Abelian varieties isogenous to no Jacobian

Abstract

We prove among other things the existence of Hodge generic abelian varieties defined over the algebraic numbers and not isogenous to any Jacobian. Actually, we also show that in various interpretations these abelian varieties make up the majority, and we give certain uniform bounds on the possible degree of the fields of definition. In particular, this yields a new answer (in strong form) to a question of Katz and Oort, compared to previous work of Chai and Oort (2012, conditional on the André-Oort Conjecture) and by Tsimerman (2012 unconditionally); their constructions provided abelian varieties with complex multiplication (so not “generic”). Our methods are completely different, and they also answer a related question posed by Chai and Oort in their paper.

  • [YA] Go to document Y. André, "Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire," J. Reine Angew. Math., vol. 505, pp. 203-208, 1998.
    @ARTICLE{YA,
      author = {André,
      Yves},
      title = {Finitude des couples d'invariants modulaires singuliers sur une courbe algébrique plane non modulaire},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {505},
      year = {1998},
      pages = {203--208},
      issn = {0075-4102},
      mrclass = {11G15 (11G18)},
      mrnumber = {1662256},
      mrreviewer = {Akio Tamagawa},
      doi = {10.1515/crll.1998.118},
      url = {https://doi.org/10.1515/crll.1998.118},
      zblnumber = {0918.14010},
      }
  • [ACZ] Y. André, P. Corvaja, and U. Zannier, The Betti map associated to a section of an abelian scheme.
    @MISC{ACZ,
      author = {André,
      Yves and Corvaja, P. and Zannier, U.},
      title = {The {B}etti map associated to a section of an abelian scheme},
      zblnumber = {},
      arxiv = {1802.03204},
      }
  • [HFB] Go to document H. F. Baker, Note on the foregoing paper “Commutative ordinary differential operators,” by J. L. Burchnall and J. W. Chaundy, Proc. Royal Soc. London A 118 (1928), 584–593.
    @misc{HFB,
      author = {Baker, H. F.},
      title = {Note on the foregoing paper ``{C}ommutative ordinary differential operators,'' by {J. L. B}urchnall and {J. W}. {C}haundy, \emph{Proc. Royal Soc. London {A}} {\bf 118} (1928), 584--593},
      jfmnumber = {54.0439.02},
      doi = {https://doi.org/10.1098/rspa.1928.0070},
      url = {https://doi.org/10.1098.rspa.1928.0070},
      }
  • [BMZ] Go to document Y. Bilu, D. Masser, and U. Zannier, "An effective “Theorem of André” for $CM$-points on a plane curve," Math. Proc. Cambridge Philos. Soc., vol. 154, iss. 1, pp. 145-152, 2013.
    @ARTICLE{BMZ,
      author = {Bilu, Yuri and Masser, David and Zannier, Umberto},
      title = {An effective ``{T}heorem of {A}ndré'' for {$CM$}-points on a plane curve},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {154},
      year = {2013},
      number = {1},
      pages = {145--152},
      issn = {0305-0041},
      mrclass = {11G30 (11G15 11G18)},
      mrnumber = {3002589},
      mrreviewer = {Jordi Guàrdia},
      doi = {10.1017/S0305004112000461},
      url = {https://doi.org/10.1017/S0305004112000461},
      zblnumber = {1263.14028},
      }
  • [CAD] Go to document A. Cadoret, "An open adelic image theorem for abelian schemes," Int. Math. Res. Not. IMRN, iss. 20, pp. 10208-10242, 2015.
    @ARTICLE{CAD,
      author = {Cadoret, Anna},
      title = {An open adelic image theorem for abelian schemes},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2015},
      number = {20},
      pages = {10208--10242},
      issn = {1073-7928},
      mrclass = {14K15 (14G20 14G32 14G40)},
      mrnumber = {3455865},
      mrreviewer = {Arvid Siqveland},
      doi = {10.1093/imrn/rnu259},
      url = {https://doi.org/10.1093/imrn/rnu259},
      zblnumber = {1352.14030},
      }
  • [C] Go to document J. W. S. Cassels, "The arithmetic of certain quartic curves," Proc. Roy. Soc. Edinburgh Sect. A, vol. 100, iss. 3-4, pp. 201-218, 1985.
    @ARTICLE{C,
      author = {Cassels, J. W. S.},
      title = {The arithmetic of certain quartic curves},
      journal = {Proc. Roy. Soc. Edinburgh Sect. A},
      fjournal = {Proceedings of the Royal Society of Edinburgh. Section A. Mathematics},
      volume = {100},
      year = {1985},
      number = {3-4},
      pages = {201--218},
      issn = {0308-2105},
      mrclass = {11D25 (11G30 14K07 14K15)},
      mrnumber = {0807702},
      mrreviewer = {Joseph H. Silverman},
      doi = {10.1017/S0308210500013779},
      url = {https://doi.org/10.1017/S0308210500013779},
      zblnumber = {0589.14029},
      }
  • [CF] Go to document J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus $2$, Cambridge Univ. Press, Cambridge, 1996, vol. 230.
    @BOOK{CF,
      author = {Cassels, J. W. S. and Flynn, E. V.},
      title = {Prolegomena to a Middlebrow Arithmetic of Curves of Genus {$2$}},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {230},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1996},
      pages = {xiv+219},
      isbn = {0-521-48370-0},
      mrclass = {11G30 (11Y50 14G25)},
      mrnumber = {1406090},
      mrreviewer = {Joseph H. Silverman},
      doi = {10.1017/CBO9780511526084},
      url = {https://doi.org/10.1017/CBO9780511526084},
      zblnumber = {0857.14018},
      }
  • [CO] Go to document C. Chai and F. Oort, "Abelian varieties isogenous to a Jacobian," Ann. of Math. (2), vol. 176, iss. 1, pp. 589-635, 2012.
    @ARTICLE{CO,
      author = {Chai, Ching-Li and Oort, Frans},
      title = {Abelian varieties isogenous to a {J}acobian},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {176},
      year = {2012},
      number = {1},
      pages = {589--635},
      issn = {0003-486X},
      mrclass = {14K02 (11G20 14H40)},
      mrnumber = {2925391},
      mrreviewer = {H. Lange},
      doi = {10.4007/annals.2012.176.1.11},
      url = {https://doi.org/10.4007/annals.2012.176.1.11},
      zblnumber = {1263.14032},
      }
  • [COH] Go to document S. D. Cohen, "The distribution of Galois groups and Hilbert’s irreducibility theorem," Proc. London Math. Soc. (3), vol. 43, iss. 2, pp. 227-250, 1981.
    @ARTICLE{COH,
      author = {Cohen, S. D.},
      title = {The distribution of {G}alois groups and {H}ilbert's irreducibility theorem},
      journal = {Proc. London Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {43},
      year = {1981},
      number = {2},
      pages = {227--250},
      issn = {0024-6115},
      mrclass = {12A20 (12A75)},
      mrnumber = {0628276},
      mrreviewer = {D. J. Lewis},
      doi = {10.1112/plms/s3-43.2.227},
      url = {https://doi.org/10.1112/plms/s3-43.2.227},
      zblnumber = {0484.12002},
      }
  • [Del] Go to document P. Deligne, "Théorie de Hodge. II," Inst. Hautes Études Sci. Publ. Math., iss. 40, pp. 5-57, 1971.
    @ARTICLE{Del,
      author = {Deligne, Pierre},
      title = {Théorie de {H}odge. {II}},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
      number = {40},
      year = {1971},
      pages = {5--57},
      issn = {0073-8301},
      mrclass = {14C30 (14F15)},
      mrnumber = {0498551},
      mrreviewer = {J. H. M. Steenbrink},
      url = {http://www.numdam.org/item/PMIHES_1971__40__5_0/},
      zblnumber = {0219.14007},
      }
  • [A6] M. Dittmann, R. Salvati Manni, and N. Scheithauer, Harmonic theta series and the Kodaira dimension of ${\mathcal A}_6$, 2019.
    @MISC{A6,
      author = {Dittmann, M. and Salvati Manni, R. and Scheithauer, N.},
      title = {Harmonic theta series and the {K}odaira dimension of {${\mathcal A}_6$}},
      arxiv = {1909.07062v1},
      year = {2019},
      zblnumber = {},
      }
  • [DP] Go to document M. Dunajski and R. Penrose, "On the quadratic invariant of binary sextics," Math. Proc. Cambridge Philos. Soc., vol. 162, iss. 3, pp. 435-445, 2017.
    @ARTICLE{DP,
      author = {Dunajski, Maciej and Penrose, Roger},
      title = {On the quadratic invariant of binary sextics},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {162},
      year = {2017},
      number = {3},
      pages = {435--445},
      issn = {0305-0041},
      mrclass = {14L24 (13A50)},
      mrnumber = {3628200},
      mrreviewer = {Scott R. Nollet},
      doi = {10.1017/S0305004116000542},
      url = {https://doi.org/10.1017/S0305004116000542},
      zblnumber = {1388.13018},
      }
  • [FV] Go to document G. Farkas and A. Verra, "The universal abelian variety over $\mathcal{A}_5$," Ann. Sci. Éc. Norm. Supér. (4), vol. 49, iss. 3, pp. 521-542, 2016.
    @ARTICLE{FV,
      author = {Farkas, Gavril and Verra, Alessandro},
      title = {The universal abelian variety over {$\mathcal{A}_5$}},
      journal = {Ann. Sci. \'{E}c. Norm. Supér. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {49},
      year = {2016},
      number = {3},
      pages = {521--542},
      issn = {0012-9593},
      mrclass = {14H40 (14K10)},
      mrnumber = {3503825},
      mrreviewer = {H. Lange},
      doi = {10.24033/asens.2289},
      url = {https://doi.org/10.24033/asens.2289},
      zblnumber = {1357.14058},
      }
  • [FJ] M. D. Fried and M. Jarden, Field Arithmetic, Second ed., Springer-Verlag, Berlin, 2005, vol. 11.
    @BOOK{FJ,
      author = {Fried, Michael D. and Jarden, Moshe},
      title = {Field Arithmetic},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {11},
      edition = {Second},
      publisher = {Springer-Verlag, Berlin},
      year = {2005},
      pages = {xxiv+780},
      isbn = {3-540-22811-X},
      mrclass = {12E30 (03B25 03C10 03C60 03H05)},
      mrnumber = {2102046},
      mrreviewer = {Ido Efrat},
      zblnumber = {1055.12003},
      }
  • [gr] Go to document &. Gaudron and G. Rémond, "Théorème des périodes et degrés minimaux d’isogénies," Comment. Math. Helv., vol. 89, iss. 2, pp. 343-403, 2014.
    @ARTICLE{gr,
      author = {Gaudron, \'{E}ric and Rémond, Gaël},
      title = {Théorème des périodes et degrés minimaux d'isogénies},
      journal = {Comment. Math. Helv.},
      fjournal = {Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society},
      volume = {89},
      year = {2014},
      number = {2},
      pages = {343--403},
      issn = {0010-2571},
      mrclass = {11J86 (11G10 14G40 14K02)},
      mrnumber = {3225452},
      mrreviewer = {Damien Roy},
      doi = {10.4171/CMH/322},
      url = {https://doi.org/10.4171/CMH/322},
      zblnumber = {1297.11058},
      }
  • [G] S. Grushevsky, "The Schottky problem," in Current Developments in Algebraic Geometry, Cambridge Univ. Press, Cambridge, 2012, vol. 59, pp. 129-164.
    @INCOLLECTION{G,
      author = {Grushevsky, Samuel},
      title = {The {S}chottky problem},
      booktitle = {Current Developments in Algebraic Geometry},
      series = {Math. Sci. Res. Inst. Publ.},
      volume = {59},
      pages = {129--164},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2012},
      mrclass = {14H42 (14K05)},
      mrnumber = {2931868},
      mrreviewer = {H. Lange},
      zblnumber = {1254.14054},
      }
  • [HP] Go to document P. Habegger and J. Pila, "Some unlikely intersections beyond André-Oort," Compos. Math., vol. 148, iss. 1, pp. 1-27, 2012.
    @ARTICLE{HP,
      author = {Habegger, P. and Pila, J.},
      title = {Some unlikely intersections beyond {A}ndré-{O}ort},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {148},
      year = {2012},
      number = {1},
      pages = {1--27},
      issn = {0010-437X},
      mrclass = {11G18 (03C64 11G15 11G50)},
      mrnumber = {2881307},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1112/S0010437X11005604},
      url = {https://doi.org/10.1112/S0010437X11005604},
      zblnumber = {1288.11062},
      }
  • [I] J. Igusa, Theta Functions, Springer-Verlag, New York, 1972, vol. 194.
    @BOOK{I,
      author = {Igusa, Jun-ichi},
      title = {Theta Functions},
      note = {Grundlehren Math. Wiss.},
      volume = {194},
      publisher = {Springer-Verlag, New York},
      year = {1972},
      pages = {x+232},
      mrclass = {14K25 (32N05)},
      mrnumber = {0325625},
      mrreviewer = {H. Klingen},
      zblnumber = {0251.14016},
      }
  • [KS] N. M. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy, Amer. Math. Soc., Providence, RI, 1999, vol. 45.
    @BOOK{KS,
      author = {Katz, Nicholas M. and Sarnak, Peter},
      title = {Random Matrices, {F}robenius Eigenvalues, and Monodromy},
      series = { Amer. Math. Soc. Colloq. Publ.},
      volume = {45},
      publisher = { Amer. Math. Soc., Providence, RI},
      year = {1999},
      pages = {xii+419},
      isbn = {0-8218-1017-0},
      mrclass = {11G25 (11M06 11Y35 14D05 14G10 60F99 82B44)},
      mrnumber = {1659828},
      mrreviewer = {Philippe G. Michel},
      zblnumber = {0958.11004},
      }
  • [KY] Go to document B. Klingler and A. Yafaev, "The André-Oort conjecture," Ann. of Math. (2), vol. 180, iss. 3, pp. 867-925, 2014.
    @ARTICLE{KY,
      author = {Klingler, Bruno and Yafaev, Andrei},
      title = {The {A}ndré-{O}ort conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {180},
      year = {2014},
      number = {3},
      pages = {867--925},
      issn = {0003-486X},
      mrclass = {11G18 (14G35)},
      mrnumber = {3245009},
      mrreviewer = {Mihran Papikian},
      doi = {10.4007/annals.2014.180.3.2},
      url = {https://doi.org/10.4007/annals.2014.180.3.2},
      zblnumber = {1377.11073},
      }
  • [LK] Go to document L. Kühne, "An effective result of André-Oort type," Ann. of Math. (2), vol. 176, iss. 1, pp. 651-671, 2012.
    @ARTICLE{LK,
      author = {Kühne, Lars},
      title = {An effective result of {A}ndré-{O}ort type},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {176},
      year = {2012},
      number = {1},
      pages = {651--671},
      issn = {0003-486X},
      mrclass = {11G18 (11J86)},
      mrnumber = {2925393},
      mrreviewer = {Christopher Daw},
      doi = {10.4007/annals.2012.176.1.13},
      url = {https://doi.org/10.4007/annals.2012.176.1.13},
      zblnumber = {1341.11035},
      }
  • [LEK] C. G. Lekkerkerker, Geometry of Numbers, Wolters-Noordhoff Publishing, Groningen; North-Holland Publishing Co., Amsterdam-London, 1969, vol. VIII.
    @BOOK{LEK,
      author = {Lekkerkerker, C. G.},
      title = {Geometry of Numbers},
      series = {Bibliotheca Math.},
      volume = {VIII},
      publisher = {Wolters-Noordhoff Publishing, Groningen; North-Holland Publishing Co., Amsterdam-London},
      year = {1969},
      pages = {ix+510},
      mrclass = {10.25},
      mrnumber = {0271032},
      mrreviewer = {R. P. Bambah},
      zblnumber = {0198.38002},
      }
  • [M] Go to document D. W. Masser, "Specializations of endomorphism rings of abelian varieties," Bull. Soc. Math. France, vol. 124, iss. 3, pp. 457-476, 1996.
    @ARTICLE{M,
      author = {Masser, D. W.},
      title = {Specializations of endomorphism rings of abelian varieties},
      journal = {Bull. Soc. Math. France},
      fjournal = {Bulletin de la Société Mathématique de France},
      volume = {124},
      year = {1996},
      number = {3},
      pages = {457--476},
      issn = {0037-9484},
      mrclass = {11G10 (14K15)},
      mrnumber = {1415735},
      mrreviewer = {Rutger Noot},
      doi = {10.24033/bsmf.2288},
      url = {https://doi.org/10.24033/bsmf.2288},
      zblnumber = {0866.11040},
      }
  • [MW0] Go to document D. W. Masser and G. Wüstholz, "Estimating isogenies on elliptic curves," Invent. Math., vol. 100, iss. 1, pp. 1-24, 1990.
    @ARTICLE{MW0,
      author = {Masser, D. W. and Wüstholz, Gisbert},
      title = {Estimating isogenies on elliptic curves},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {100},
      year = {1990},
      number = {1},
      pages = {1--24},
      issn = {0020-9910},
      mrclass = {11G05 (11J89 14G25 14K02)},
      mrnumber = {1037140},
      mrreviewer = {Marc Hindry},
      doi = {10.1007/BF01231178},
      url = {https://doi.org/10.1007/BF01231178},
      zblnumber = {0722.14027},
      }
  • [MW1] Go to document D. W. Masser and G. Wüstholz, "Periods and minimal abelian subvarieties," Ann. of Math. (2), vol. 137, iss. 2, pp. 407-458, 1993.
    @ARTICLE{MW1,
      author = {Masser, D. W. and Wüstholz, Gisbert},
      title = {Periods and minimal abelian subvarieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {137},
      year = {1993},
      number = {2},
      pages = {407--458},
      issn = {0003-486X},
      mrclass = {11G10 (11J89 14K15)},
      mrnumber = {1207211},
      mrreviewer = {Sinnou David},
      doi = {10.2307/2946542},
      url = {https://doi.org/10.2307/2946542},
      zblnumber = {0796.11023},
      }
  • [MW2] Go to document D. W. Masser and G. Wüstholz, "Isogeny estimates for abelian varieties, and finiteness theorems," Ann. of Math. (2), vol. 137, iss. 3, pp. 459-472, 1993.
    @ARTICLE{MW2,
      author = {Masser, David W. and Wüstholz, Gisbert},
      title = {Isogeny estimates for abelian varieties, and finiteness theorems},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {137},
      year = {1993},
      number = {3},
      pages = {459--472},
      issn = {0003-486X},
      mrclass = {11G10 (14K02)},
      mrnumber = {1217345},
      doi = {10.2307/2946529},
      url = {https://doi.org/10.2307/2946529},
      zblnumber = {0804.14019},
      }
  • [MWEE] Go to document D. W. Masser and G. Wüstholz, "Endomorphism estimates for abelian varieties," Math. Z., vol. 215, iss. 4, pp. 641-653, 1994.
    @ARTICLE{MWEE,
      author = {Masser, David W. and Wüstholz, Gisbert},
      title = {Endomorphism estimates for abelian varieties},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {215},
      year = {1994},
      number = {4},
      pages = {641--653},
      issn = {0025-5874},
      mrclass = {14K15 (11G10 14K02)},
      mrnumber = {1269495},
      mrreviewer = {Salman Abdulali},
      doi = {10.1007/BF02571735},
      url = {https://doi.org/10.1007/BF02571735},
      zblnumber = {0826.14025},
      }
  • [MO] B. Moonen and F. Oort, "The Torelli locus and special subvarieties," in Handbook of Moduli. Vol. II, Int. Press, Somerville, MA, 2013, vol. 25, pp. 549-594.
    @INCOLLECTION{MO,
      author = {Moonen, Ben and Oort, Frans},
      title = {The {T}orelli locus and special subvarieties},
      booktitle = {Handbook of Moduli. {V}ol. {II}},
      series = {Adv. Lect. Math. (ALM)},
      volume = {25},
      pages = {549--594},
      publisher = {Int. Press, Somerville, MA},
      year = {2013},
      mrclass = {14K10 (11G05 14G35)},
      mrnumber = {3184184},
      mrreviewer = {Daniel Bertrand},
      zblnumber = {1322.14065},
      }
  • [O] Go to document M. Orr, "Families of abelian varieties with many isogenous fibres," J. Reine Angew. Math., vol. 705, pp. 211-231, 2015.
    @ARTICLE{O,
      author = {Orr, Martin},
      title = {Families of abelian varieties with many isogenous fibres},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {705},
      year = {2015},
      pages = {211--231},
      issn = {0075-4102},
      mrclass = {14K05 (14K10 14K22)},
      mrnumber = {3377393},
      mrreviewer = {H. Lange},
      doi = {10.1515/crelle-2013-0058},
      url = {https://doi.org/10.1515/crelle-2013-0058},
      zblnumber = {1349.14143},
      }
  • [O2] Go to document M. Orr, "Height bounds and the Siegel property," Algebra Number Theory, vol. 12, iss. 2, pp. 455-478, 2018.
    @ARTICLE{O2,
      author = {Orr, Martin},
      title = {Height bounds and the {S}iegel property},
      journal = {Algebra Number Theory},
      fjournal = {Algebra \& Number Theory},
      volume = {12},
      year = {2018},
      number = {2},
      pages = {455--478},
      issn = {1937-0652},
      mrclass = {11F06 (11G18)},
      mrnumber = {3803710},
      mrreviewer = {Yifan Yang},
      doi = {10.2140/ant.2018.12.455},
      url = {https://doi.org/10.2140/ant.2018.12.455},
      zblnumber = {06880895},
      }
  • [PS] Go to document Y. Peterzil and S. Starchenko, "Definability of restricted theta functions and families of abelian varieties," Duke Math. J., vol. 162, iss. 4, pp. 731-765, 2013.
    @ARTICLE{PS,
      author = {Peterzil, Ya'acov and Starchenko, Sergei},
      title = {Definability of restricted theta functions and families of abelian varieties},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {162},
      year = {2013},
      number = {4},
      pages = {731--765},
      issn = {0012-7094},
      mrclass = {03C64 (11F46 11G18 14G35 14K25)},
      mrnumber = {3039679},
      mrreviewer = {Jean-Philippe Rolin},
      doi = {10.1215/00127094-2080018},
      url = {https://doi.org/10.1215/00127094-2080018},
      zblnumber = {1284.03215},
      }
  • [P2009] Go to document J. Pila, "On the algebraic points of a definable set," Selecta Math. (N.S.), vol. 15, iss. 1, pp. 151-170, 2009.
    @ARTICLE{P2009,
      author = {Pila, Jonathan},
      title = {On the algebraic points of a definable set},
      journal = {Selecta Math. (N.S.)},
      fjournal = {Selecta Mathematica. New Series},
      volume = {15},
      year = {2009},
      number = {1},
      pages = {151--170},
      issn = {1022-1824},
      mrclass = {11G99 (03C64 11U09)},
      mrnumber = {2511202},
      mrreviewer = {Ricardo Bianconi},
      doi = {10.1007/s00029-009-0527-8},
      url = {https://doi.org/10.1007/s00029-009-0527-8},
      zblnumber = {1218.11068},
      }
  • [P] Go to document J. Pila, "O-minimality and the André-Oort conjecture for $\Bbb C^n$," Ann. of Math. (2), vol. 173, iss. 3, pp. 1779-1840, 2011.
    @ARTICLE{P,
      author = {Pila, Jonathan},
      title = {O-minimality and the {A}ndré-{O}ort conjecture for {$\Bbb C^n$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {173},
      year = {2011},
      number = {3},
      pages = {1779--1840},
      issn = {0003-486X},
      mrclass = {11G18 (03C64 11U09 14G35)},
      mrnumber = {2800724},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.4007/annals.2011.173.3.11},
      url = {https://doi.org/10.4007/annals.2011.173.3.11},
      zblnumber = {1243.14022},
      }
  • [PT] Go to document J. Pila and J. Tsimerman, "Ax-Lindemann for $\mathcal{A}_g$," Ann. of Math. (2), vol. 179, iss. 2, pp. 659-681, 2014.
    @ARTICLE{PT,
      author = {Pila, Jonathan and Tsimerman, Jacob},
      title = {Ax-{L}indemann for {$\mathcal{A}_g$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {179},
      year = {2014},
      number = {2},
      pages = {659--681},
      issn = {0003-486X},
      mrclass = {14K10 (03C64 11G18)},
      mrnumber = {3152943},
      mrreviewer = {Jae-Hyun Yang},
      doi = {10.4007/annals.2014.179.2.5},
      url = {https://doi.org/10.4007/annals.2014.179.2.5},
      zblnumber = {1305.14020},
      }
  • [PW] Go to document J. Pila and A. J. Wilkie, "The rational points of a definable set," Duke Math. J., vol. 133, iss. 3, pp. 591-616, 2006.
    @ARTICLE{PW,
      author = {Pila, Jonathan and Wilkie, A. J.},
      title = {The rational points of a definable set},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {133},
      year = {2006},
      number = {3},
      pages = {591--616},
      issn = {0012-7094},
      mrclass = {03C64 (11G99 11U09)},
      mrnumber = {2228464},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1215/S0012-7094-06-13336-7},
      url = {https://doi.org/10.1215/S0012-7094-06-13336-7},
      zblnumber = {1217.11066},
      }
  • [Pink] Go to document R. Pink, "A combination of the conjectures of Mordell-Lang and André-Oort," in Geometric Methods in Algebra and Number Theory, Birkhäuser Boston, Boston, MA, 2005, vol. 235, pp. 251-282.
    @INCOLLECTION{Pink,
      author = {Pink, Richard},
      title = {A combination of the conjectures of {M}ordell-{L}ang and {A}ndré-{O}ort},
      booktitle = {Geometric Methods in Algebra and Number Theory},
      series = {Progr. Math.},
      volume = {235},
      pages = {251--282},
      publisher = {Birkhäuser Boston, Boston, MA},
      year = {2005},
      mrclass = {11G10 (11G18 14G35)},
      mrnumber = {2166087},
      mrreviewer = {Mihran Papikian},
      doi = {10.1007/0-8176-4417-2_11},
      url = {https://doi.org/10.1007/0-8176-4417-2_11},
      zblnumber = {1200.11041},
      }
  • [Poo] B. Poonen, Rational Points on Varieties, Amer. Math. Soc., Providence, RI, 2017, vol. 186.
    @BOOK{Poo,
      author = {Poonen, Bjorn},
      title = {Rational Points on Varieties},
      series = {Grad. Stud. Math.},
      volume = {186},
      publisher = { Amer. Math. Soc., Providence, RI},
      year = {2017},
      pages = {xv+337},
      isbn = {978-1-4704-3773-2},
      mrclass = {14G05 (11G35)},
      mrnumber = {3729254},
      mrreviewer = {Daniel Loughran},
      zblnumber = {1387.14004},
      }
  • [S] Go to document . J-P. Serre, Lectures on the Mordell-Weil Theorem, Third ed., Friedr. Vieweg & Sohn, Braunschweig, 1997.
    @BOOK{S,
      author = {Serre, {\relax J-P}},
      title = {Lectures on the {M}ordell-{W}eil Theorem},
      series = {Aspects of Math.},
      edition = {Third},
      note = {translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre},
      publisher = {Friedr. Vieweg \& Sohn, Braunschweig},
      year = {1997},
      pages = {x+218},
      isbn = {3-528-28968-6},
      mrclass = {11G10 (11D41 11G30 14G25)},
      mrnumber = {1757192},
      doi = {10.1007/978-3-663-10632-6},
      url = {https://doi.org/10.1007/978-3-663-10632-6},
      zblnumber = {0863.14013},
      }
  • [SS] Go to document . J-P. Serre, \OE uvres. Collected Papers. IV, Springer-Verlag, Berlin, 2000.
    @BOOK{SS,
      author = {Serre, {\relax J-P}},
      title = {\OE uvres. {C}ollected Papers. {IV}},
      note = {1985--1998},
      publisher = {Springer-Verlag, Berlin},
      year = {2000},
      pages = {viii+657},
      isbn = {3-540-65683-9},
      mrclass = {01A75 (11-03 12-03 14-03 22E50)},
      mrnumber = {1730973},
      mrreviewer = {Alexey A. Panchishkin},
      url = {},
      zblnumber = {0933.01034},
      }
  • [ST] Go to document A. N. Shankar and J. Tsimerman, "Unlikely intersections in finite characteristic," Forum Math. Sigma, vol. 6, p. 13, 2018.
    @ARTICLE{ST,
      author = {Shankar, Ananth N. and Tsimerman, Jacob},
      title = {Unlikely intersections in finite characteristic},
      journal = {Forum Math. Sigma},
      fjournal = {Forum of Mathematics. Sigma},
      volume = {6},
      year = {2018},
      pages = {e13, 17},
      mrclass = {11G20 (14G35)},
      mrnumber = {3841493},
      mrreviewer = {Takehiro Hasegawa},
      doi = {10.1017/fms.2018.15},
      url = {https://doi.org/10.1017/fms.2018.15},
      zblnumber = {1403.11050},
      }
  • [gws] Go to document G. W. Stewart, "Perturbation bounds for the QR factorization of a matrix," SIAM J. Numer. Anal., vol. 14, iss. 3, pp. 509-518, 1977.
    @ARTICLE{gws,
      author = {Stewart, G. W.},
      title = {Perturbation bounds for the {QR} factorization of a matrix},
      journal = {SIAM J. Numer. Anal.},
      fjournal = {SIAM Journal on Numerical Analysis},
      volume = {14},
      year = {1977},
      number = {3},
      pages = {509--518},
      issn = {0036-1429},
      mrclass = {65F30},
      mrnumber = {0436566},
      mrreviewer = {Colette Lebaud},
      doi = {10.1137/0714030},
      url = {https://doi.org/10.1137/0714030},
      zblnumber = {0358.65038},
      }
  • [T] Go to document J. Tsimerman, "The existence of an abelian variety over $\overline{\Bbb Q}$ isogenous to no Jacobian," Ann. of Math. (2), vol. 176, iss. 1, pp. 637-650, 2012.
    @ARTICLE{T,
      author = {Tsimerman, Jacob},
      title = {The existence of an abelian variety over {$\overline{\Bbb Q}$} isogenous to no {J}acobian},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {176},
      year = {2012},
      number = {1},
      pages = {637--650},
      issn = {0003-486X},
      mrclass = {14K02 (11G15 14K10 14K15)},
      mrnumber = {2925392},
      mrreviewer = {H. Lange},
      doi = {10.4007/annals.2012.176.1.12},
      url = {https://doi.org/10.4007/annals.2012.176.1.12},
      zblnumber = {1250.14032},
      }
  • [T2] Go to document J. Tsimerman, "Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points," J. Amer. Math. Soc., vol. 25, iss. 4, pp. 1091-1117, 2012.
    @ARTICLE{T2,
      author = {Tsimerman, Jacob},
      title = {Brauer-{S}iegel for arithmetic tori and lower bounds for {G}alois orbits of special points},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {25},
      year = {2012},
      number = {4},
      pages = {1091--1117},
      issn = {0894-0347},
      mrclass = {11G15 (14K15)},
      mrnumber = {2947946},
      mrreviewer = {Christopher Daw},
      doi = {10.1090/S0894-0347-2012-00739-5},
      url = {https://doi.org/10.1090/S0894-0347-2012-00739-5},
      zblnumber = {1362.11057},
      }
  • [T3] Go to document J. Tsimerman, "The André-Oort conjecture for $\mathcal{A}_g$," Ann. of Math. (2), vol. 187, iss. 2, pp. 379-390, 2018.
    @ARTICLE{T3,
      author = {Tsimerman, Jacob},
      title = {The {A}ndré-{O}ort conjecture for {$\mathcal{A}_g$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {187},
      year = {2018},
      number = {2},
      pages = {379--390},
      issn = {0003-486X},
      mrclass = {11G15 (11G18 14G35)},
      mrnumber = {3744855},
      mrreviewer = {Patrick Morton},
      doi = {10.4007/annals.2018.187.2.2},
      url = {https://doi.org/10.4007/annals.2018.187.2.2},
      zblnumber = {1415.11086},
      }
  • [UY] Go to document E. Ullmo and A. Yafaev, "A characterization of special subvarieties," Mathematika, vol. 57, iss. 2, pp. 263-273, 2011.
    @ARTICLE{UY,
      author = {Ullmo, Emmanuel and Yafaev, Andrei},
      title = {A characterization of special subvarieties},
      journal = {Mathematika},
      fjournal = {Mathematika. A Journal of Pure and Applied Mathematics},
      volume = {57},
      year = {2011},
      number = {2},
      pages = {263--273},
      issn = {0025-5793},
      mrclass = {14G35},
      mrnumber = {2825237},
      mrreviewer = {Lei Yang},
      doi = {10.1112/S0025579311001628},
      url = {https://doi.org/10.1112/S0025579311001628},
      zblnumber = {1236.14029},
      }
  • [Z] Go to document U. Zannier, Some Problems of Unlikely Intersections in Arithmetic and Geometry, Princeton University Press, Princeton, NJ, 2012, vol. 181.
    @BOOK{Z,
      author = {Zannier, Umberto},
      title = {Some Problems of Unlikely Intersections in Arithmetic and Geometry},
      series = {Ann. of Math. Stud.},
      volume = {181},
      note = {With appendixes by David Masser},
      publisher = {Princeton University Press, Princeton, NJ},
      year = {2012},
      pages = {xiv+160},
      isbn = {978-0-691-15371-1},
      mrclass = {11G35 (11G15 11G18 11G50 14G05)},
      mrnumber = {2918151},
      mrreviewer = {Yuri Bilu},
      zblnumber = {1246.14003},
      doi = {10.23943/princeton/9780691153704.001.0001},
      url = {https://doi.org/10.23943/princeton/9780691153704.001.0001},
      }

Authors

David Masser

Universität Basel, Basel, Switzerland

Umberto Zannier

Scuola Normale Superiore, Pisa, Italy