Abstract
In this article, a six-parameter family of highly connected 7-manifolds which admit an $\mathrm {SO}(3)$-invariant metric of non-negative sectional curvature is constructed and the Eells-Kuiper invariant of each is computed. In particular, it follows that all exotic spheres in dimension 7 admit an $\mathrm{SO}(3)$-invariant metric of non-negative curvature.
-
[At]
M. F. Atiyah, "Characters and cohomology of finite groups," Inst. Hautes Études Sci. Publ. Math., iss. 9, pp. 23-64, 1961.
@ARTICLE{At,
author = {Atiyah, M. F.},
title = {Characters and cohomology of finite groups},
journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
number = {9},
year = {1961},
pages = {23--64},
issn = {0073-8301},
mrclass = {18.20},
mrnumber = {0148722},
mrreviewer = {F. Hirzebruch},
url = {http://www.numdam.org/item?id=PMIHES_1961__9__23_0},
zblnumber = {0107.02303},
} -
[APS]
M. F. Atiyah, V. K. Patodi, and I. M. Singer, "Spectral asymmetry and Riemannian geometry. II," Math. Proc. Cambridge Philos. Soc., vol. 78, iss. 3, pp. 405-432, 1975.
@ARTICLE{APS,
author = {Atiyah, M. F. and Patodi, V. K. and Singer, I. M.},
title = {Spectral asymmetry and {R}iemannian geometry. {II}},
journal = {Math. Proc. Cambridge Philos. Soc.},
fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
volume = {78},
year = {1975},
number = {3},
pages = {405--432},
issn = {0305-0041},
mrclass = {58G10 (57D85 57E15)},
mrnumber = {0397798},
mrreviewer = {Kh. Knapp},
doi = {10.1017/S0305004100051872},
url = {https://doi.org/10.1017/S0305004100051872},
zblnumber = {0314.58016},
} -
@ARTICLE{Ba,
author = {Barden, D.},
title = {Simply connected five-manifolds},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {82},
year = {1965},
pages = {365--385},
issn = {0003-486X},
mrclass = {57.10},
mrnumber = {0184241},
mrreviewer = {S. Smale},
doi = {10.2307/1970702},
url = {https://doi.org/10.2307/1970702},
zblnumber = {0136.20602},
} -
[BGV] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1992, vol. 298.
@BOOK{BGV,
author = {Berline, Nicole and Getzler, Ezra and Vergne, Michèle},
title = {Heat Kernels and {D}irac Operators},
series = {Grundlehren Math. Wiss.},
volume = {298},
publisher = {Springer-Verlag, Berlin},
year = {1992},
pages = {viii+369},
isbn = {3-540-53340-0},
mrclass = {58G10 (58G11)},
mrnumber = {1215720},
mrreviewer = {Alejandro Uribe},
zblnumber = {0744.58001},
} -
[BC1]
J. Bismut and J. Cheeger, "$\eta$-invariants and their adiabatic limits," J. Amer. Math. Soc., vol. 2, iss. 1, pp. 33-70, 1989.
@ARTICLE{BC1,
author = {Bismut, Jean-Michel and Cheeger, Jeff},
title = {{$\eta$}-invariants and their adiabatic limits},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the Amer. Math. Soc.},
volume = {2},
year = {1989},
number = {1},
pages = {33--70},
issn = {0894-0347},
mrclass = {58G10 (58C50 58G12 58G20)},
mrnumber = {0966608},
mrreviewer = {Jürgen Eichhorn},
doi = {10.2307/1990912},
url = {https://doi.org/10.2307/1990912},
zblnumber = {0671.58037},
} -
[BF]
J. Bismut and D. S. Freed, "The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem," Comm. Math. Phys., vol. 107, iss. 1, pp. 103-163, 1986.
@ARTICLE{BF,
author = {Bismut, Jean-Michel and Freed, Daniel S.},
title = {The analysis of elliptic families. {II}. {D}irac operators, eta invariants, and the holonomy theorem},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {107},
year = {1986},
number = {1},
pages = {103--163},
issn = {0010-3616},
mrclass = {58G11 (58G10 58G32)},
mrnumber = {0861886},
mrreviewer = {Ezra Getzler},
doi = {10.1007/BF01206955},
url = {https://doi.org/10.1007/BF01206955},
zblnumber = {0657.58038},
} -
[BL]
J. Bismut and G. Lebeau, "Complex immersions and Quillen metrics," Inst. Hautes Études Sci. Publ. Math., iss. 74, p. ii, 1991.
@ARTICLE{BL,
author = {Bismut, Jean-Michel and Lebeau, Gilles},
title = {Complex immersions and {Q}uillen metrics},
journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
number = {74},
year = {1991},
pages = {ii+298 pp. (1992)},
issn = {0073-8301},
mrclass = {58G26 (32L10)},
mrnumber = {1188532},
mrreviewer = {Jürgen Eichhorn},
url = {http://www.numdam.org/item?id=PMIHES_1991__74__298_0},
zblnumber = {0784.32010},
} -
[BH]
A. Borel and F. Hirzebruch, "Characteristic classes and homogeneous spaces. III," Amer. J. Math., vol. 82, pp. 491-504, 1960.
@ARTICLE{BH,
author = {Borel, A. and Hirzebruch, F.},
title = {Characteristic classes and homogeneous spaces. {III}},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {82},
year = {1960},
pages = {491--504},
issn = {0002-9327},
mrclass = {57.00},
mrnumber = {0120664},
mrreviewer = {R. Bott},
doi = {10.2307/2372969},
url = {https://doi.org/10.2307/2372969},
zblnumber = {0097.36401},
} -
[Cr]
D. J. Crowley, The classification of highly connected manifolds in dimensions 7 and 15, ProQuest LLC, Ann Arbor, MI, 2002.
@BOOK{Cr,
author = {Crowley, Diarmuid John},
title = {The classification of highly connected manifolds in dimensions 7 and 15},
note = {thesis (Ph.D.), Indiana Univ.},
publisher = {ProQuest LLC, Ann Arbor, MI},
year = {2002},
pages = {151},
isbn = {978-0493-69427-6},
mrclass = {Thesis},
mrnumber = {2703475},
url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3054376},
zblnumber = {0999.57027},
} -
[CE]
D. Crowley and C. M. Escher, "A classification of $S^3$-bundles over $S^4$," Differential Geom. Appl., vol. 18, iss. 3, pp. 363-380, 2003.
@ARTICLE{CE,
author = {Crowley, Diarmuid and Escher, Christine M.},
title = {A classification of {$S^3$}-bundles over {$S^4$}},
journal = {Differential Geom. Appl.},
fjournal = {Differential Geometry and its Applications},
volume = {18},
year = {2003},
number = {3},
pages = {363--380},
issn = {0926-2245},
mrclass = {55R15 (53C21 55R40 57T35)},
mrnumber = {1975035},
mrreviewer = {Krishnan Shankar},
doi = {10.1016/S0926-2245(03)00012-3},
url = {https://doi.org/10.1016/S0926-2245(03)00012-3},
zblnumber = {1027.55014},
} -
[CG]
D. Crowley and S. Goette, "Kreck-Stolz invariants for quaternionic line bundles," Trans. Amer. Math. Soc., vol. 365, iss. 6, pp. 3193-3225, 2013.
@ARTICLE{CG,
author = {Crowley, Diarmuid and Goette, Sebastian},
title = {Kreck-{S}tolz invariants for quaternionic line bundles},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the Amer. Math. Soc.},
volume = {365},
year = {2013},
number = {6},
pages = {3193--3225},
issn = {0002-9947},
mrclass = {58J28 (57R55)},
mrnumber = {3034463},
mrreviewer = {Man-Ho Ho},
doi = {10.1090/S0002-9947-2012-05732-1},
url = {https://doi.org/10.1090/S0002-9947-2012-05732-1},
zblnumber = {1281.58014},
} -
[CN]
D. Crowley and J. Nordström, "The classification of 2-connected 7-manifolds," Proc. Lond. Math. Soc. (3), vol. 119, iss. 1, pp. 1-54, 2019.
@ARTICLE{CN,
author = {Crowley, Diarmuid and Nordström, Johannes},
title = {The classification of 2-connected 7-manifolds},
journal = {Proc. Lond. Math. Soc. (3)},
fjournal = {Proceedings of the London Mathematical Society. Third Series},
volume = {119},
year = {2019},
number = {1},
pages = {1--54},
issn = {0024-6115},
mrclass = {57R15 (57R50 57R65)},
mrnumber = {3957830},
doi = {10.1112/plms.12222},
url = {https://doi.org/10.1112/plms.12222},
zblnumber = {07094283},
} -
[Dai]
X. Dai, "Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence," J. Amer. Math. Soc., vol. 4, iss. 2, pp. 265-321, 1991.
@ARTICLE{Dai,
author = {Dai, Xianzhe},
title = {Adiabatic limits, nonmultiplicativity of signature, and {L}eray spectral sequence},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the Amer. Math. Soc.},
volume = {4},
year = {1991},
number = {2},
pages = {265--321},
issn = {0894-0347},
mrclass = {58G10 (55T10 58G25)},
mrnumber = {1088332},
mrreviewer = {Jürgen Eichhorn},
doi = {10.2307/2939276},
url = {https://doi.org/10.2307/2939276},
zblnumber = {0736.58039},
} -
[De]
O. Dearricott, "A 7-manifold with positive curvature," Duke Math. J., vol. 158, iss. 2, pp. 307-346, 2011.
@ARTICLE{De,
author = {Dearricott, Owen},
title = {A 7-manifold with positive curvature},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {158},
year = {2011},
number = {2},
pages = {307--346},
issn = {0012-7094},
mrclass = {53C21 (53C25)},
mrnumber = {2805071},
mrreviewer = {David J. Wraith},
doi = {10.1215/00127094-1334022},
url = {https://doi.org/10.1215/00127094-1334022},
zblnumber = {1221.53069},
} -
[DV]
J. DeVito, "The classification of compact simply connected biquotients in dimensions 4 and 5," Differential Geom. Appl., vol. 34, pp. 128-138, 2014.
@ARTICLE{DV,
author = {DeVito, Jason},
title = {The classification of compact simply connected biquotients in dimensions 4 and 5},
journal = {Differential Geom. Appl.},
fjournal = {Differential Geometry and its Applications},
volume = {34},
year = {2014},
pages = {128--138},
issn = {0926-2245},
mrclass = {53C30 (57R55)},
mrnumber = {3209541},
mrreviewer = {Martin Kerin},
doi = {10.1016/j.difgeo.2014.04.002},
url = {https://doi.org/10.1016/j.difgeo.2014.04.002},
zblnumber = {1298.53043},
} -
[Do1]
H. Donnelly, "Spectral geometry and invariants from differential topology," Bull. London Math. Soc., vol. 7, pp. 147-150, 1975.
@ARTICLE{Do1,
author = {Donnelly, Harold},
title = {Spectral geometry and invariants from differential topology},
journal = {Bull. London Math. Soc.},
fjournal = {The Bulletin of the London Mathematical Society},
volume = {7},
year = {1975},
pages = {147--150},
issn = {0024-6093},
mrclass = {58G99 (57D55)},
mrnumber = {0372929},
mrreviewer = {J. Eells},
doi = {10.1112/blms/7.2.147},
url = {https://doi.org/10.1112/blms/7.2.147},
zblnumber = {0306.58019},
} -
[Do2]
H. Donnelly, "Eta invariants for $G$-spaces," Indiana Univ. Math. J., vol. 27, iss. 6, pp. 889-918, 1978.
@ARTICLE{Do2,
author = {Donnelly, Harold},
title = {Eta invariants for {$G$}-spaces},
journal = {Indiana Univ. Math. J.},
fjournal = {Indiana Univ. Mathematics Journal},
volume = {27},
year = {1978},
number = {6},
pages = {889--918},
issn = {0022-2518},
mrclass = {58G25 (53C05 57R20 58G10)},
mrnumber = {0511246},
mrreviewer = {Akira Asada},
doi = {10.1512/iumj.1978.27.27060},
url = {https://doi.org/10.1512/iumj.1978.27.27060},
zblnumber = {0402.58006},
} -
[DPR]
C. Durán, T. Püttmann, and A. Rigas, "An infinite family of Gromoll-Meyer spheres," Arch. Math. (Basel), vol. 95, iss. 3, pp. 269-282, 2010.
@ARTICLE{DPR,
author = {Dur\'{a}n, Carlos and Püttmann, Thomas and Rigas, A.},
title = {An infinite family of {G}romoll-{M}eyer spheres},
journal = {Arch. Math. (Basel)},
fjournal = {Archiv der Mathematik},
volume = {95},
year = {2010},
number = {3},
pages = {269--282},
issn = {0003-889X},
mrclass = {57R60 (53C22 57R55 57R91)},
mrnumber = {2719385},
mrreviewer = {David J. Wraith},
doi = {10.1007/s00013-010-0161-x},
url = {https://doi.org/10.1007/s00013-010-0161-x},
zblnumber = {1258.53039},
} -
[EK]
J. Eells Jr. and N. H. Kuiper, "An invariant for certain smooth manifolds," Ann. Mat. Pura Appl. (4), vol. 60, pp. 93-110, 1962.
@ARTICLE{EK,
author = {Eells, Jr., James and Kuiper, Nicolaas H.},
title = {An invariant for certain smooth manifolds},
journal = {Ann. Mat. Pura Appl. (4)},
fjournal = {Annali di Matematica Pura ed Applicata. Serie Quarta},
volume = {60},
year = {1962},
pages = {93--110},
issn = {0003-4622},
mrclass = {57.32 (57.10)},
mrnumber = {0156356},
mrreviewer = {R. H. Szczarba},
doi = {10.1007/BF02412768},
url = {https://doi.org/10.1007/BF02412768},
zblnumber = {0119.18704},
} -
[Es]
J. -H. Eschenburg, "Cohomology of biquotients," Manuscripta Math., vol. 75, iss. 2, pp. 151-166, 1992.
@ARTICLE{Es,
author = {Eschenburg, J.-H.},
title = {Cohomology of biquotients},
journal = {Manuscripta Math.},
fjournal = {Manuscripta Mathematica},
volume = {75},
year = {1992},
number = {2},
pages = {151--166},
issn = {0025-2611},
mrclass = {57T15 (53C30 55R20)},
mrnumber = {1160094},
mrreviewer = {Samuel Evens},
doi = {10.1007/BF02567078},
url = {https://doi.org/10.1007/BF02567078},
zblnumber = {0769.53029},
} -
[EsKe]
J. -H. Eschenburg and M. Kerin, "Almost positive curvature on the Gromoll-Meyer sphere," Proc. Amer. Math. Soc., vol. 136, iss. 9, pp. 3263-3270, 2008.
@ARTICLE{EsKe,
author = {Eschenburg, J.-H. and Kerin, M.},
title = {Almost positive curvature on the {G}romoll-{M}eyer sphere},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the Amer. Math. Soc.},
volume = {136},
year = {2008},
number = {9},
pages = {3263--3270},
issn = {0002-9939},
mrclass = {53C21 (53C20 53C30 57R60)},
mrnumber = {2407092},
mrreviewer = {David J. Wraith},
doi = {10.1090/S0002-9939-08-09429-X},
url = {https://doi.org/10.1090/S0002-9939-08-09429-X},
zblnumber = {1153.53023},
} -
[GGK]
F. Galaz-Garcia and M. Kerin, "Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension," Math. Z., vol. 276, iss. 1-2, pp. 133-152, 2014.
@ARTICLE{GGK,
author = {Galaz-Garcia, Fernando and Kerin, Martin},
title = {Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {276},
year = {2014},
number = {1-2},
pages = {133--152},
issn = {0025-5874},
mrclass = {57S15 (53C20)},
mrnumber = {3150196},
mrreviewer = {Andrea Spiro},
doi = {10.1007/s00209-013-1190-5},
url = {https://doi.org/10.1007/s00209-013-1190-5},
zblnumber = {1296.53066},
} -
[Go1]
S. Goette, "Equivariant $\eta$-invariants on homogeneous spaces," Math. Z., vol. 232, iss. 1, pp. 1-42, 1999.
@ARTICLE{Go1,
author = {Goette, Sebastian},
title = {Equivariant {$\eta$}-invariants on homogeneous spaces},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {232},
year = {1999},
number = {1},
pages = {1--42},
issn = {0025-5874},
mrclass = {58J28 (58J20)},
mrnumber = {1714278},
mrreviewer = {Kai Köhler},
doi = {10.1007/PL00004757},
url = {https://doi.org/10.1007/PL00004757},
zblnumber = {0941.58016},
} -
[Go]
S. Goette, "Equivariant $\eta$-invariants and $\eta$-forms," J. Reine Angew. Math., vol. 526, pp. 181-236, 2000.
@ARTICLE{Go,
author = {Goette, Sebastian},
title = {Equivariant {$\eta$}-invariants and {$\eta$}-forms},
journal = {J. Reine Angew. Math.},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
volume = {526},
year = {2000},
pages = {181--236},
issn = {0075-4102},
mrclass = {58J28 (58J20 58J35)},
mrnumber = {1778304},
mrreviewer = {Xiaonan Ma},
doi = {10.1515/crll.2000.073},
url = {https://doi.org/10.1515/crll.2000.073},
zblnumber = {0974.58021},
} -
[Gohome]
S. Goette, "Eta invariants of homogeneous spaces," Pure Appl. Math. Q., vol. 5, iss. 3, Special Issue: In honor of Friedrich Hirzebruch. Part 2, pp. 915-946, 2009.
@ARTICLE{Gohome,
author = {Goette, S.},
title = {Eta invariants of homogeneous spaces},
journal = {Pure Appl. Math. Q.},
fjournal = {Pure and Applied Mathematics Quarterly},
volume = {5},
year = {2009},
number = {3, Special Issue: In honor of Friedrich Hirzebruch. Part 2},
pages = {915--946},
issn = {1558-8599},
mrclass = {58J28 (53C30)},
mrnumber = {2532710},
mrreviewer = {Thomas Schick},
doi = {10.4310/PAMQ.2009.v5.n3.a2},
url = {https://doi.org/10.4310/PAMQ.2009.v5.n3.a2},
zblnumber = {1185.58010},
} -
[Gojems]
S. Goette, "Adiabatic limits of Seifert fibrations, Dedekind sums, and the diffeomorphism type of certain 7-manifolds," J. Eur. Math. Soc. (JEMS), vol. 16, iss. 12, pp. 2499-2555, 2014.
@ARTICLE{Gojems,
author = {Goette, Sebastian},
title = {Adiabatic limits of {S}eifert fibrations, {D}edekind sums, and the diffeomorphism type of certain 7-manifolds},
journal = {J. Eur. Math. Soc. (JEMS)},
fjournal = {Journal of the European Mathematical Society (JEMS)},
volume = {16},
year = {2014},
number = {12},
pages = {2499--2555},
issn = {1435-9855},
mrclass = {58J28 (53C21 57R20 57R55)},
mrnumber = {3293803},
mrreviewer = {Andrew Swann},
doi = {10.4171/JEMS/492},
url = {https://doi.org/10.4171/JEMS/492},
zblnumber = {1311.58012},
} -
[GKS]
S. Goette, N. Kitchloo, and K. Shankar, "Diffeomorphism type of the Berger space ${ SO}(5)/{ SO}(3)$," Amer. J. Math., vol. 126, iss. 2, pp. 395-416, 2004.
@ARTICLE{GKS,
author = {Goette, Sebastian and Kitchloo, Nitu and Shankar, Krishnan},
title = {Diffeomorphism type of the {B}erger space {${\rm SO}(5)/{\rm SO}(3)$}},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {126},
year = {2004},
number = {2},
pages = {395--416},
issn = {0002-9327},
mrclass = {53C30 (58J28)},
mrnumber = {2045506},
mrreviewer = {Thomas Schick},
doi = {10.1353/ajm.2004.0014},
url = {https://doi.org/10.1353/ajm.2004.0014},
zblnumber = {1066.53069},
} -
[GM]
D. Gromoll and W. Meyer, "An exotic sphere with nonnegative sectional curvature," Ann. of Math. (2), vol. 100, pp. 401-406, 1974.
@ARTICLE{GM,
author = {Gromoll, Detlef and Meyer, Wolfgang},
title = {An exotic sphere with nonnegative sectional curvature},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {100},
year = {1974},
pages = {401--406},
issn = {0003-486X},
mrclass = {53C20 (57D15)},
mrnumber = {0375151},
mrreviewer = {T. Hangan},
doi = {10.2307/1971078},
url = {https://doi.org/10.2307/1971078},
zblnumber = {0293.53015},
} -
[GVZ]
K. Grove, L. Verdiani, and W. Ziller, "An exotic $T_1\Bbb S^4$ with positive curvature," Geom. Funct. Anal., vol. 21, iss. 3, pp. 499-524, 2011.
@ARTICLE{GVZ,
author = {Grove, Karsten and Verdiani, Luigi and Ziller, Wolfgang},
title = {An exotic {$T_1\Bbb S^4$} with positive curvature},
journal = {Geom. Funct. Anal.},
fjournal = {Geometric and Functional Analysis},
volume = {21},
year = {2011},
number = {3},
pages = {499--524},
issn = {1016-443X},
mrclass = {53C20 (53C21 53C25 57R55)},
mrnumber = {2810857},
mrreviewer = {David J. Wraith},
doi = {10.1007/s00039-011-0117-8},
url = {https://doi.org/10.1007/s00039-011-0117-8},
zblnumber = {1230.53032},
} -
[GWZ]
K. Grove, B. Wilking, and W. Ziller, "Positively curved cohomogeneity one manifolds and 3-Sasakian geometry," J. Differential Geom., vol. 78, iss. 1, pp. 33-111, 2008.
@ARTICLE{GWZ,
author = {Grove, Karsten and Wilking, Burkhard and Ziller, Wolfgang},
title = {Positively curved cohomogeneity one manifolds and 3-{S}asakian geometry},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {78},
year = {2008},
number = {1},
pages = {33--111},
issn = {0022-040X},
mrclass = {53C21 (53C26 57S25)},
mrnumber = {2406265},
mrreviewer = {Andrew Swann},
doi = {10.4310/jdg/1197320603},
url = {https://doi.org/10.4310/jdg/1197320603},
zblnumber = {1145.53023},
} -
[GZ]
K. Grove and W. Ziller, "Curvature and symmetry of Milnor spheres," Ann. of Math. (2), vol. 152, iss. 1, pp. 331-367, 2000.
@ARTICLE{GZ,
author = {Grove, Karsten and Ziller, Wolfgang},
title = {Curvature and symmetry of {M}ilnor spheres},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {152},
year = {2000},
number = {1},
pages = {331--367},
issn = {0003-486X},
mrclass = {53C20 (53C21 57R60 57S15)},
mrnumber = {1792298},
mrreviewer = {David J. Wraith},
doi = {10.2307/2661385},
url = {https://doi.org/10.2307/2661385},
zblnumber = {0991.53016},
} -
[HR]
A. J. Hanson and H. Römer, "Gravitational instanton contribution to Spin 3/2 axial anomaly," Phys. Lett. B, vol. 80, pp. 58-60, 1978.
@ARTICLE{HR,
author = {Hanson, A. J. and Römer, H.},
title = {Gravitational instanton contribution to {S}pin~3/2 axial anomaly},
journal = {Phys. Lett. B},
volume = {80},
year = {1978},
pages = {58--60},
doi = {10.1016/0370-2693(78)90306-4},
url = {https://doi.org/10.1016/0370-2693(78)90306-4},
zblnumber = {},
} -
[Hermann]
R. Hermann, "A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle," Proc. Amer. Math. Soc., vol. 11, pp. 236-242, 1960.
@ARTICLE{Hermann,
author = {Hermann, Robert},
title = {A sufficient condition that a mapping of {R}iemannian manifolds be a fibre bundle},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the Amer. Math. Soc.},
volume = {11},
year = {1960},
pages = {236--242},
issn = {0002-9939},
mrclass = {57.00 (53.00)},
mrnumber = {0112151},
mrreviewer = {Shoshichi Kobayashi},
doi = {10.2307/2032963},
url = {https://doi.org/10.2307/2032963},
zblnumber = {0112.13701},
} -
[Hi] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, Berlin, 1978, vol. 131.
@BOOK{Hi,
author = {Hirzebruch, Friedrich},
title = {Topological Methods in Algebraic Geometry},
series = {Classics Math.},
note = {Second, Corrected Printing of the Third Edition},
fjournal = {Grundlehren der Mathematischen Wissenschaften},
journal = {Grundlehren Math. Wiss.},
publisher = {Springer-Verlag, Berlin},
volume = {131},
year = {1978},
pages = {234 pp.},
isbn = {3-540-58663-6},
mrclass = {57-02 (01A75 14-02)},
mrnumber = {},
zblnumber = {0376.14001},
} -
[KZ]
V. Kapovitch and W. Ziller, "Biquotients with singly generated rational cohomology," Geom. Dedicata, vol. 104, pp. 149-160, 2004.
@ARTICLE{KZ,
author = {Kapovitch, Vitali and Ziller, Wolfgang},
title = {Biquotients with singly generated rational cohomology},
journal = {Geom. Dedicata},
fjournal = {Geometriae Dedicata},
volume = {104},
year = {2004},
pages = {149--160},
issn = {0046-5755},
mrclass = {22E46},
mrnumber = {2043959},
mrreviewer = {Samuel Evens},
doi = {10.1023/B:GEOM.0000022860.89824.2f},
url = {https://doi.org/10.1023/B:GEOM.0000022860.89824.2f},
zblnumber = {1063.53055},
} -
[Kawa]
T. Kawasaki, "The index of elliptic operators over $V$-manifolds," Nagoya Math. J., vol. 84, pp. 135-157, 1981.
@ARTICLE{Kawa,
author = {Kawasaki, Tetsuro},
title = {The index of elliptic operators over {$V$}-manifolds},
journal = {Nagoya Math. J.},
fjournal = {Nagoya Mathematical Journal},
volume = {84},
year = {1981},
pages = {135--157},
issn = {0027-7630},
mrclass = {58G10},
mrnumber = {0641150},
mrreviewer = {Th. Friedrich},
doi = {10.1017/S0027763000019589},
url = {https://doi.org/10.1017/S0027763000019589},
zblnumber = {0437.58020},
} -
[KM]
M. A. Kervaire and J. W. Milnor, "Groups of homotopy spheres. I," Ann. of Math. (2), vol. 77, pp. 504-537, 1963.
@ARTICLE{KM,
author = {Kervaire, Michel A. and Milnor, John W.},
title = {Groups of homotopy spheres. {I}},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {77},
year = {1963},
pages = {504--537},
issn = {0003-486X},
mrclass = {57.10},
mrnumber = {0148075},
mrreviewer = {J. F. Adams},
doi = {10.2307/1970128},
url = {https://doi.org/10.2307/1970128},
zblnumber = {0115.40505},
} -
[KiSh]
N. Kitchloo and K. Shankar, "On complexes equivalent to $S^3$-bundles over $S^4$," Internat. Math. Res. Notices, iss. 8, pp. 381-394, 2001.
@ARTICLE{KiSh,
author = {Kitchloo, Nitu and Shankar, Krishnan},
title = {On complexes equivalent to {$S^3$}-bundles over {$S^4$}},
journal = {Internat. Math. Res. Notices},
fjournal = {International Mathematics Research Notices},
year = {2001},
number = {8},
pages = {381--394},
issn = {1073-7928},
mrclass = {55R25 (55P10)},
mrnumber = {1827083},
mrreviewer = {Donald M. Davis},
doi = {10.1155/S1073792801000186},
url = {https://doi.org/10.1155/S1073792801000186},
zblnumber = {0981.55007},
} -
[KS]
M. Kreck and S. Stolz, "A diffeomorphism classification of $7$-dimensional homogeneous Einstein manifolds with ${ SU}(3)\times{ SU}(2)\times{ U}(1)$-symmetry," Ann. of Math. (2), vol. 127, iss. 2, pp. 373-388, 1988.
@ARTICLE{KS,
author = {Kreck, Matthias and Stolz, Stephan},
title = {A diffeomorphism classification of {$7$}-dimensional homogeneous {E}instein manifolds with {${\rm SU}(3)\times{\rm SU}(2)\times{\rm U}(1)$}-symmetry},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {127},
year = {1988},
number = {2},
pages = {373--388},
issn = {0003-486X},
mrclass = {57R55 (53C25)},
mrnumber = {0932303},
mrreviewer = {Italo José Dejter},
doi = {10.2307/2007059},
url = {https://doi.org/10.2307/2007059},
zblnumber = {0649.53029},
} -
[LM] B. H. Lawson Jr. and M. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, NJ, 1989, vol. 38.
@BOOK{LM,
author = {Lawson, Jr., H. Blaine and Michelsohn, Marie-Louise},
title = {Spin Geometry},
series = {Princeton Math. Ser.},
volume = {38},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {1989},
pages = {xii+427},
isbn = {0-691-08542-0},
mrclass = {53-02 (53A50 53C20 57R75 58G10)},
mrnumber = {1031992},
mrreviewer = {N. J. Hitchin},
zblnumber = {0688.57001},
} -
[Ma]
X. Ma, "Functoriality of real analytic torsion forms," Israel J. Math., vol. 131, pp. 1-50, 2002.
@ARTICLE{Ma,
author = {Ma, Xiaonan},
title = {Functoriality of real analytic torsion forms},
journal = {Israel J. Math.},
fjournal = {Israel Journal of Mathematics},
volume = {131},
year = {2002},
pages = {1--50},
issn = {0021-2172},
mrclass = {58J52},
mrnumber = {1942300},
mrreviewer = {Thomas Schick},
doi = {10.1007/BF02785849},
url = {https://doi.org/10.1007/BF02785849},
zblnumber = {1042.58019},
} -
[MM]
R. R. Mazzeo and R. B. Melrose, "The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration," J. Differential Geom., vol. 31, iss. 1, pp. 185-213, 1990.
@ARTICLE{MM,
author = {Mazzeo, Rafe R. and Melrose, Richard B.},
title = {The adiabatic limit, {H}odge cohomology and {L}eray's spectral sequence for a fibration},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {31},
year = {1990},
number = {1},
pages = {185--213},
issn = {0022-040X},
mrclass = {58A14 (55R20 58G15)},
mrnumber = {1030670},
mrreviewer = {Steven Rosenberg},
doi = {10.4310/jdg/1214444094},
url = {https://doi.org/10.4310/jdg/1214444094},
zblnumber = {0702.58007},
} -
[Mi1]
J. Milnor, "On manifolds homeomorphic to the $7$-sphere," Ann. of Math. (2), vol. 64, pp. 399-405, 1956.
@ARTICLE{Mi1,
author = {Milnor, John},
title = {On manifolds homeomorphic to the {$7$}-sphere},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {64},
year = {1956},
pages = {399--405},
issn = {0003-486X},
mrclass = {55.0X},
mrnumber = {0082103},
mrreviewer = {J. C. Moore},
doi = {10.2307/1969983},
url = {https://doi.org/10.2307/1969983},
zblnumber = {0072.18402},
} -
[Mi2] J. Milnor, Differentiable manifolds which are homotopy spheres, 1959.
@MISC{Mi2,
author = {Milnor, John},
title = {Differentiable manifolds which are homotopy spheres},
note = {mimeographed notes, Princeton Univ., Princeton, NJ},
year = {1959},
zblnumber = {0106.37001},
} -
[Mi3] J. Milnor, Collected Papers of John Milnor. III. Differential Topology, Amer. Math. Soc., Providence, RI, 2007.
@BOOK{Mi3,
author = {Milnor, John},
title = {Collected Papers of {J}ohn {M}ilnor. {III}. Differential Topology},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2007},
pages = {xvi+343},
isbn = {978-0-8218-4230-0; 0-8218-4230-7},
mrclass = {01A75 (01-06 55-03 55Q45 57-03 57Rxx)},
mrnumber = {2307957},
mrreviewer = {Serge L. Tabachnikov},
zblnumber = {1122.01020},
} -
[PW] P. Petersen and F. Wilhelm, An exotic sphere with positive sectional curvature, 2008.
@MISC{PW,
author = {Petersen, P. and Wilhelm, F.},
title = {An exotic sphere with positive sectional curvature},
year = {2008},
arxiv = {0805.0812},
zblnumber = {},
} -
[Rochon]
F. Rochon, "Pseudodifferential operators on manifolds with foliated boundaries," J. Funct. Anal., vol. 262, iss. 3, pp. 1309-1362, 2012.
@ARTICLE{Rochon,
author = {Rochon, Frédéric},
title = {Pseudodifferential operators on manifolds with foliated boundaries},
journal = {J. Funct. Anal.},
fjournal = {Journal of Functional Analysis},
volume = {262},
year = {2012},
number = {3},
pages = {1309--1362},
issn = {0022-1236},
mrclass = {58J40 (35S05)},
mrnumber = {2863864},
mrreviewer = {Sandro Coriasco},
doi = {10.1016/j.jfa.2011.11.007},
url = {https://doi.org/10.1016/j.jfa.2011.11.007},
zblnumber = {1238.58018},
} -
[SW]
C. Searle and F. Wilhelm, "How to lift positive Ricci curvature," Geom. Topol., vol. 19, iss. 3, pp. 1409-1475, 2015.
@ARTICLE{SW,
author = {Searle, Catherine and Wilhelm, Frederick},
title = {How to lift positive {R}icci curvature},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {19},
year = {2015},
number = {3},
pages = {1409--1475},
issn = {1465-3060},
mrclass = {53C20},
mrnumber = {3352240},
mrreviewer = {David J. Wraith},
doi = {10.2140/gt.2015.19.1409},
url = {https://doi.org/10.2140/gt.2015.19.1409},
zblnumber = {1318.53029},
} -
[Sm1]
S. Smale, "Generalized Poincaré’s conjecture in dimensions greater than four," Ann. of Math. (2), vol. 74, pp. 391-406, 1961.
@ARTICLE{Sm1,
author = {Smale, Stephen},
title = {Generalized {P}oincaré's conjecture in dimensions greater than four},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {74},
year = {1961},
pages = {391--406},
issn = {0003-486X},
mrclass = {57.01 (57.10)},
mrnumber = {0137124},
mrreviewer = {Morris W. Hirsch},
doi = {10.2307/1970239},
url = {https://doi.org/10.2307/1970239},
zblnumber = {0099.39202},
} -
@ARTICLE{Sm2,
author = {Smale, Stephen},
title = {On the structure of {$5$}-manifolds},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {75},
year = {1962},
pages = {38--46},
issn = {0003-486X},
mrclass = {57.10},
mrnumber = {0141133},
mrreviewer = {A. Haefliger},
doi = {10.2307/1970417},
url = {https://doi.org/10.2307/1970417},
zblnumber = {0101.16103},
} -
@MISC{Thurston,
author = {Thurston, W. P.},
title = {The geometry and topology of three-manifolds},
note = {Electronic version~1.1, 2002},
url = {http://www.msri.org/publications/books/gt3m/},
zblnumber = {},
} -
[To]
B. Totaro, "Cheeger manifolds and the classification of biquotients," J. Differential Geom., vol. 61, iss. 3, pp. 397-451, 2002.
@ARTICLE{To,
author = {Totaro, Burt},
title = {Cheeger manifolds and the classification of biquotients},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {61},
year = {2002},
number = {3},
pages = {397--451},
issn = {0022-040X},
mrclass = {53C35 (53C21 55P62 57R60)},
mrnumber = {1979366},
mrreviewer = {Vitali Kapovitch},
doi ={10.4310/jdg/1090351529},
url = {https://doi.org/10.4310/jdg/1090351529},
zblnumber = {1071.53529},
} -
[VW]
L. Verdiani and W. Ziller, "Concavity and rigidity in non-negative curvature," J. Differential Geom., vol. 97, iss. 2, pp. 349-375, 2014.
@ARTICLE{VW,
author = {Verdiani, Luigi and Ziller, Wolfgang},
title = {Concavity and rigidity in non-negative curvature},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {97},
year = {2014},
number = {2},
pages = {349--375},
issn = {0022-040X},
mrclass = {53C24 (53C21)},
mrnumber = {3263509},
mrreviewer = {Isabel M. C. Salavessa},
doi = {10.4310/jdg/1405447808},
url = {https://doi.org/10.4310/jdg/1405447808},
url = {http://projecteuclid.org/euclid.jdg/1405447808},
zblnumber = {1300.53039},
} -
[Wa1]
C. T. C. Wall, "Classification of $(n-1)$-connected $2n$-manifolds," Ann. of Math. (2), vol. 75, pp. 163-189, 1962.
@ARTICLE{Wa1,
author = {Wall, C. T. C.},
title = {Classification of {$(n-1)$}-connected {$2n$}-manifolds},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {75},
year = {1962},
pages = {163--189},
issn = {0003-486X},
mrclass = {57.10},
mrnumber = {0145540},
mrreviewer = {M. A. Kervaire},
doi = {10.2307/1970425},
url = {https://doi.org/10.2307/1970425},
zblnumber = {0218.57022},
} -
[Wa2]
C. T. C. Wall, "Classification problems in differential topology. VI. Classification of $(s-1)$-connected $(2s+1)$-manifolds," Topology, vol. 6, pp. 273-296, 1967.
@ARTICLE{Wa2,
author = {Wall, C. T. C.},
title = {Classification problems in differential topology. {VI}. {C}lassification of {$(s-1)$}-connected {$(2s+1)$}-manifolds},
journal = {Topology},
fjournal = {Topology. An International Journal of Mathematics},
volume = {6},
year = {1967},
pages = {273--296},
issn = {0040-9383},
mrclass = {57.10},
mrnumber = {0216510},
mrreviewer = {N. Kuiper},
doi = {10.1016/0040-9383(67)90020-1},
url = {https://doi.org/10.1016/0040-9383(67)90020-1},
zblnumber = {0173.26102},
} -
[FW1]
F. Wilhelm, "Exotic spheres with lots of positive curvatures," J. Geom. Anal., vol. 11, iss. 1, pp. 161-186, 2001.
@ARTICLE{FW1,
author = {Wilhelm, Frederick},
title = {Exotic spheres with lots of positive curvatures},
journal = {J. Geom. Anal.},
fjournal = {The Journal of Geometric Analysis},
volume = {11},
year = {2001},
number = {1},
pages = {161--186},
issn = {1050-6926},
mrclass = {53C21 (53C20 57R55)},
mrnumber = {1829354},
mrreviewer = {Yaroslav V. Bazaĭkin},
doi = {10.1007/BF02921960},
url = {https://doi.org/10.1007/BF02921960},
zblnumber = {1023.53024},
} -
[FW]
F. Wilhelm, "An exotic sphere with positive curvature almost everywhere," J. Geom. Anal., vol. 11, iss. 3, pp. 519-560, 2001.
@ARTICLE{FW,
author = {Wilhelm, Frederick},
title = {An exotic sphere with positive curvature almost everywhere},
journal = {J. Geom. Anal.},
fjournal = {The Journal of Geometric Analysis},
volume = {11},
year = {2001},
number = {3},
pages = {519--560},
issn = {1050-6926},
mrclass = {53C21 (53C20 57R55)},
mrnumber = {1857856},
mrreviewer = {David J. Wraith},
doi = {10.1007/BF02922018},
url = {https://doi.org/10.1007/BF02922018},
zblnumber = {1039.53037},
} -
[DWi]
D. L. Wilkens, "Closed $(s-1)$-connected $(2s+1)$-manifolds, $s=3,\,7$," Bull. London Math. Soc., vol. 4, pp. 27-31, 1972.
@ARTICLE{DWi,
author = {Wilkens, David L.},
title = {Closed {$(s-1)$}-connected {$(2s+1)$}-manifolds, {$s=3,\,7$}},
journal = {Bull. London Math. Soc.},
fjournal = {The Bulletin of the London Mathematical Society},
volume = {4},
year = {1972},
pages = {27--31},
issn = {0024-6093},
mrclass = {57D55},
mrnumber = {0307258},
mrreviewer = {C. Henry Edwards},
doi = {10.1112/blms/4.1.27},
url = {https://doi.org/10.1112/blms/4.1.27},
zblnumber = {0241.57018},
} -
[Wr]
D. Wraith, "Exotic spheres with positive Ricci curvature," J. Differential Geom., vol. 45, iss. 3, pp. 638-649, 1997.
@ARTICLE{Wr,
author = {Wraith, David},
title = {Exotic spheres with positive {R}icci curvature},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {45},
year = {1997},
number = {3},
pages = {638--649},
issn = {0022-040X},
mrclass = {53C21 (57R60)},
mrnumber = {1472892},
mrreviewer = {Ian Hambleton},
doi = {10.4310/jdg/1214459846},
url = {https://doi.org/10.4310/jdg/1214459846},
zblnumber = {0910.53027},
}