Abstract
We prove for the $N$-body problem the existence of hyperbolic motions for any prescribed limit shape and any given initial configuration of the bodies. The energy level $h>0$ of the motion can also be chosen arbitrarily. Our approach is based on the construction of global viscosity solutions for the Hamilton-Jacobi equation $H(x,d_xu)=h$. We prove that these solutions are fixed points of the associated Lax-Oleinik semigroup. The presented results can also be viewed as a new application of Marchal’s Theorem, whose main use in recent literature has been to prove the existence of periodic orbits.
-
[Alb] A. Albouy, "Lectures on the two-body problem," in Classical and Celestial Mechanics, Princeton Univ. Press, Princeton, NJ, 2002, pp. 63-116.
@INCOLLECTION{Alb,
author = {Albouy, Alain},
title = {Lectures on the two-body problem},
booktitle = {Classical and Celestial Mechanics},
note = {H. Cabral, F. Diacu, editors},
venue = {{R}ecife, 1993/1999},
pages = {63--116},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {2002},
mrclass = {70F05 (70F15)},
mrnumber = {1974780},
mrreviewer = {Jes\'{u}s F. Palaci\'{a}n},
zblnumber = {1181.70014},
} -
[AlbKal]
A. Albouy and V. Kaloshin, "Finiteness of central configurations of five bodies in the plane," Ann. of Math. (2), vol. 176, iss. 1, pp. 535-588, 2012.
@ARTICLE{AlbKal,
author = {Albouy, Alain and Kaloshin, Vadim},
title = {Finiteness of central configurations of five bodies in the plane},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {176},
year = {2012},
number = {1},
pages = {535--588},
issn = {0003-486X},
mrclass = {70F10 (05C62 32C25 70G10)},
mrnumber = {2925390},
mrreviewer = {Josep M. Cors},
doi = {10.4007/annals.2012.176.1.10},
url = {https://doi.org/10.4007/annals.2012.176.1.10},
zblnumber = {1362.70014},
} -
[ArPeChSt]
J. A. Arredondo, E. Pérez-Chavela, and C. Stoica, "Dynamics in the Schwarzschild isosceles three body problem," J. Nonlinear Sci., vol. 24, iss. 6, pp. 997-1032, 2014.
@ARTICLE{ArPeChSt,
author = {Arredondo, John A. and Pérez-Chavela, Ernesto and Stoica, Cristina},
title = {Dynamics in the {S}chwarzschild isosceles three body problem},
journal = {J. Nonlinear Sci.},
fjournal = {Journal of Nonlinear Science},
volume = {24},
year = {2014},
number = {6},
pages = {997--1032},
issn = {0938-8974},
mrclass = {70F07 (70F15 83C10)},
mrnumber = {3275217},
mrreviewer = {Andrzej M. Frydryszak},
doi = {10.1007/s00332-014-9210-0},
url = {https://doi.org/10.1007/s00332-014-9210-0},
zblnumber = {1305.70019},
} -
[BaGrSch]
W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Curvature, Birkhäuser Boston, Inc., Boston, MA, 1985, vol. 61.
@BOOK{BaGrSch,
author = {Ballmann, Werner and Gromov, Mikhael and Schroeder, Viktor},
title = {Manifolds of Nonpositive Curvature},
series = {Progr. Math.},
volume = {61},
publisher = {Birkhäuser Boston, Inc., Boston, MA},
year = {1985},
pages = {vi+263},
isbn = {0-8176-3181-X},
mrclass = {53C20},
mrnumber = {0823981},
mrreviewer = {Gudlaugur Thorbergsson},
doi = {10.1007/978-1-4684-9159-3},
url = {https://doi.org/10.1007/978-1-4684-9159-3},
zblnumber = {0591.53001},
} -
[BarCap]
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston, Inc., Boston, MA, 1997.
@BOOK{BarCap,
author = {Bardi, Martino and Capuzzo-Dolcetta, Italo},
title = {Optimal Control and Viscosity Solutions of {H}amilton-{J}acobi-{B}ellman Equations},
series = {Systems Control Found. Appl.},
note = {with appendices by Maurizio Falcone and Pierpaolo Soravia},
publisher = {Birkhäuser Boston, Inc., Boston, MA},
year = {1997},
pages = {xviii+570},
isbn = {0-8176-3640-4},
mrclass = {49-02 (49J15 49K15 49L25)},
mrnumber = {1484411},
mrreviewer = {Vladimir Veliov},
doi = {10.1007/978-0-8176-4755-1},
url = {https://doi.org/10.1007/978-0-8176-4755-1},
zblnumber = {0890.49011},
} -
[Bar] G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994, vol. 17.
@BOOK{Bar,
author = {Barles, Guy},
title = {Solutions de Viscosité des \'{E}quations de {H}amilton-{J}acobi},
series = {Math. Appl. (Berlin)},
volume = {17},
publisher = {Springer-Verlag, Paris},
year = {1994},
pages = {x+194},
isbn = {3-540-58422-6},
mrclass = {49L25 (35D05 35F20 35J60)},
mrnumber = {1613876},
mrreviewer = {Martino Bardi},
zblnumber = {0819.35002},
} -
[Ber]
P. Bernard, "The Lax-Oleinik semi-group: a Hamiltonian point of view," Proc. Roy. Soc. Edinburgh Sect. A, vol. 142, iss. 6, pp. 1131-1177, 2012.
@ARTICLE{Ber,
author = {Bernard, Patrick},
title = {The {L}ax-{O}leinik semi-group: a {H}amiltonian point of view},
journal = {Proc. Roy. Soc. Edinburgh Sect. A},
fjournal = {Proceedings of the Royal Society of Edinburgh. Section A. Mathematics},
volume = {142},
year = {2012},
number = {6},
pages = {1131--1177},
issn = {0308-2105},
mrclass = {70H08 (37J40 70H20)},
mrnumber = {3002592},
mrreviewer = {José Claudio Vidal Diaz},
doi = {10.1017/S0308210511000059},
url = {https://doi.org/10.1017/S0308210511000059},
zblnumber = {1400.70027},
} -
[Cha1] J. Chazy, "Sur certaines trajectoires du probléme des $n$ corps," Bull. Astronom., vol. 35, pp. 321-389, 1918.
@ARTICLE{Cha1,
author = {Chazy, J.},
title = {Sur certaines trajectoires du probléme des $n$ corps},
journal = {Bull. Astronom.},
volume = {35},
year = {1918},
pages = {321--389},
zblnumber = {},
} -
[Cha2]
J. Chazy, "Sur l’allure du mouvement dans le problème des trois corps quand le temps cro\^ıt indéfiniment," Ann. Sci. École Norm. Sup. (3), vol. 39, pp. 29-130, 1922.
@ARTICLE{Cha2,
author = {Chazy, Jean},
title = {Sur l'allure du mouvement dans le problème des trois corps quand le temps cro\^ıt indéfiniment},
journal = {Ann. Sci. \'{E}cole Norm. Sup. (3)},
fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Troisième Série},
volume = {39},
year = {1922},
pages = {29--130},
issn = {0012-9593},
mrclass = {DML},
mrnumber = {1509241},
doi = {10.24033/asens.739},
url = {https://doi.org/10.24033/asens.739},
jfmnumber = {48.1074.04},
} -
[Che2]
A. Chenciner, "À l’infini en temps fini," in Séminaire Bourbaki, Vol. 1996/97, Soc. Math. France, Paris, 1997, p. exp. no. 832, 5, 323-353.
@INCOLLECTION{Che2,
author = {Chenciner, Alain},
title = {À l'infini en temps fini},
booktitle = {Séminaire Bourbaki, Vol. 1996/97},
series = {Astérisque},
fjournal = {Astérisque},
publisher = {Soc. Math. France, Paris},
number = {245},
year = {1997},
pages = {Exp. No. 832, 5, 323--353},
issn = {0303-1179},
mrclass = {70F10},
mrnumber = {1627117},
mrreviewer = {Joseph L. Gerver},
zblnumber = {0930.70011},
url = {http://www.numdam.org/item/SB_1996-1997__39__323_0/},
} -
[Che3]
A. Chenciner, "Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des $n$ corps," Regul. Chaotic Dyn., vol. 3, iss. 3, pp. 93-106, 1998.
@ARTICLE{Che3,
author = {Chenciner, Alain},
title = {Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des {$n$} corps},
note = {J. Moser at 70 (Russian)},
journal = {Regul. Chaotic Dyn.},
fjournal = {Regular \& Chaotic Dynamics. Regulyarnaya \& Khaoticheskaya Dinamika},
volume = {3},
year = {1998},
number = {3},
pages = {93--106},
issn = {1560-3547},
mrclass = {70F10 (70F15 70F16)},
mrnumber = {1704972},
mrreviewer = {Florin N. Diacu},
doi = {10.1070/rd1998v003n03ABEH000083},
url = {https://doi.org/10.1070/rd1998v003n03ABEH000083},
zblnumber = {0973.70011},
} -
[Che1]
A. Chenciner, "Action minimizing solutions of the Newtonian $n$-body problem: from homology to symmetry," in Proceedings of the International Congress of Mathematicians, Vol. III, 2002, pp. 279-294.
@INPROCEEDINGS{Che1,
author = {Chenciner, Alain},
title = {Action minimizing solutions of the {N}ewtonian {$n$}-body problem: from homology to symmetry},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {III}},
venue = {{B}eijing, 2002},
pages = {279--294},
publisher = {Higher Ed. Press, Beijing},
year = {2002},
mrclass = {70F07 (37J45 70F10 70F16)},
mrnumber = {1957539},
mrreviewer = {Joseph L. Gerver},
zblnumber = {1136.70310},
url = {https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.3/ICM2002.3.ocr.pdf},
} -
[CheMon]
A. Chenciner and R. Montgomery, "A remarkable periodic solution of the three-body problem in the case of equal masses," Ann. of Math. (2), vol. 152, iss. 3, pp. 881-901, 2000.
@ARTICLE{CheMon,
author = {Chenciner, Alain and Montgomery, Richard},
title = {A remarkable periodic solution of the three-body problem in the case of equal masses},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {152},
year = {2000},
number = {3},
pages = {881--901},
issn = {0003-486X},
mrclass = {70F07 (37J50)},
mrnumber = {1815704},
mrreviewer = {Florin N. Diacu},
doi = {10.2307/2661357},
url = {https://doi.org/10.2307/2661357},
zblnumber = {0987.70009},
} -
[CraLio]
M. G. Crandall and P. Lions, "Viscosity solutions of Hamilton-Jacobi equations," Trans. Amer. Math. Soc., vol. 277, iss. 1, pp. 1-42, 1983.
@ARTICLE{CraLio,
author = {Crandall, Michael G. and Lions, Pierre-Louis},
title = {Viscosity solutions of {H}amilton-{J}acobi equations},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the Amer. Math. Soc.},
volume = {277},
year = {1983},
number = {1},
pages = {1--42},
issn = {0002-9947},
mrclass = {35F20},
mrnumber = {0690039},
mrreviewer = {Moshe Marcus},
doi = {10.2307/1999343},
url = {https://doi.org/10.2307/1999343},
zblnumber = {0599.35024},
} -
[CraEvaLio]
M. G. Crandall, L. C. Evans, and P. -L. Lions, "Some properties of viscosity solutions of Hamilton-Jacobi equations," Trans. Amer. Math. Soc., vol. 282, iss. 2, pp. 487-502, 1984.
@ARTICLE{CraEvaLio,
author = {Crandall, M. G. and Evans, L. C. and Lions, P.-L.},
title = {Some properties of viscosity solutions of {H}amilton-{J}acobi equations},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the Amer. Math. Soc.},
volume = {282},
year = {1984},
number = {2},
pages = {487--502},
issn = {0002-9947},
mrclass = {35F20 (35L60)},
mrnumber = {0732102},
doi = {10.2307/1999247},
url = {https://doi.org/10.2307/1999247},
zblnumber = {0543.35011},
} -
[daLMad]
A. da Luz and E. Maderna, "On the free time minimizers of the Newtonian $N$-body problem," Math. Proc. Cambridge Philos. Soc., vol. 156, iss. 2, pp. 209-227, 2014.
@ARTICLE{daLMad,
author = {da Luz, Adriana and Maderna, Ezequiel},
title = {On the free time minimizers of the {N}ewtonian {$N$}-body problem},
journal = {Math. Proc. Cambridge Philos. Soc.},
fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
volume = {156},
year = {2014},
number = {2},
pages = {209--227},
issn = {0305-0041},
mrclass = {70F10 (49K05 58E30 70H08)},
mrnumber = {3177865},
mrreviewer = {Diogo Pinheiro},
doi = {10.1017/S0305004113000650},
url = {https://doi.org/10.1017/S0305004113000650},
zblnumber = {1331.70035},
} -
[Dia] F. Diacu, "Singularities of the $N$-body problem," in Classical and Celestial Mechanics, Princeton Univ. Press, Princeton, NJ, 2002, pp. 35-62.
@INCOLLECTION{Dia,
author = {Diacu, Florin},
title = {Singularities of the {$N$}-body problem},
booktitle = {Classical and Celestial Mechanics},
venue = {{R}ecife, 1993/1999},
pages = {35--62},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {2002},
mrclass = {70F10 (70F15 70F16)},
mrnumber = {1974779},
mrreviewer = {Gareth E. Roberts},
zblnumber = {1190.70007},
} -
[DuMoMoYu]
N. Duignan, R. Moeckel, R. Montgomery, and G. Yu, "Chazy-type asymptotics and hyperbolic scattering for the $n$-body problem," Arch. Ration. Mech. Anal., vol. 238, iss. 1, pp. 255-297, 2020.
@article{DuMoMoYu,
author = {Duignan, Nathan and Moeckel, Richard and Montgomery, Richard and Yu, Guowei},
TITLE = {Chazy-type asymptotics and hyperbolic scattering for the {$n$}-body problem},
JOURNAL = {Arch. Ration. Mech. Anal.},
FJOURNAL = {Archive for Rational Mechanics and Analysis},
VOLUME = {238},
YEAR = {2020},
NUMBER = {1},
PAGES = {255--297},
ISSN = {0003-9527},
MRCLASS = {70F10 (37N05)},
MRNUMBER = {4121133},
DOI = {10.1007/s00205-020-01542-2},
URL = {https://doi.org/10.1007/s00205-020-01542-2},
ZBLNUMBER = {07219763},
} -
[Eva1]
L. C. Evans, Partial Differential Equations, Second ed., Amer. Math. Soc., Providence, RI, 2010, vol. 19.
@BOOK{Eva1,
author = {Evans, Lawrence C.},
title = {Partial {D}ifferential {E}quations},
series = {Grad. Stud. Math.},
volume = {19},
edition = {Second},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2010},
pages = {xxii+749},
isbn = {978-0-8218-4974-3},
mrclass = {35-01},
mrnumber = {2597943},
mrreviewer = {Diego M. Maldonado},
doi = {10.1090/gsm/019},
url = {https://doi.org/10.1090/gsm/019},
zblnumber = {1194.35001},
} -
[Eva2]
B. Dacorogna, "Calculus of variations, implicit partial differential equations and microstructure," GAMM-Mitt., vol. 29, iss. 2, pp. 150-171, 2006.
@ARTICLE{Eva2,
author = {Dacorogna, Bernard},
title = {Calculus of variations, implicit partial differential equations and microstructure},
journal = {GAMM-Mitt.},
fjournal = {GAMM-Mitteilungen},
volume = {29},
year = {2006},
number = {2},
pages = {150--171},
issn = {0936-7195},
mrclass = {49J45 (35F25 35J20 74B20 74N15 74P05)},
mrnumber = {2268764},
doi = {10.1002/gamm.201490028},
url = {https://doi.org/10.1002/gamm.201490028},
zblnumber = {1157.49003},
} -
[Fat]
A. Fathi, "Weak KAM theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation," in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, 2014, pp. 597-621.
@INPROCEEDINGS{Fat,
author = {Fathi, Albert},
title = {Weak {KAM} theory: the connection between {A}ubry-{M}ather theory and viscosity solutions of the {H}amilton-{J}acobi equation},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{S}eoul 2014. {V}ol. {III}},
pages = {597--621},
publisher = {Kyung Moon Sa, Seoul},
year = {2014},
mrclass = {37J50 (35D40 35F21 70H20)},
mrnumber = {3729043},
zblnumber = {1373.37151},
url = {http://www.icm2014.org/download/Proceedings_Volume_III.pdf},
} -
[FerTer]
D. L. Ferrario and S. Terracini, "On the existence of collisionless equivariant minimizers for the classical $n$-body problem," Invent. Math., vol. 155, iss. 2, pp. 305-362, 2004.
@ARTICLE{FerTer,
author = {Ferrario, Davide L. and Terracini, Susanna},
title = {On the existence of collisionless equivariant minimizers for the classical {$n$}-body problem},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {155},
year = {2004},
number = {2},
pages = {305--362},
issn = {0020-9910},
mrclass = {70F10 (37J45 49J40 49S05 70F07 70F16 70H30)},
mrnumber = {2031430},
mrreviewer = {Kuo-Chang Chen},
doi = {10.1007/s00222-003-0322-7},
url = {https://doi.org/10.1007/s00222-003-0322-7},
zblnumber = {1068.70013},
} -
[Gro]
M. Gromov, "Hyperbolic manifolds, groups and actions," in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, 1981, pp. 183-213.
@INPROCEEDINGS{Gro,
author = {Gromov, M.},
title = {Hyperbolic manifolds, groups and actions},
booktitle = {Riemann Surfaces and Related Topics: {P}roceedings of the 1978 {S}tony {B}rook {C}onference},
venue = {{S}tate {U}niv. {N}ew {Y}ork, {S}tony {B}rook, {N}.{Y}., 1978},
series = {Ann. of Math. Stud.},
volume = {97},
pages = {183--213},
publisher = {Princeton Univ. Press, Princeton, N.J.},
year = {1981},
mrclass = {53C15 (53C45 58F17)},
mrnumber = {0624814},
mrreviewer = {M. Rees},
doi = {10.1515/9781400881550},
url = {https://doi.org/10.1515/9781400881550},
zblnumber = {0467.53035},
} -
[HamMoe]
M. Hampton and R. Moeckel, "Finiteness of relative equilibria of the four-body problem," Invent. Math., vol. 163, iss. 2, pp. 289-312, 2006.
@ARTICLE{HamMoe,
author = {Hampton, Marshall and Moeckel, Richard},
title = {Finiteness of relative equilibria of the four-body problem},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {163},
year = {2006},
number = {2},
pages = {289--312},
issn = {0020-9910},
mrclass = {70F15 (37N05 70F10)},
mrnumber = {2207019},
mrreviewer = {Manuele Santoprete},
doi = {10.1007/s00222-005-0461-0},
url = {https://doi.org/10.1007/s00222-005-0461-0},
zblnumber = {1083.70012},
} -
[Mad1]
E. Maderna, "On weak KAM theory for $N$-body problems," Ergodic Theory Dynam. Systems, vol. 32, iss. 3, pp. 1019-1041, 2012.
@ARTICLE{Mad1,
author = {Maderna, Ezequiel},
title = {On weak {KAM} theory for {$N$}-body problems},
journal = {Ergodic Theory Dynam. Systems},
fjournal = {Ergodic Theory and Dynamical Systems},
volume = {32},
year = {2012},
number = {3},
pages = {1019--1041},
issn = {0143-3857},
mrclass = {37J50 (31B15 70F10 70H20)},
mrnumber = {2995654},
mrreviewer = {Mikhail B. Sevryuk},
doi = {10.1017/S0143385711000046},
url = {https://doi.org/10.1017/S0143385711000046},
zblnumber = {1257.37039},
} -
[Mad2]
E. Maderna, "Minimizing configurations and Hamilton-Jacobi equations of homogeneous $N$-body problems," Regul. Chaotic Dyn., vol. 18, iss. 6, pp. 656-673, 2013.
@ARTICLE{Mad2,
author = {Maderna, Ezequiel},
title = {Minimizing configurations and {H}amilton-{J}acobi equations of homogeneous {$N$}-body problems},
journal = {Regul. Chaotic Dyn.},
fjournal = {Regular and Chaotic Dynamics. International Scientific Journal},
volume = {18},
year = {2013},
number = {6},
pages = {656--673},
issn = {1560-3547},
mrclass = {70F10 (34C40 35D30 35D40 70H08 70H20)},
mrnumber = {3146584},
mrreviewer = {Hasna Riahi},
doi = {10.1134/S1560354713060063},
url = {https://doi.org/10.1134/S1560354713060063},
zblnumber = {1286.70017},
} -
[MadVen]
E. Maderna and A. Venturelli, "Globally minimizing parabolic motions in the Newtonian $N$-body problem," Arch. Ration. Mech. Anal., vol. 194, iss. 1, pp. 283-313, 2009.
@ARTICLE{MadVen,
author = {Maderna, Ezequiel and Venturelli, A.},
title = {Globally minimizing parabolic motions in the {N}ewtonian {$N$}-body problem},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {194},
year = {2009},
number = {1},
pages = {283--313},
issn = {0003-9527},
mrclass = {74F10 (37J45 47J30)},
mrnumber = {2533929},
mrreviewer = {Zhifu Xie},
doi = {10.1007/s00205-008-0175-8},
url = {https://doi.org/10.1007/s00205-008-0175-8},
zblnumber = {1253.70015},
} -
[Mar]
C. Marchal, "How the method of minimization of action avoids singularities," Celestial Mech. Dynam. Astronom., vol. 83, iss. 1-4, pp. 325-353, 2002.
@ARTICLE{Mar,
author = {Marchal, C.},
title = {How the method of minimization of action avoids singularities},
note = {Modern celestial mechanics: from theory to applications (Rome, 2001)},
journal = {Celestial Mech. Dynam. Astronom.},
fjournal = {Celestial Mechanics \& Dynamical Astronomy. An International Journal of Space Dynamics},
volume = {83},
year = {2002},
number = {1-4},
pages = {325--353},
issn = {0923-2958},
mrclass = {70F10 (34H05 49K15 70H30)},
mrnumber = {1956531},
mrreviewer = {César Castilho},
doi = {10.1023/A:1020128408706},
url = {https://doi.org/10.1023/A:1020128408706},
zblnumber = {1073.70011},
} -
[MarSaa]
C. Marchal and D. G. Saari, "On the final evolution of the $n$-body problem," J. Differential Equations, vol. 20, iss. 1, pp. 150-186, 1976.
@ARTICLE{MarSaa,
author = {Marchal, Christian and Saari, Donald G.},
title = {On the final evolution of the {$n$}-body problem},
journal = {J. Differential Equations},
fjournal = {Journal of Differential Equations},
volume = {20},
year = {1976},
number = {1},
pages = {150--186},
issn = {0022-0396},
mrclass = {70.34 (85.34)},
mrnumber = {0416150},
mrreviewer = {K. Forster},
doi = {10.1016/0022-0396(76)90101-7},
url = {https://doi.org/10.1016/0022-0396(76)90101-7},
zblnumber = {0336.70010},
} -
[McG] R. McGehee, "Von Zeipel’s theorem on singularities in celestial mechanics," Exposition. Math., vol. 4, iss. 4, pp. 335-345, 1986.
@ARTICLE{McG,
author = {McGehee, Richard},
title = {von {Z}eipel's theorem on singularities in celestial mechanics},
journal = {Exposition. Math.},
fjournal = {Expositiones Mathematicae. International Journal for Pure and Applied Mathematics},
volume = {4},
year = {1986},
number = {4},
pages = {335--345},
issn = {0723-0869},
mrclass = {70F10 (01A60 58F05 58F40)},
mrnumber = {0867962},
mrreviewer = {V. Szebehely},
zblnumber = {0622.70005},
} -
[MoMoSa]
R. Moeckel, R. Montgomery, and H. Sánchez Morgado, "Free time minimizers for the three-body problem," Celestial Mech. Dynam. Astronom., vol. 130, iss. 3, p. 28, 2018.
@ARTICLE{MoMoSa,
author = {Moeckel, Richard and Montgomery, Richard and S\'{a}nchez Morgado, Héctor},
title = {Free time minimizers for the three-body problem},
journal = {Celestial Mech. Dynam. Astronom.},
fjournal = {Celestial Mechanics \& Dynamical Astronomy. An International Journal of Space Dynamics},
volume = {130},
year = {2018},
number = {3},
pages = {Paper No. 28, 28},
issn = {0923-2958},
mrclass = {70F10 (37N05 70F07 70F15 70G40 70G60)},
mrnumber = {3779036},
mrreviewer = {Nicola Soave},
doi = {10.1007/s10569-018-9823-y},
url = {https://doi.org/10.1007/s10569-018-9823-y},
zblnumber = {1390.70022},
} -
[Mos]
J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1973, vol. 77.
@BOOK{Mos,
author = {Moser, Jürgen},
title = {Stable and Random Motions in Dynamical Systems},
titlenote = {Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J},
series = {Ann. of Math. Stud.},
volume = {77},
publisher = {Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo},
year = {1973},
pages = {viii+198},
mrclass = {58FXX (34C35 70.58)},
mrnumber = {0442980},
mrreviewer = {Clark Robinson},
zblnumber = {0271.70009},
doi = {10.1515/9781400882694},
url = {https://doi.org/10.1515/9781400882694},
} -
[Pal]
J. I. Palmore, "Measure of degenerate relative equilibria. I," Ann. of Math. (2), vol. 104, iss. 3, pp. 421-429, 1976.
@ARTICLE{Pal,
author = {Palmore, Julian I.},
title = {Measure of degenerate relative equilibria. {I}},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {104},
year = {1976},
number = {3},
pages = {421--429},
issn = {0003-486X},
mrclass = {58F05 (58E05 70.58)},
mrnumber = {0420713},
mrreviewer = {Donald G. Saari},
doi = {10.2307/1970964},
url = {https://doi.org/10.2307/1970964},
zblnumber = {0321.58014},
} -
[Per]
B. A. Percino-Figueroa, "Null angular momentum and weak KAM solutions of the Newtonian $N$-body problem," SIGMA Symmetry Integrability Geom. Methods Appl., vol. 13, p. 068, 2017.
@ARTICLE{Per,
author = {Percino-Figueroa, Boris A.},
title = {Null angular momentum and weak {KAM} solutions of the {N}ewtonian {$N$}-body problem},
journal = {SIGMA Symmetry Integrability Geom. Methods Appl.},
fjournal = {SIGMA. Symmetry, Integrability and Geometry. Methods and Applications},
volume = {13},
year = {2017},
pages = {Paper No. 068, 8},
mrclass = {37J15 (37J50 70F10 70H20)},
mrnumber = {3689149},
mrreviewer = {A. S. Sumbatov},
doi = {10.3842/SIGMA.2017.068},
url = {https://doi.org/10.3842/SIGMA.2017.068},
zblnumber = {1383.37050},
} -
[PerSan]
B. Percino and H. Sánchez-Morgado, "Busemann functions for the $N$-body problem," Arch. Ration. Mech. Anal., vol. 213, iss. 3, pp. 981-991, 2014.
@ARTICLE{PerSan,
author = {Percino, Boris and S\'{a}nchez-Morgado, Héctor},
title = {Busemann functions for the {$N$}-body problem},
journal = {Arch. Ration. Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {213},
year = {2014},
number = {3},
pages = {981--991},
issn = {0003-9527},
mrclass = {70F10 (49L25 70H08)},
mrnumber = {3218835},
mrreviewer = {Ezequiel Maderna},
doi = {10.1007/s00205-014-0748-7},
url = {https://doi.org/10.1007/s00205-014-0748-7},
zblnumber = {1342.70031},
} -
[Poi] H. Poincaré, "Sur les solutions périodiques et le principe de moindre action," C. R. Acad. Sci., Paris, Sér. I, Math, vol. 123, pp. 915-918, 1896.
@ARTICLE{Poi,
author = {Poincaré, H.},
title = {Sur les solutions périodiques et le principe de moindre action},
journal = {C. R. Acad. Sci., Paris, Sér. I, Math},
volume = {123},
year = {1896},
pages = {915--918},
zblnumber = {27.0608.02},
} -
[Pol]
H. Pollard, "The behavior of gravitational systems," J. Math. Mech., vol. 17, pp. 601-611, 1967/1968.
@ARTICLE{Pol,
author = {Pollard, Harry},
title = {The behavior of gravitational systems},
journal = {J. Math. Mech.},
volume = {17},
year = {1967/1968},
pages = {601--611},
mrclass = {70.34},
mrnumber = {0261826},
mrreviewer = {F. Nahon},
doi = {10.1512/iumj.1968.17.17036},
url = {https://doi.org/10.1512/iumj.1968.17.17036},
zblnumber = {0159.26102},
} -
[SaaXia]
D. G. Saari and Z. Xia, "The existence of oscillatory and superhyperbolic motion in Newtonian systems," J. Differential Equations, vol. 82, iss. 2, pp. 342-355, 1989.
@ARTICLE{SaaXia,
author = {Saari, Donald G. and Xia, Zhihong},
title = {The existence of oscillatory and superhyperbolic motion in {N}ewtonian systems},
journal = {J. Differential Equations},
fjournal = {Journal of Differential Equations},
volume = {82},
year = {1989},
number = {2},
pages = {342--355},
issn = {0022-0396},
mrclass = {70F10 (58F10)},
mrnumber = {1027973},
mrreviewer = {Dorin Andrica},
doi = {10.1016/0022-0396(89)90137-X},
url = {https://doi.org/10.1016/0022-0396(89)90137-X},
zblnumber = {0705.34034},
} -
[Shu]
M. Shub, "Appendix to Smale’s paper: “Diagonals and relative equilibria”," in Manifolds — Amsterdam 1970, 1971, pp. 199-201.
@INPROCEEDINGS{Shu,
author = {Shub, M.},
title = {Appendix to {S}male's paper: ``{D}iagonals and relative equilibria''},
booktitle = {Manifolds -- {A}msterdam 1970},
venue = {{P}roc. {N}uffic {S}ummer {S}chool},
series = {Lecture Notes in Math.},
volume = {197},
pages = {199--201},
publisher = {Springer, Berlin},
year = {1971},
mrclass = {85.57},
mrnumber = {0278700},
mrreviewer = {J. W. Robbin},
doi = {10.1007/BFb0068619},
url = {https://doi.org/10.1007/BFb0068619},
zblnumber = {0219.57026},
} -
[Sit]
K. Sitnikov, "The existence of oscillatory motions in the three-body problems," Soviet Physics. Dokl., vol. 5, pp. 647-650, 1960.
@ARTICLE{Sit,
author = {Sitnikov, K.},
title = {The existence of oscillatory motions in the three-body problems},
journal = {Soviet Physics. Dokl.},
fjournal = {Soviet Physics. Doklady},
volume = {5},
year = {1960},
pages = {647--650},
issn = {0038-5689},
mrclass = {85.34},
mrnumber = {0127389},
mrreviewer = {E. Leimanis},
url = {http://mi.mathnet.ru/eng/dan/v133/i2/p303},
zblnumber = {0108.18603},
} -
[Win] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Univ. Press, Princeton, N. J., 1941.
@BOOK{Win,
author = {Wintner, Aurel},
title = {The {A}nalytical {F}oundations of {C}elestial {M}echanics},
series = {Princeton Mathematical Series, v. 5},
publisher = {Princeton Univ. Press, Princeton, N. J.},
year = {1941},
pages = {xii+448},
mrclass = {85.0X},
mrnumber = {0005824},
mrreviewer = {E. J. Moulton},
zblnumber = {0026.02302},
} -
[Xia]
Z. Xia, "The existence of noncollision singularities in Newtonian systems," Ann. of Math. (2), vol. 135, iss. 3, pp. 411-468, 1992.
@ARTICLE{Xia,
author = {Xia, Zhihong},
title = {The existence of noncollision singularities in {N}ewtonian systems},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {135},
year = {1992},
number = {3},
pages = {411--468},
issn = {0003-486X},
mrclass = {70F10 (58F05 70F15 70F35)},
mrnumber = {1166640},
mrreviewer = {Ernesto A. Lacomba},
doi = {10.2307/2946572},
url = {https://doi.org/10.2307/2946572},
zblnumber = {0764.70006},
} -
[YuZha]
X. Yu and S. Zhang, "Action-minimizing solutions of the one-dimensional $N$-body problem," Celestial Mech. Dynam. Astronom., vol. 130, iss. 5, p. 37, 2018.
@ARTICLE{YuZha,
author = {Yu, Xiang and Zhang, Shiqing},
title = {Action-minimizing solutions of the one-dimensional {$N$}-body problem},
journal = {Celestial Mech. Dynam. Astronom.},
fjournal = {Celestial Mechanics \& Dynamical Astronomy. An International Journal of Space Dynamics},
volume = {130},
year = {2018},
number = {5},
pages = {Paper No. 37, 15},
issn = {0923-2958},
mrclass = {70F10 (34B15 70F16 70G75)},
mrnumber = {3798029},
mrreviewer = {Khalil Zare},
doi = {10.1007/s10569-018-9830-z},
url = {https://doi.org/10.1007/s10569-018-9830-z},
zblnumber = {1391.70036},
} -
[Zei] H. relax von Zeipel, "Sur les singularités du probléme des $n$ corps," Ark. Math. Astr. Fys., iss. 4, pp. 1-4, 1908.
@ARTICLE{Zei,
author = {{\relax von Zeipel},
H.},
title = {Sur les singularités du probléme des $n$ corps},
journal = {Ark. Math. Astr. Fys.},
number = {4},
year = {1908},
pages = {1--4},
zblnumber = {},
}