a}nos},
      title = {{\em Moduli of Varieties of General Type}},
      year = {2020},
      note = {book in preparation},
      url={https://web.math.princeton.edu/~kollar/book/modbook20170720.pdf},
      }
  • [Kol19] J. Kollár, Families of divisors, 2019.
    @MISC{Kol19,
      author = {Koll\'{a}r, J\'{a}nos},
      title = {Families of divisors},
      year = {2019},
      arxiv = {1910.00937},
      zblnumber = {},
      }
  • [KM98] Go to document J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Univ. Press, Cambridge, 1998, vol. 134.
    @BOOK{KM98,
      author = {Koll\'{a}r, J\'{a}nos and Mori, Shigefumi},
      title = {Birational {G}eometry of {A}lgebraic {V}arieties},
      series = {Cambridge Tracts in Mathematics},
      volume = {134},
      note = {with the collaboration of C. H. Clemens and A. Corti; translated from the 1998 Japanese original},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1998},
      pages = {viii+254},
      isbn = {0-521-63277-3},
      mrclass = {14E30},
      mrnumber = {1658959},
      mrreviewer = {Mark Gross},
      doi = {10.1017/CBO9780511662560},
      url = {https://doi.org/10.1017/CBO9780511662560},
      zblnumber = {0926.14003},
      }
  • [KP17] Go to document S. J. Kovács and Z. Patakfalvi, "Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension," J. Amer. Math. Soc., vol. 30, iss. 4, pp. 959-1021, 2017.
    @ARTICLE{KP17,
      author = {Kov\'{a}cs, S\'{a}ndor J. and Patakfalvi, Zsolt},
      title = {Projectivity of the moduli space of stable log-varieties and subadditivity of log-{K}odaira dimension},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {30},
      year = {2017},
      number = {4},
      pages = {959--1021},
      issn = {0894-0347},
      mrclass = {14J10},
      mrnumber = {3671934},
      mrreviewer = {Atsushi Moriwaki},
      doi = {10.1090/jams/871},
      url = {https://doi.org/10.1090/jams/871},
      zblnumber = {1393.14034},
      }
  • [LM09] Go to document R. Lazarsfeld and M. Mustactua, "Convex bodies associated to linear series," Ann. Sci. Éc. Norm. Supér. (4), vol. 42, iss. 5, pp. 783-835, 2009.
    @ARTICLE{LM09,
      author = {Lazarsfeld, Robert and Musta\c{t}\u{a},
      Mircea},
      title = {Convex bodies associated to linear series},
      journal = {Ann. Sci. \'{E}c. Norm. Supér. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {42},
      year = {2009},
      number = {5},
      pages = {783--835},
      issn = {0012-9593},
      mrclass = {14C20 (14E05)},
      mrnumber = {2571958},
      mrreviewer = {Zach Teitler},
      doi = {10.24033/asens.2109},
      url = {https://doi.org/10.24033/asens.2109},
      zblnumber = {1182.14004},
      }
  • [Li17] Go to document C. Li, "K-semistability is equivariant volume minimization," Duke Math. J., vol. 166, iss. 16, pp. 3147-3218, 2017.
    @ARTICLE{Li17,
      author = {Li, Chi},
      title = {K-semistability is equivariant volume minimization},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {16},
      pages = {3147--3218},
      issn = {0012-7094},
      mrclass = {14B05 (13A18 14J45 52A27 53C25 53C55)},
      mrnumber = {3715806},
      mrreviewer = {Ruadha\'ı Dervan},
      doi = {10.1215/00127094-2017-0026},
      url = {https://doi.org/10.1215/00127094-2017-0026},
      zblnumber = {1409.14008},
      }
  • [Li19] C. Li, $\mathbb{G}$-uniform stability and Kähler-Einstein metrics on Fano varieties, 2019.
    @MISC{Li19,
      author = {Li, Chi},
      title = {$\mathbb{G}$-uniform stability and {K}ähler-{E}instein metrics on {F}ano varieties},
      year = {2019},
      arxiv = {1907.09399},
      zblnumber = {},
      }
  • [LTW19] C. Li, G. Tian, and F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, 2019.
    @MISC{LTW19,
      author = {Li, Chi and Tian, G. and Wang, F.},
      title = {The uniform version of {Y}au-{T}ian-{D}onaldson conjecture for singular {F}ano varieties},
      year = {2019},
      arxiv = {1903.01215},
      zblnumber = {},
      }
  • [LWX18b] C. Li, X. Wang, and C. Xu, Algebraicity of the metric tangent cones and equivariant K-stability, 2018.
    @MISC{LWX18b,
      author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang},
      title = {Algebraicity of the metric tangent cones and equivariant {K}-stability},
      year = {2018},
      arxiv = {1805.03393},
      zblnumber = {},
      }
  • [LWX18] Go to document C. Li, X. Wang, and C. Xu, "Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds," Ann. Sci. Éc. Norm. Supér. (4), vol. 51, iss. 3, pp. 739-772, 2018.
    @ARTICLE{LWX18,
      author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang},
      title = {Quasi-projectivity of the moduli space of smooth {K}ähler-{E}instein {F}ano manifolds},
      journal = {Ann. Sci. \'{E}c. Norm. Supér. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {51},
      year = {2018},
      number = {3},
      pages = {739--772},
      issn = {0012-9593},
      mrclass = {14J15 (14D20 14J45 32G15 32Q20)},
      mrnumber = {3831036},
      mrreviewer = {P. E. Newstead},
      doi = {10.24033/asens.2365},
      url = {https://doi.org/10.24033/asens.2365},
      zblnumber = {1421.32033},
      }
  • [LWX19] Go to document C. Li, X. Wang, and C. Xu, "On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties," Duke Math. J., vol. 168, iss. 8, pp. 1387-1459, 2019.
    @ARTICLE{LWX19,
      author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang},
      title = {On the proper moduli spaces of smoothable {K}ähler-{E}instein {F}ano varieties},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {168},
      year = {2019},
      number = {8},
      pages = {1387--1459},
      issn = {0012-7094},
      mrclass = {14J45 (14D20 14J10 53C25 53C55)},
      mrnumber = {3959862},
      mrreviewer = {Indranil Biswas},
      doi = {10.1215/00127094-2018-0069},
      url = {https://doi.org/10.1215/00127094-2018-0069},
      zblnumber = {07080115},
      }
  • [LX14] Go to document C. Li and C. Xu, "Special test configuration and K-stability of Fano varieties," Ann. of Math. (2), vol. 180, iss. 1, pp. 197-232, 2014.
    @ARTICLE{LX14,
      author = {Li, Chi and Xu, Chenyang},
      title = {Special test configuration and {K}-stability of {F}ano varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {180},
      year = {2014},
      number = {1},
      pages = {197--232},
      issn = {0003-486X},
      mrclass = {14J45 (14E30 14J10 14J80)},
      mrnumber = {3194814},
      mrreviewer = {Anne-Sophie Kaloghiros},
      doi = {10.4007/annals.2014.180.1.4},
      url = {https://doi.org/10.4007/annals.2014.180.1.4},
      zblnumber = {1301.14026},
      }
  • [LLX18] Y. Liu, C. Li, and C. Xu, "A guided tour to normalized volume," in Geometric Analysis, In Honor of Gang Tian’s 60th Birthday, Birkhäuser/Springer, Cham, 2020, vol. 333, pp. 167-219.
    @INCOLLECTION{LLX18,
      author = {Liu, Y. and Li, C. and Xu, C.},
      title = {A guided tour to normalized volume},
      booktitle = {Geometric Analysis, In Honor of Gang Tian's 60th Birthday},
      series = {Progr. Math.},
      volume = {333},
      publisher = {Birkhäuser/Springer, Cham},
      year = {2020},
      pages = {167--219},
      zblnumber = {07225725},
      }
  • [MFK-GIT] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Third ed., Springer-Verlag, Berlin, 1994, vol. 34.
    @BOOK{MFK-GIT,
      author = {Mumford, D. and Fogarty, J. and Kirwan, F.},
      title = {Geometric {I}nvariant {T}heory},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {34},
      edition = {Third},
      publisher = {Springer-Verlag, Berlin},
      year = {1994},
      pages = {xiv+292},
      isbn = {3-540-56963-4},
      mrclass = {14D25 (58E05 58F05)},
      mrnumber = {1304906},
      mrreviewer = {Yi Hu},
      zblnumber = {0797.14004},
      }
  • [New78] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978, vol. 51.
    @BOOK{New78,
      author = {Newstead, P. E.},
      title = {Introduction to moduli problems and orbit spaces},
      series = {Tata Inst. Fund. Res. Lect. Math. Phys.},
      volume = {51},
      publisher = {Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi},
      year = {1978},
      pages = {vi+183},
      isbn = {0-387-08851-2},
      mrclass = {14-02 (14D20)},
      mrnumber = {0546290},
      mrreviewer = {G. Horrocks},
      zblnumber = {0411.14003},
      }
  • [Oda15] Go to document Y. Odaka, "Compact moduli spaces of Kähler-Einstein Fano varieties," Publ. Res. Inst. Math. Sci., vol. 51, iss. 3, pp. 549-565, 2015.
    @ARTICLE{Oda15,
      author = {Odaka, Yuji},
      title = {Compact moduli spaces of {K}ähler-{E}instein {F}ano varieties},
      journal = {Publ. Res. Inst. Math. Sci.},
      fjournal = {Publications of the Research Institute for Mathematical Sciences},
      volume = {51},
      year = {2015},
      number = {3},
      pages = {549--565},
      issn = {0034-5318},
      mrclass = {14D20 (14J45 32Q20)},
      mrnumber = {3395458},
      mrreviewer = {Francesco Bottacin},
      doi = {10.4171/PRIMS/164},
      url = {https://doi.org/10.4171/PRIMS/164},
      zblnumber = {1333.14039},
      }
  • [OX13] Go to document Y. Odaka and C. Xu, "Log-canonical models of singular pairs and its applications," Math. Res. Lett., vol. 19, iss. 2, pp. 325-334, 2012.
    @ARTICLE{OX13,
      author = {Odaka, Yuji and Xu, Chenyang},
      title = {Log-canonical models of singular pairs and its applications},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {19},
      year = {2012},
      number = {2},
      pages = {325--334},
      issn = {1073-2780},
      mrclass = {14E30},
      mrnumber = {2955764},
      mrreviewer = {James McKernan},
      doi = {10.4310/MRL.2012.v19.n2.a5},
      url = {https://doi.org/10.4310/MRL.2012.v19.n2.a5},
      zblnumber = {1278.14024},
      }
  • [PX17] Go to document Z. Patakfalvi and C. Xu, "Ampleness of the CM line bundle on the moduli space of canonically polarized varieties," Algebr. Geom., vol. 4, iss. 1, pp. 29-39, 2017.
    @ARTICLE{PX17,
      author = {Patakfalvi, Zsolt and Xu, Chenyang},
      title = {Ampleness of the {CM} line bundle on the moduli space of canonically polarized varieties},
      journal = {Algebr. Geom.},
      fjournal = {Algebraic Geometry},
      volume = {4},
      year = {2017},
      number = {1},
      pages = {29--39},
      issn = {2313-1691},
      mrclass = {14J10 (14E30 14J15 32Q05)},
      mrnumber = {3592464},
      mrreviewer = {Enrica Floris},
      doi = {10.14231/AG-2017-002},
      url = {https://doi.org/10.14231/AG-2017-002},
      zblnumber = {1391.14068},
      }
  • [PT09] S. T. Paul and G. Tian, "CM stability and the generalized Futaki invariant II," Astérisque, iss. 328, pp. 339-354 (2010), 2009.
    @ARTICLE{PT09,
      author = {Paul, Sean Timothy and Tian, Gang},
      title = {C{M} stability and the generalized {F}utaki invariant {II}},
      journal = {Astérisque},
      fjournal = {Astérisque},
      number = {328},
      year = {2009},
      pages = {339--354 (2010)},
      issn = {0303-1179},
      isbn = {978-2-85629-289-1},
      mrclass = {32Q26 (14D06 32Q20)},
      mrnumber = {2674882},
      mrreviewer = {Julien Keller},
      zblnumber = {1204.53061},
      }
  • [PRS08] Go to document D. H. Phong, J. Ross, and J. Sturm, "Deligne pairings and the Knudsen-Mumford expansion," J. Differential Geom., vol. 78, iss. 3, pp. 475-496, 2008.
    @ARTICLE{PRS08,
      author = {Phong, D. H. and Ross, Julius and Sturm, Jacob},
      title = {Deligne pairings and the {K}nudsen-{M}umford expansion},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {78},
      year = {2008},
      number = {3},
      pages = {475--496},
      issn = {0022-040X},
      mrclass = {32Q20 (14C20 32G13 32L10 58E11)},
      mrnumber = {2396251},
      mrreviewer = {Julien Keller},
      doi = {10.4310/jdg/1207834553},
      url = {https://doi.org/10.4310/jdg/1207834553},
      zblnumber = {1138.14003},
      }
  • [Pos19] Q. Posva, Positivity of the CM line bundle for K-stable log Fanos, 2019.
    @MISC{Pos19,
      author = {Posva, Q.},
      title = {Positivity of the {CM} line bundle for {K}-stable log {F}anos},
      year = {2019},
      arxiv = {1910.12623},
      zblnumber = {},
      }
  • [Schu83] Go to document G. Schumacher, "Eine Anwendung des Satzes von Calabi-Yau auf Familien kompakter komplexer Mannigfaltigkeiten," Invent. Math., vol. 71, iss. 2, pp. 295-307, 1983.
    @ARTICLE{Schu83,
      author = {Schumacher, Georg},
      title = {Eine {A}nwendung des {S}atzes von {C}alabi-{Y}au auf {F}amilien kompakter komplexer {M}annigfaltigkeiten},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {71},
      year = {1983},
      number = {2},
      pages = {295--307},
      issn = {0020-9910},
      mrclass = {32G99 (32C10 32M05 53C55)},
      mrnumber = {0689646},
      mrreviewer = {H. Kerner},
      doi = {10.1007/BF01389100},
      url = {https://doi.org/10.1007/BF01389100},
      zblnumber = {0521.32019},
      }
  • [SSY16] Go to document C. Spotti, S. Sun, and C. Yao, "Existence and deformations of Kähler-Einstein metrics on smoothable $\Bbb{Q}$-Fano varieties," Duke Math. J., vol. 165, iss. 16, pp. 3043-3083, 2016.
    @ARTICLE{SSY16,
      author = {Spotti, Cristiano and Sun, Song and Yao, Chengjian},
      title = {Existence and deformations of {K}ähler-{E}instein metrics on smoothable {$\Bbb{Q}$}-{F}ano varieties},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {165},
      year = {2016},
      number = {16},
      pages = {3043--3083},
      issn = {0012-7094},
      mrclass = {53C55 (14J10 14J45 32Q20 53C25)},
      mrnumber = {3566198},
      mrreviewer = {G. K. Sankaran},
      doi = {10.1215/00127094-3645330},
      url = {https://doi.org/10.1215/00127094-3645330},
      zblnumber = {1362.53082},
      }
  • [Sun18] S. Sun, "Degenerations and moduli spaces in Kähler geometry," in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, 2018, pp. 993-1012.
    @INPROCEEDINGS{Sun18,
      author = {Sun, Song},
      title = {Degenerations and moduli spaces in {K}ähler geometry},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{R}io de {J}aneiro 2018. {V}ol. {II}. {I}nvited lectures},
      pages = {993--1012},
      publisher = {World Sci. Publ., Hackensack, NJ},
      year = {2018},
      mrclass = {53C55 (14J10 14J45 53C21 53C44)},
      mrnumber = {3966797},
      zblnumber = {},
      }
  • [Tian87] G. Tian, "Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric," in Mathematical Aspects of String Theory (San Diego, Calif., 1986), World Sci. Publishing, Singapore, 1987, vol. 1, pp. 629-646.
    @INCOLLECTION{Tian87,
      author = {Tian, Gang},
      title = {Smoothness of the universal deformation space of compact {C}alabi-{Y}au manifolds and its {P}etersson-{W}eil metric},
      booktitle = {Mathematical {A}spects of {S}tring {T}heory ({S}an {D}iego, {C}alif., 1986)},
      series = {Adv. Ser. Math. Phys.},
      volume = {1},
      pages = {629--646},
      publisher = {World Sci. Publishing, Singapore},
      year = {1987},
      mrclass = {32G13 (32G15 53C25 58D99)},
      mrnumber = {0915841},
      zblnumber = {0696.53040},
      }
  • [Tia97] Go to document G. Tian, "Kähler-Einstein metrics with positive scalar curvature," Invent. Math., vol. 130, iss. 1, pp. 1-37, 1997.
    @ARTICLE{Tia97,
      author = {Tian, Gang},
      title = {Kähler-{E}instein metrics with positive scalar curvature},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {130},
      year = {1997},
      number = {1},
      pages = {1--37},
      issn = {0020-9910},
      mrclass = {53C25 (32L07 53C55)},
      mrnumber = {1471884},
      mrreviewer = {Thalia D. Jeffres},
      doi = {10.1007/s002220050176},
      url = {https://doi.org/10.1007/s002220050176},
      zblnumber = {0892.53027},
      }
  • [Tia15] Go to document G. Tian, "K-stability and Kähler-Einstein metrics," Comm. Pure Appl. Math., vol. 68, iss. 7, pp. 1085-1156, 2015.
    @ARTICLE{Tia15,
      author = {Tian, Gang},
      title = {K-stability and {K}ähler-{E}instein metrics},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {68},
      year = {2015},
      number = {7},
      pages = {1085--1156},
      issn = {0010-3640},
      mrclass = {53C55 (53C25)},
      mrnumber = {3352459},
      mrreviewer = {Matthew B. Stenzel},
      doi = {10.1002/cpa.21578},
      url = {https://doi.org/10.1002/cpa.21578},
      zblnumber = {1318.14038},
      }
  • [TW19] G. Tian and F. Wang, On the existence of conic Kähler-Einstein metrics, 2019.
    @MISC{TW19,
      author = {Tian, Gang and Wang, F.},
      title = {On the existence of conic {K}ähler-{E}instein metrics},
      year = {2019},
      arxiv = {1903.12547},
      zblnumber = {},
      }
  • [Xu19] Go to document C. Xu, "A minimizing valuation is quasi-monomial," Ann. of Math. (2), vol. 191, iss. 3, pp. 1003-1030, 2020.
    @ARTICLE{Xu19,
      author = {Xu, Chenyang},
      title = {A minimizing valuation is quasi-monomial},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {191},
      year = {2020},
      number = {3},
      pages = {1003--1030},
      issn = {0003-486X},
      mrclass = {14E30 (14J17 14J45)},
      mrnumber = {4088355},
      doi = {10.4007/annals.2020.191.3.6},
      url = {https://doi.org/10.4007/annals.2020.191.3.6},
      zblnumber = {07190308},
      }
  • [Zhu19] Go to document Z. Zhuang, "Product theorem for K-stability," Adv. Math., vol. 371, p. 107250, 2020.
    @ARTICLE{Zhu19,
      author = {Zhuang, Ziquan},
      title = {Product theorem for {K}-stability},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {371},
      year = {2020},
      pages = {107250, 18},
      issn = {0001-8708},
      mrclass = {14E30 (14J45)},
      mrnumber = {4108221},
      doi = {10.1016/j.aim.2020.107250},
      url = {https://doi.org/10.1016/j.aim.2020.107250},
      zblnumber = {07219698},
      }

Authors

Chenyang Xu

Department of Mathematics, MIT, Cambridge, MA and Beijing International Center for Mathematical Research, Beijing, 100871, China

Current address:

Department of Mathematics, Princeton University, Princeton, NJ Ziquan Zhuang

Department of Mathematics, MIT, Cambridge, MA