Abstract
A knot is said to be slice if it bounds a smooth properly embedded disk in $B^4$. We demonstrate that the Conway knot is not slice. This completes the classification of slice knots under 13 crossings and gives the first example of a non-slice knot which is both topologically slice and a positive mutant of a slice knot.
-
@MISC{KAT, key = {KAT},
title = {The {K}not {A}tlas},
url = {http://katlas.org/},
zblnumber = {},
} -
[Kir97]
R. Kirby, "Problems in low dimensional manifold theory," in Algebraic and Geometric Topology, Part 2, 1978, pp. 273-312.
@INPROCEEDINGS{Kir97,
author = {Kirby, Rob},
title = {Problems in low dimensional manifold theory},
booktitle = {Algebraic and Geometric Topology, {P}art 2},
venue={{P}roc. {S}ympos. {P}ure {M}ath., {S}tanford {U}niv., {S}tanford, {C}alif., 1976},
series = {Proc. Sympos. Pure Math., XXXII},
pages = {273--312},
publisher = {Amer. Math. Soc., Providence, R.I.},
year = {1978},
mrclass = {57-02},
mrnumber = {0520548},
mrreviewer = {Louis H. Kauffman},
zblnumber = {0394.57002},
doi = {10.1090/pspum/032.2/520548},
url = {http://dx.doi.org/10.1090/pspum/032.2/520548},
} -
[AJOT13]
T. Abe, I. D. Jong, Y. Omae, and M. Takeuchi, "Annulus twist and diffeomorphic 4-manifolds," Math. Proc. Cambridge Philos. Soc., vol. 155, iss. 2, pp. 219-235, 2013.
@ARTICLE{AJOT13,
author = {Abe, Tetsuya and Jong, In Dae and Omae, Yuka and Takeuchi, Masanori},
title = {Annulus twist and diffeomorphic 4-manifolds},
journal = {Math. Proc. Cambridge Philos. Soc.},
fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
volume = {155},
year = {2013},
number = {2},
pages = {219--235},
issn = {0305-0041},
mrclass = {57M25 (57N13)},
mrnumber = {3091516},
mrreviewer = {Vyacheslav S. Krushkal},
doi = {10.1017/S0305004113000194},
url = {https://doi.org/10.1017/S0305004113000194},
zblnumber = {1290.57004},
} -
[Akb77]
S. Akbulut, "On $2$-dimensional homology classes of $4$-manifolds," Math. Proc. Cambridge Philos. Soc., vol. 82, iss. 1, pp. 99-106, 1977.
@ARTICLE{Akb77,
author = {Akbulut, Selman},
title = {On {$2$}-dimensional homology classes of {$4$}-manifolds},
journal = {Math. Proc. Cambridge Philos. Soc.},
fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
volume = {82},
year = {1977},
number = {1},
pages = {99--106},
issn = {0305-0041},
mrclass = {57D95 (57C45)},
mrnumber = {0433476},
mrreviewer = {Mauricio Gutiérrez},
doi = {10.1017/S0305004100053718},
url = {https://doi.org/10.1017/S0305004100053718},
zblnumber = {0355.57013},
} -
[BL12]
J. A. Baldwin and A. S. Levine, "A combinatorial spanning tree model for knot Floer homology," Adv. Math., vol. 231, iss. 3-4, pp. 1886-1939, 2012.
@ARTICLE{BL12,
author = {Baldwin, John A. and Levine, Adam Simon},
title = {A combinatorial spanning tree model for knot {F}loer homology},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {231},
year = {2012},
number = {3-4},
pages = {1886--1939},
issn = {0001-8708},
mrclass = {57M25},
mrnumber = {2964628},
mrreviewer = {Adam M. Lowrance},
doi = {10.1016/j.aim.2012.06.006},
url = {https://doi.org/10.1016/j.aim.2012.06.006},
zblnumber = {1262.57013},
} -
[Bar02]
D. Bar-Natan, "On Khovanov’s categorification of the Jones polynomial," Algebr. Geom. Topol., vol. 2, pp. 337-370, 2002.
@ARTICLE{Bar02,
author = {Bar-Natan, Dror},
title = {On {K}hovanov's categorification of the {J}ones polynomial},
journal = {Algebr. Geom. Topol.},
fjournal = {Algebraic \& Geometric Topology},
volume = {2},
year = {2002},
pages = {337--370},
issn = {1472-2747},
mrclass = {57M27},
mrnumber = {1917056},
mrreviewer = {Jacob Andrew Rasmussen},
doi = {10.2140/agt.2002.2.337},
url = {https://doi.org/10.2140/agt.2002.2.337},
zblnumber = {0998.57016},
} -
@MISC{Bar05,
author = {Bar-Natan, Dror},
title = {Mutation invariance of {Khovanov} homology},
year = {2005},
url = {http://drorbn.net/mut},
} -
[CL05] . . Cha and . Livingston, Unknown values in the table of knots, 2005.
@MISC{CL05,
author = {Cha, {J}ae {C}hoon and {L}ivingston, {C}harles},
title = {Unknown values in the table of knots},
arxiv = {math/0503125},
year = {2005},
zblnumber = {},
} -
[Con69]
J. H. Conway, "An enumeration of knots and links, and some of their algebraic properties," in Computational Problems in Abstract Algebra, 1970, pp. 329-358.
@INPROCEEDINGS{Con69,
author = {Conway, J. H.},
title = {An enumeration of knots and links, and some of their algebraic properties},
booktitle = {Computational {P}roblems in {A}bstract {A}lgebra},
venue = {{P}roc. {C}onf., {O}xford, 1967},
pages = {329--358},
publisher = {Pergamon, Oxford},
year = {1970},
mrclass = {55.20},
mrnumber = {0258014},
mrreviewer = {H. E. Debrunner},
zblnumber = {0202.54703},
doi = {10.1016/B978-0-08-012975-4.50034-5 },
url = {https://doi.org/10.1016/B978-0-08-012975-4.50034-5},
} -
[Fox62] R. H. Fox, "A quick trip through knot theory," in Topology of 3-Manifolds and Related Topics, 1962, pp. 120-167.
@INPROCEEDINGS{Fox62,
author = {Fox, R. H.},
title = {A quick trip through knot theory},
booktitle = {Topology of 3-Manifolds and Related Topics},
venue = {{P}roc. {T}he {U}niv. of {G}eorgia {I}nstitute, 1961},
pages = {120--167},
publisher = {Prentice-Hall, Englewood Cliffs, N.J.},
year = {1962},
mrclass = {55.20},
mrnumber = {0140099},
mrreviewer = {L. Neuwirth},
zblnumber = {1246.57002},
} -
[Fre83] M. H. Freedman, "The disk theorem for four-dimensional manifolds," in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, 1984, pp. 647-663.
@INPROCEEDINGS{Fre83,
author = {Freedman, Michael H.},
title = {The disk theorem for four-dimensional manifolds},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. 1, 2},
venue = {{W}arsaw, 1983},
pages = {647--663},
publisher = {PWN, Warsaw},
year = {1984},
mrclass = {57N15 (57R65)},
mrnumber = {0804721},
mrreviewer = {Frank Quinn},
zblnumber = {0577.57003},
} -
[Gab86]
D. Gabai, "Genera of the arborescent links," Mem. Amer. Math. Soc., vol. 59, iss. 339, p. i-viii and 1, 1986.
@ARTICLE{Gab86,
author = {Gabai, David},
title = {Genera of the arborescent links},
journal = {Mem. Amer. Math. Soc.},
fjournal = {Memoirs of the American Mathematical Society},
volume = {59},
year = {1986},
number = {339},
pages = {i--viii and 1--98},
issn = {0065-9266},
mrclass = {57M25 (57M35 57N10 57R20 57R30 57R95)},
mrnumber = {0823442},
mrreviewer = {John Hempel},
doi = {10.1090/memo/0339},
url = {https://doi.org/10.1090/memo/0339},
zblnumber = {0585.57003},
} -
[GM95]
R. E. Gompf and K. Miyazaki, "Some well-disguised ribbon knots," Topology Appl., vol. 64, iss. 2, pp. 117-131, 1995.
@ARTICLE{GM95,
author = {Gompf, Robert E. and Miyazaki, Katura},
title = {Some well-disguised ribbon knots},
journal = {Topology Appl.},
fjournal = {Topology and its Applications},
volume = {64},
year = {1995},
number = {2},
pages = {117--131},
issn = {0166-8641},
mrclass = {57M25 (57Q60)},
mrnumber = {1340864},
doi = {10.1016/0166-8641(94)00103-A},
url = {https://doi.org/10.1016/0166-8641(94)00103-A},
zblnumber = {0844.57004},
} -
[GS99]
R. E. Gompf and A. I. Stipsicz, $4$-Manifolds and Kirby Calculus, Amer. Math. Soc., Providence, RI, 1999, vol. 20.
@BOOK{GS99,
author = {Gompf, Robert E. and Stipsicz, Andr\'{a}s I.},
title = {{$4$}-Manifolds and {K}irby Calculus},
series = {Grad. Stud. in Math.},
volume = {20},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1999},
pages = {xvi+558},
isbn = {0-8218-0994-6},
mrclass = {57N13 (14J80 32Q55 57-02 57R17 57R57 57R65)},
mrnumber = {1707327},
mrreviewer = {Nikolai N. Saveliev},
doi = {10.1090/gsm/020},
url = {https://doi.org/10.1090/gsm/020},
zblnumber = {0933.57020},
} -
[HMPMazur] K. Hayden, T. E. Mark, and L. Piccirillo, Exotic Mazur manifolds and knot trace invariants, 2019.
@MISC{HMPMazur,
author = {Hayden, K. and Mark, T. E. and Piccirillo, L.},
title = {Exotic {M}azur manifolds and knot trace invariants},
arxiv = {1908.05269},
year = {2019},
zblnumber = {},
} -
[HKL10]
C. Herald, P. Kirk, and C. Livingston, "Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation," Math. Z., vol. 265, iss. 4, pp. 925-949, 2010.
@ARTICLE{HKL10,
author = {Herald, Chris and Kirk, Paul and Livingston, Charles},
title = {Metabelian representations, twisted {A}lexander polynomials, knot slicing, and mutation},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {265},
year = {2010},
number = {4},
pages = {925--949},
issn = {0025-5874},
mrclass = {57M25 (57M27)},
mrnumber = {2652542},
mrreviewer = {Mohamed Elhamdadi},
doi = {10.1007/s00209-009-0548-1},
url = {https://doi.org/10.1007/s00209-009-0548-1},
zblnumber = {1210.57006},
} -
[Kho00]
M. Khovanov, "A categorification of the Jones polynomial," Duke Math. J., vol. 101, iss. 3, pp. 359-426, 2000.
@ARTICLE{Kho00,
author = {Khovanov, Mikhail},
title = {A categorification of the {J}ones polynomial},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {101},
year = {2000},
number = {3},
pages = {359--426},
issn = {0012-7094},
mrclass = {57M27 (57R56)},
mrnumber = {1740682},
doi = {10.1215/S0012-7094-00-10131-7},
url = {https://doi.org/10.1215/S0012-7094-00-10131-7},
zblnumber = {0960.57005},
} -
[KL05]
S. Kim and C. Livingston, "Knot mutation: 4-genus of knots and algebraic concordance," Pacific J. Math., vol. 220, iss. 1, pp. 87-105, 2005.
@ARTICLE{KL05,
author = {Kim, Se-Goo and Livingston, Charles},
title = {Knot mutation: 4-genus of knots and algebraic concordance},
journal = {Pacific J. Math.},
fjournal = {Pacific Journal of Mathematics},
volume = {220},
year = {2005},
number = {1},
pages = {87--105},
issn = {0030-8730},
mrclass = {57M25},
mrnumber = {2195064},
mrreviewer = {Swatee Naik},
doi = {10.2140/pjm.2005.220.87},
url = {https://doi.org/10.2140/pjm.2005.220.87},
zblnumber = {1103.57005},
} -
[KM78]
R. Kirby and P. Melvin, "Slice knots and property ${ R}$," Invent. Math., vol. 45, iss. 1, pp. 57-59, 1978.
@ARTICLE{KM78,
author = {Kirby, Robion and Melvin, Paul},
title = {Slice knots and property {${\rm R}$}},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {45},
year = {1978},
number = {1},
pages = {57--59},
issn = {0020-9910},
mrclass = {57A10},
mrnumber = {0467754},
mrreviewer = {L. Neuwirth},
doi = {10.1007/BF01406223},
url = {https://doi.org/10.1007/BF01406223},
zblnumber = {0377.55002},
} -
[KL01]
P. Kirk and C. Livingston, "Concordance and mutation," Geom. Topol., vol. 5, pp. 831-883, 2001.
@ARTICLE{KL01,
author = {Kirk, P. and Livingston, C.},
title = {Concordance and mutation},
journal = {Geom. Topol.},
fjournal = {Geometry and Topology},
volume = {5},
year = {2001},
pages = {831--883},
issn = {1465-3060},
mrclass = {57M25 (57N70)},
mrnumber = {1871406},
mrreviewer = {Swatee Naik},
doi = {10.2140/gt.2001.5.831},
url = {https://doi.org/10.2140/gt.2001.5.831},
zblnumber = {1002.57007},
} -
[Lee02] E. S. Lee, An endomorphism of the Khovanov invariant, 2002.
@MISC{Lee02,
author = {Lee, E. S.},
title = {An endomorphism of the {K}hovanov invariant},
arXiv = {math/0210213v3},
year={2002},
} -
[Lic79]
R. W. B. Lickorish, "Shake-slice knots," in Topology of Low-Dimensional Manifolds, 1979, pp. 67-70.
@INPROCEEDINGS{Lic79,
author = {Lickorish, W. B. Raymond},
title = {Shake-slice knots},
booktitle = {Topology of Low-Dimensional Manifolds},
venue = {{P}roc. {S}econd {S}ussex {C}onf., {C}helwood {G}ate, 1977},
series = {Lecture Notes in Math.},
volume = {722},
pages = {67--70},
publisher = {Springer, Berlin},
year = {1979},
mrclass = {57M25},
mrnumber = {0547455},
mrreviewer = {G. Burde},
zblnumber = {0409.57004},
doi = {10.1007/BFb0063190},
url = {https://doi.org/10.1007/BFb0063190},
} -
[Mil17]
A. N. Miller, "Distinguishing mutant pretzel knots in concordance," J. Knot Theory Ramifications, vol. 26, iss. 7, p. 1750041, 2017.
@ARTICLE{Mil17,
author = {Miller, Allison N.},
title = {Distinguishing mutant pretzel knots in concordance},
journal = {J. Knot Theory Ramifications},
fjournal = {Journal of Knot Theory and its Ramifications},
volume = {26},
year = {2017},
number = {7},
pages = {1750041, 24},
issn = {0218-2165},
mrclass = {57M25 (57M27)},
mrnumber = {3660096},
mrreviewer = {Daniel Ruberman},
doi = {10.1142/S0218216517500419},
url = {https://doi.org/10.1142/S0218216517500419},
zblnumber = {1369.57012},
} -
[MP18]
A. N. Miller and L. Piccirillo, "Knot traces and concordance," J. Topol., vol. 11, iss. 1, pp. 201-220, 2018.
@ARTICLE{MP18,
author = {Miller, Allison N. and Piccirillo, Lisa},
title = {Knot traces and concordance},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {11},
year = {2018},
number = {1},
pages = {201--220},
issn = {1753-8416},
mrclass = {57M25 (57M27)},
mrnumber = {3784230},
mrreviewer = {Christopher William Davis},
doi = {10.1112/topo.12054},
url = {https://doi.org/10.1112/topo.12054},
zblnumber = {1393.57010},
} -
[MT90]
H. R. Morton and P. Traczyk, "The Jones polynomial of satellite links around mutants," in Braids, Amer. Math. Soc., Providence, RI, 1988, vol. 78, pp. 587-592.
@INCOLLECTION{MT90,
author = {Morton, H. R. and Traczyk, P.},
title = {The {J}ones polynomial of satellite links around mutants},
booktitle = {Braids},
venue = {{S}anta {C}ruz, {CA},
1986},
series = {Contemp. Math.},
volume = {78},
pages = {587--592},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1988},
mrclass = {57M25},
mrnumber = {0975096},
mrreviewer = {Lorenzo Traldi},
doi = {10.1090/conm/078/975096},
url = {https://doi.org/10.1090/conm/078/975096},
zblnumber = {0666.57010},
} -
[Pic18]
L. Piccirillo, "Shake genus and slice genus," Geom. Topol., vol. 23, iss. 5, pp. 2665-2684, 2019.
@ARTICLE{Pic18,
author = {Piccirillo, Lisa},
title = {Shake genus and slice genus},
journal = {Geom. Topol.},
fjournal = {Geometry \& Topology},
volume = {23},
year = {2019},
number = {5},
pages = {2665--2684},
issn = {1465-3060},
mrclass = {57M25 (57R65)},
mrnumber = {4019900},
doi = {10.2140/gt.2019.23.2665},
url = {https://doi.org/10.2140/gt.2019.23.2665},
zblnumber = {07121758},
} -
[Ras10]
J. Rasmussen, "Khovanov homology and the slice genus," Invent. Math., vol. 182, iss. 2, pp. 419-447, 2010.
@ARTICLE{Ras10,
author = {Rasmussen, Jacob},
title = {Khovanov homology and the slice genus},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {182},
year = {2010},
number = {2},
pages = {419--447},
issn = {0020-9910},
mrclass = {57M27},
mrnumber = {2729272},
mrreviewer = {William D. Gillam},
doi = {10.1007/s00222-010-0275-6},
url = {https://doi.org/10.1007/s00222-010-0275-6},
zblnumber = {1211.57009},
} -
@ARTICLE{Ril71,
author = {Riley, Robert},
title = {Homomorphisms of knot groups on finite groups},
journal = {Math. Comp.},
fjournal = {Mathematics of Computation},
volume = {25},
year = {1971},
pages = {},
issn = {0025-5718},
mrclass = {55A25},
mrnumber = {0295332},
mrreviewer = {L. Neuwirth},
doi = {10.2307/2005224},
url = {https://doi.org/10.2307/2005224},
zblnumber = {0224.55003},
} -
[Rub87]
D. Ruberman, "Mutation and volumes of knots in $S^3$," Invent. Math., vol. 90, iss. 1, pp. 189-215, 1987.
@ARTICLE{Rub87,
author = {Ruberman, Daniel},
title = {Mutation and volumes of knots in {$S^3$}},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {90},
year = {1987},
number = {1},
pages = {189--215},
issn = {0020-9910},
mrclass = {57N10 (57M25)},
mrnumber = {0906585},
mrreviewer = {J. H. Rubinstein},
doi = {10.1007/BF01389038},
url = {https://doi.org/10.1007/BF01389038},
zblnumber = {0634.57005},
}