A conjecture of Erdős, supersingular primes and short character sums

Abstract

If $k$ is a sufficiently large positive integer, we show that the Diophantine equation $$ n ( n+d) \cdots (n+ (k-1)d ) = y^{\ell } $$ has at most finitely many solutions in positive integers $n, d, y$ and $\ell $, with gcd$(n,d)=1$ and $\ell \geq 2$. Our proof relies upon Frey-Hellegouarch curves and results on supersingular primes for elliptic curves without complex multiplication, derived from upper bounds for short character sums and sieves, analytic and combinatorial.

  • [BBGH] Go to document M. A. Bennett, N. Bruin, K. GyHory, and L. Hajdu, "Powers from products of consecutive terms in arithmetic progression," Proc. London Math. Soc. (3), vol. 92, iss. 2, pp. 273-306, 2006.
    @ARTICLE{BBGH,
      author = {Bennett, M. A. and Bruin, N. and Gy{ő}ry, K. and Hajdu, L.},
      title = {Powers from products of consecutive terms in arithmetic progression},
      journal = {Proc. London Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {92},
      year = {2006},
      number = {2},
      pages = {273--306},
      issn = {0024-6115},
      mrclass = {11D61 (11B25)},
      mrnumber = {2205718},
      mrreviewer = {Natarajan Saradha},
      doi = {10.1112/S0024611505015625},
      url = {https://doi.org/10.1112/S0024611505015625},
      zblnumber = {1178.11033},
      }
  • [EBPAP] Go to document M. A. Bennett, G. Martin, K. O’Bryant, and A. Rechnitzer, "Explicit bounds for primes in arithmetic progressions," Illinois J. Math., vol. 62, iss. 1-4, pp. 427-532, 2018.
    @ARTICLE{EBPAP,
      author = {Bennett, Michael A. and Martin, Greg and O'Bryant, Kevin and Rechnitzer, Andrew},
      title = {Explicit bounds for primes in arithmetic progressions},
      journal = {Illinois J. Math.},
      fjournal = {Illinois Journal of Mathematics},
      volume = {62},
      year = {2018},
      number = {1-4},
      pages = {427--532},
      issn = {0019-2082},
      mrclass = {11N13 (11M20 11M26 11N37 11Y35 11Y40)},
      mrnumber = {3922423},
      mrreviewer = {Timothy S. Trudgian},
      doi = {10.1215/ijm/1552442669},
      url = {https://doi.org/10.1215/ijm/1552442669},
      zblnumber = {07036793},
      }
  • [BeSi] Go to document M. A. Bennett and S. Siksek, "Rational points on Erdős-Selfridge superelliptic curves," Compos. Math., vol. 152, iss. 11, pp. 2249-2254, 2016.
    @ARTICLE{BeSi,
      author = {Bennett, Michael A. and Siksek, Samir},
      title = {Rational points on {E}rd{ő}s-{S}elfridge superelliptic curves},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {152},
      year = {2016},
      number = {11},
      pages = {2249--2254},
      issn = {0010-437X},
      mrclass = {11D61 (11D41 11F41 11F80)},
      mrnumber = {3577894},
      mrreviewer = {B. Sury},
      doi = {10.1112/S0010437X16007569},
      url = {https://doi.org/10.1112/S0010437X16007569},
      zblnumber = {1407.11081},
      }
  • [BennettSkinner] Go to document M. A. Bennett and C. M. Skinner, "Ternary Diophantine equations via Galois representations and modular forms," Canad. J. Math., vol. 56, iss. 1, pp. 23-54, 2004.
    @ARTICLE{BennettSkinner,
      author = {Bennett, Michael A. and Skinner, Chris M.},
      title = {Ternary {D}iophantine equations via {G}alois representations and modular forms},
      journal = {Canad. J. Math.},
      fjournal = {Canadian Journal of Mathematics. Journal Canadien de Math{é}matiques},
      volume = {56},
      year = {2004},
      number = {1},
      pages = {23--54},
      issn = {0008-414X},
      mrclass = {11D41 (11F11 11F80)},
      mrnumber = {2031121},
      mrreviewer = {Henri Darmon},
      doi = {10.4153/CJM-2004-002-2},
      url = {https://doi.org/10.4153/CJM-2004-002-2},
      zblnumber = {1053.11025},
      }
  • [BPR] Go to document Y. Bilu, P. Parent, and M. Rebolledo, "Rational points on $X^+_0(p^r)$," Ann. Inst. Fourier (Grenoble), vol. 63, iss. 3, pp. 957-984, 2013.
    @ARTICLE{BPR,
      author = {Bilu, Yuri and Parent, Pierre and Rebolledo, Marusia},
      title = {Rational points on {$X^+_0(p^r)$}},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Universit{é} de Grenoble. Annales de l'Institut Fourier},
      volume = {63},
      year = {2013},
      number = {3},
      pages = {957--984},
      issn = {0373-0956},
      mrclass = {11G18 (11G05 11G16)},
      mrnumber = {3137477},
      doi = {10.5802/aif.2781},
      url = {https://doi.org/10.5802/aif.2781},
      zblnumber = {1307.11075},
      }
  • [Bombieri] Go to document E. Bombieri, "A note on the large sieve," Acta Arith., vol. 18, pp. 401-404, 1971.
    @ARTICLE{Bombieri,
      author = {Bombieri, E.},
      title = {A note on the large sieve},
      journal = {Acta Arith.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      volume = {18},
      year = {1971},
      pages = {401--404},
      issn = {0065-1036},
      mrclass = {10.64},
      mrnumber = {0286773},
      mrreviewer = {W. G. H. Schaal},
      doi = {10.4064/aa-18-1-401-404},
      url = {https://doi.org/10.4064/aa-18-1-401-404},
      zblnumber = {0219.10055},
      }
  • [Bo] Go to document E. Bombieri, "Le grand crible dans la théorie analytique des nombres," Astérisque, iss. 18, p. 103, 1987.
    @ARTICLE{Bo,
      author = {Bombieri, Enrico},
      title = {Le grand crible dans la th{é}orie analytique des nombres},
      edition = {Second},
      journal = {Ast{é}risque},
      fjournal = {Ast{é}risque},
      publisher = {Soc. Math. France, Paris},
      number = {18},
      year = {1987},
      pages = {103 pp.},
      issn = {0303-1179},
      mrclass = {11N35},
      mrnumber = {0891718},
      mrreviewer = {H.-E. Richert},
      zblnumber = {0618.10042},
      url = {http://www.numdam.org/item/AST_1987__18__1_0/},
      }
  • [BreuilConradDiamondTaylor01] Go to document C. Breuil, B. Conrad, F. Diamond, and R. Taylor, "On the modularity of elliptic curves over $\Bbb Q$: wild 3-adic exercises," J. Amer. Math. Soc., vol. 14, iss. 4, pp. 843-939, 2001.
    @ARTICLE{BreuilConradDiamondTaylor01,
      author = {Breuil, Christophe and Conrad, Brian and Diamond, Fred and Taylor, Richard},
      title = {On the modularity of elliptic curves over {$\bold Q$}: wild 3-adic exercises},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {14},
      year = {2001},
      number = {4},
      pages = {843--939},
      issn = {0894-0347},
      mrclass = {11G05 (11F80 11G07 14G35)},
      mrnumber = {1839918},
      mrreviewer = {Karl Rubin},
      doi = {10.1090/S0894-0347-01-00370-8},
      url = {https://doi.org/10.1090/S0894-0347-01-00370-8},
      zblnumber = {0982.11033},
      }
  • [DaGr] Go to document H. Darmon and A. Granville, "On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$," Bull. London Math. Soc., vol. 27, iss. 6, pp. 513-543, 1995.
    @ARTICLE{DaGr,
      author = {Darmon, Henri and Granville, Andrew},
      title = {On the equations {$z^m=F(x,y)$} and {$Ax^p+By^q=Cz^r$}},
      journal = {Bull. London Math. Soc.},
      fjournal = {The Bulletin of the London Mathematical Society},
      volume = {27},
      year = {1995},
      number = {6},
      pages = {513--543},
      issn = {0024-6093},
      mrclass = {11D41},
      mrnumber = {1348707},
      mrreviewer = {Nigel Boston},
      doi = {10.1112/blms/27.6.513},
      url = {https://doi.org/10.1112/blms/27.6.513},
      zblnumber = {0838.11023},
      }
  • [DM] Go to document H. Darmon and L. Merel, "Winding quotients and some variants of Fermat’s last theorem," J. Reine Angew. Math., vol. 490, pp. 81-100, 1997.
    @ARTICLE{DM,
      author = {Darmon, Henri and Merel, Loïc},
      title = {Winding quotients and some variants of {F}ermat's last theorem},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {490},
      year = {1997},
      pages = {81--100},
      issn = {0075-4102},
      mrclass = {11G18 (11D41 11F80 11G05)},
      mrnumber = {1468926},
      mrreviewer = {Kenneth Kramer},
      zblnumber = {0976.11017},
      doi = {10.1515/crll.1997.490.81},
      url = {https://doi.org/10.1515/crll.1997.490.81},
      }
  • [Elk] Go to document N. D. Elkies, "Distribution of supersingular primes," in Journées Arithmétiques, 1989, Soc. Math. France, Paris, 1991, pp. 127-132 (1992).
    @INCOLLECTION{Elk,
      author = {Elkies, Noam D.},
      title = {Distribution of supersingular primes},
      booktitle = {Journ{é}es Arithm{é}tiques, 1989},
      venue = {Luminy, 1989},
      series = {Ast{é}risque},
      fjournal = {Ast{é}risque},
      publisher = {Soc. Math. France, Paris},
      number = {198-200},
      year = {1991},
      pages = {127--132 (1992)},
      issn = {0303-1179},
      mrclass = {11G05},
      mrnumber = {1144318},
      mrreviewer = {Joseph H. Silverman},
      zblnumber = {0754.14019},
      url = {http://www.numdam.org/item/AST_1991__198-199-200__127_0/},
      }
  • [Er55] P. ErdHos, "On the product of consecutive integers. III," Nederl. Akad. Wet., Proc. Ser. A., vol. 58, pp. 85-90, 1955.
    @ARTICLE{Er55,
      author = {Erd{{ő}}s, P.},
      title = {On the product of consecutive integers. {III}},
      journal = {Nederl. Akad. Wet., Proc. Ser. A.},
      volume = {58},
      year = {1955},
      pages = {85--90},
      mrclass = {10.0X},
      mrnumber = {0067915},
      mrreviewer = {H. W. Brinkmann},
      zblnumber = {0068.03704},
      }
  • [ErSe] Go to document P. ErdHos and J. L. Selfridge, "The product of consecutive integers is never a power," Illinois J. Math., vol. 19, pp. 292-301, 1975.
    @ARTICLE{ErSe,
      author = {Erd{{ő}}s, P. and Selfridge, J. L.},
      title = {The product of consecutive integers is never a power},
      journal = {Illinois J. Math.},
      fjournal = {Illinois Journal of Mathematics},
      volume = {19},
      year = {1975},
      pages = {292--301},
      issn = {0019-2082},
      mrclass = {10B05 (10A30)},
      mrnumber = {0376517},
      mrreviewer = {T. M. Apostol},
      zblnumber = {0295.10017},
      doi = {10.1215/ijm/1256050816},
      url = {https://doi.org/10.1215/ijm/1256050816},
      }
  • [EST] Go to document P. Erdös, C. L. Stewart, and R. Tijdeman, "Some diophantine equations with many solutions," Compositio Math., vol. 66, iss. 1, pp. 37-56, 1988.
    @ARTICLE{EST,
      author = {Erd{ö}s, P. and Stewart, C. L. and Tijdeman, R.},
      title = {Some diophantine equations with many solutions},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {66},
      year = {1988},
      number = {1},
      pages = {37--56},
      issn = {0010-437X},
      mrclass = {11D41},
      mrnumber = {0937987},
      mrreviewer = {Takashi Agoh},
      url = {http://www.numdam.org/item?id=CM_1988__66_1_37_0},
      zblnumber = {0639.10014},
      }
  • [GrRi] Go to document S. W. Graham and C. J. Ringrose, "Lower bounds for least quadratic nonresidues," in Analytic Number Theory (Allerton Park, IL, 1989), Birkhäuser Boston, Boston, MA, 1990, vol. 85, pp. 269-309.
    @INCOLLECTION{GrRi,
      author = {Graham, S. W. and Ringrose, C. J.},
      title = {Lower bounds for least quadratic nonresidues},
      booktitle = {Analytic {N}umber {T}heory ({A}llerton {P}ark, {IL},
      1989)},
      series = {Progr. Math.},
      volume = {85},
      pages = {269--309},
      publisher = {Birkhäuser Boston, Boston, MA},
      year = {1990},
      mrclass = {11N69 (11L26 11M26)},
      mrnumber = {1084186},
      mrreviewer = {D. R. Heath-Brown},
      zblnumber = {0719.11006},
      doi = {10.1007/978-1-4612-3464-7_18},
      url = {https://doi.org/10.1007/978-1-4612-3464-7_18},
      }
  • [Gr] A. Granville, Personal communication.
    @MISC{Gr,
      author = {Granville, A.},
      title = {personal communication},
      zblnumber = {},
      }
  • [Gy] K. Györy, "Power values of products of consecutive integers and binomial coefficients," in Number Theory and its Applications, Kluwer Acad. Publ., Dordrecht, 1999, vol. 2, pp. 145-156.
    @INCOLLECTION{Gy,
      author = {Györy, K.},
      title = {Power values of products of consecutive integers and binomial coefficients},
      booktitle = {Number Theory and its Applications},
      venue = {{K}yoto, 1997},
      series = {Dev. Math.},
      volume = {2},
      pages = {145--156},
      publisher = {Kluwer Acad. Publ., Dordrecht},
      year = {1999},
      mrclass = {11D61 (11B65)},
      mrnumber = {1738813},
      mrreviewer = {Natarajan Saradha},
      zblnumber = {1074.11502},
      }
  • [GHP] Go to document K. GyHory, L. Hajdu, and Á. Pintér, "Perfect powers from products of consecutive terms in arithmetic progression," Compos. Math., vol. 145, iss. 4, pp. 845-864, 2009.
    @ARTICLE{GHP,
      author = {Gy{ő}ry, K. and Hajdu, L. and Pint{é}r, \'{A}.},
      title = {Perfect powers from products of consecutive terms in arithmetic progression},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {145},
      year = {2009},
      number = {4},
      pages = {845--864},
      issn = {0010-437X},
      mrclass = {11D61 (11B25)},
      mrnumber = {2521247},
      mrreviewer = {Michael A. Bennett},
      doi = {10.1112/S0010437X09004114},
      url = {https://doi.org/10.1112/S0010437X09004114},
      zblnumber = {1194.11043},
      }
  • [IK] Go to document H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc., Providence, RI, 2004, vol. 53.
    @BOOK{IK,
      author = {Iwaniec, Henryk and Kowalski, Emmanuel},
      title = {Analytic Number Theory},
      series = {Amer. Math. Soc. Colloq. Publ.},
      volume = {53},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2004},
      pages = {xii+615},
      isbn = {0-8218-3633-1},
      mrclass = {11-02 (11Fxx 11Lxx 11Mxx 11Nxx)},
      mrnumber = {2061214},
      mrreviewer = {K. Soundararajan},
      doi = {10.1090/coll/053},
      url = {https://doi.org/10.1090/coll/053},
      zblnumber = {1059.11001},
      }
  • [KW1] Go to document C. Khare and J. Wintenberger, "Serre’s modularity conjecture. I," Invent. Math., vol. 178, iss. 3, pp. 485-504, 2009.
    @ARTICLE{KW1,
      author = {Khare, Chandrashekhar and Wintenberger, Jean-Pierre},
      title = {Serre's modularity conjecture. {I}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {178},
      year = {2009},
      number = {3},
      pages = {485--504},
      issn = {0020-9910},
      mrclass = {11F80 (11F11 11F33 11R39)},
      mrnumber = {2551763},
      mrreviewer = {Gabor Wiese},
      doi = {10.1007/s00222-009-0205-7},
      url = {https://doi.org/10.1007/s00222-009-0205-7},
      zblnumber = {1304.11041},
      }
  • [KW2] Go to document C. Khare and J. Wintenberger, "Serre’s modularity conjecture. II," Invent. Math., vol. 178, iss. 3, pp. 505-586, 2009.
    @ARTICLE{KW2,
      author = {Khare, Chandrashekhar and Wintenberger, Jean-Pierre},
      title = {Serre's modularity conjecture. {II}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {178},
      year = {2009},
      number = {3},
      pages = {505--586},
      issn = {0020-9910},
      mrclass = {11F80 (11F11 11F33 11R39)},
      mrnumber = {2551764},
      mrreviewer = {Gabor Wiese},
      doi = {10.1007/s00222-009-0206-6},
      url = {https://doi.org/10.1007/s00222-009-0206-6},
      zblnumber = {1304.11042},
      }
  • [Koblitz] Go to document N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York, 1984, vol. 97.
    @BOOK{Koblitz,
      author = {Koblitz, Neal},
      title = {Introduction to Elliptic Curves and Modular Forms},
      series = {Grad. Texts in Math.},
      volume = {97},
      publisher = {Springer-Verlag, New York},
      year = {1984},
      pages = {viii+248},
      isbn = {0-387-96029-5},
      mrclass = {11G05 (11G40 14G25 14K07)},
      mrnumber = {0766911},
      mrreviewer = {Leslie Jane Federer},
      doi = {10.1007/978-1-4684-0255-1},
      url = {https://doi.org/10.1007/978-1-4684-0255-1},
      zblnumber = {0804.11039},
      }
  • [Kraus] Go to document A. Kraus, "Majorations effectives pour l’équation de Fermat généralisée," Canad. J. Math., vol. 49, iss. 6, pp. 1139-1161, 1997.
    @ARTICLE{Kraus,
      author = {Kraus, Alain},
      title = {Majorations effectives pour l'{é}quation de {F}ermat g{é}n{é}ralis{é}e},
      journal = {Canad. J. Math.},
      fjournal = {Canadian Journal of Mathematics. Journal Canadien de Math{é}matiques},
      volume = {49},
      year = {1997},
      number = {6},
      pages = {1139--1161},
      issn = {0008-414X},
      mrclass = {11D41 (11F33 11F80 11G05)},
      mrnumber = {1611640},
      mrreviewer = {Kenneth Kramer},
      doi = {10.4153/CJM-1997-056-2},
      url = {https://doi.org/10.4153/CJM-1997-056-2},
      zblnumber = {0908.11017},
      }
  • [LaSh2] S. Laishram and T. N. Shorey, "Perfect powers in arithmetic progressions," J. Comb. Number Theory, vol. 7, iss. 2, pp. 95-110, 2015.
    @ARTICLE{LaSh2,
      author = {Laishram, Shanta and Shorey, Tarlok N.},
      title = {Perfect powers in arithmetic progressions},
      journal = {J. Comb. Number Theory},
      fjournal = {Journal of Combinatorics and Number Theory},
      volume = {7},
      year = {2015},
      number = {2},
      pages = {95--110},
      issn = {1942-5600},
      mrclass = {11D61 (11D41)},
      mrnumber = {3537553},
      mrreviewer = {Szabolcs Tengely},
      zblnumber = {1386.11062},
      }
  • [Lemos] Go to document P. Lemos, "Serre’s uniformity conjecture for elliptic curves with rational cyclic isogenies," Trans. Amer. Math. Soc., vol. 371, iss. 1, pp. 137-146, 2019.
    @ARTICLE{Lemos,
      author = {Lemos, Pedro},
      title = {Serre's uniformity conjecture for elliptic curves with rational cyclic isogenies},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {371},
      year = {2019},
      number = {1},
      pages = {137--146},
      issn = {0002-9947},
      mrclass = {11G05 (14H52)},
      mrnumber = {3885140},
      mrreviewer = {\'{A}lvaro Lozano-Robledo},
      doi = {10.1090/tran/7198},
      url = {https://doi.org/10.1090/tran/7198},
      zblnumber = {06993229},
      }
  • [Lio] Go to document J. Liouville, "Sur le produit $m(m+1)(m+2)…(m+n-1)$," J. Math. Pures Appl., vol. 2, pp. 277-278, 1857.
    @ARTICLE{Lio,
      author={Liouville, J.},
      title={Sur le produit $m(m+1)(m+2)…(m+n-1)$},
      journal={J. Math. Pures Appl.},
      volume={2},
      year={1857},
      pages={277--278},
      url={https://gallica.bnf.fr/ark:/12148/bpt6k164012/f285n2.capture},
      }
  • [Mars] Go to document R. Marszałek, "On the product of consecutive elements of an arithmetic progression," Monatsh. Math., vol. 100, iss. 3, pp. 215-222, 1985.
    @ARTICLE{Mars,
      author = {Marsza{\l}ek, R.},
      title = {On the product of consecutive elements of an arithmetic progression},
      journal = {Monatsh. Math.},
      fjournal = {Monatshefte für Mathematik},
      volume = {100},
      year = {1985},
      number = {3},
      pages = {215--222},
      issn = {0026-9255},
      mrclass = {11B25},
      mrnumber = {0812613},
      mrreviewer = {D. A. Klarner},
      doi = {10.1007/BF01299269},
      url = {https://doi.org/10.1007/BF01299269},
      zblnumber = {0582.10011},
      }
  • [Ma] Go to document G. Martin, "Dimensions of the spaces of cusp forms and newforms on $\Gamma_0(N)$ and $\Gamma_1(N)$," J. Number Theory, vol. 112, iss. 2, pp. 298-331, 2005.
    @ARTICLE{Ma,
      author = {Martin, Greg},
      title = {Dimensions of the spaces of cusp forms and newforms on {$\Gamma_0(N)$} and {$\Gamma_1(N)$}},
      journal = {J. Number Theory},
      fjournal = {Journal of Number Theory},
      volume = {112},
      year = {2005},
      number = {2},
      pages = {298--331},
      issn = {0022-314X},
      mrclass = {11F11 (11F25)},
      mrnumber = {2141534},
      mrreviewer = {Amir Akbary},
      doi = {10.1016/j.jnt.2004.10.009},
      url = {https://doi.org/10.1016/j.jnt.2004.10.009},
      zblnumber = {1095.11026},
      }
  • [Mazur] Go to document B. Mazur, "Rational isogenies of prime degree (with an appendix by D. Goldfeld)," Invent. Math., vol. 44, iss. 2, pp. 129-162, 1978.
    @ARTICLE{Mazur,
      author = {Mazur, B.},
      title = {Rational isogenies of prime degree (with an appendix by {D}. {G}oldfeld)},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {44},
      year = {1978},
      number = {2},
      pages = {129--162},
      issn = {0020-9910},
      mrclass = {14K07 (10D35 14G25)},
      mrnumber = {0482230},
      mrreviewer = {V. V. Shokurov},
      doi = {10.1007/BF01390348},
      url = {https://doi.org/10.1007/BF01390348},
      zblnumber = {0386.14009},
      }
  • [Pl] Go to document D. J. Platt, "Numerical computations concerning the GRH," Math. Comp., vol. 85, iss. 302, pp. 3009-3027, 2016.
    @ARTICLE{Pl,
      author = {Platt, David J.},
      title = {Numerical computations concerning the {GRH}},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {85},
      year = {2016},
      number = {302},
      pages = {3009--3027},
      issn = {0025-5718},
      mrclass = {11M26 (11M06 11P32)},
      mrnumber = {3522979},
      mrreviewer = {Temenoujka P. Peneva},
      doi = {10.1090/mcom/3077},
      url = {https://doi.org/10.1090/mcom/3077},
      zblnumber = {1345.11064},
      }
  • [Rah] Go to document M. Rahman, Roth’s theorem on $3$-term arithmetic progressions.
    @MISC{Rah,
      author = {Rahman, M.},
      title = {Roth's theorem on $3$-term arithmetic progressions},
      url = {https://pdfs.semanticscholar.org/34d5/e5d802d1107b68f1aa76dff994e8b23341c2.pdf},
      zblnumber = {},
      }
  • [RamareRumely] Go to document O. Ramaré and R. Rumely, "Primes in arithmetic progressions," Math. Comp., vol. 65, iss. 213, pp. 397-425, 1996.
    @ARTICLE{RamareRumely,
      author = {Ramar{é},
      Olivier and Rumely, Robert},
      title = {Primes in arithmetic progressions},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {65},
      year = {1996},
      number = {213},
      pages = {397--425},
      issn = {0025-5718},
      mrclass = {11N13 (11Y35)},
      mrnumber = {1320898},
      mrreviewer = {Claudia A. Spiro-Silverman},
      doi = {10.1090/S0025-5718-96-00669-2},
      url = {https://doi.org/10.1090/S0025-5718-96-00669-2},
      zblnumber = {0856.11042},
      }
  • [Ribet-1990] Go to document K. A. Ribet, "On modular representations of ${ Gal}(\overline{\bf Q}/{\bf Q})$ arising from modular forms," Invent. Math., vol. 100, iss. 2, pp. 431-476, 1990.
    @ARTICLE{Ribet-1990,
      author = {Ribet, K. A.},
      title = {On modular representations of {${\rm Gal}(\overline{\bf Q}/{\bf Q})$} arising from modular forms},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {100},
      year = {1990},
      number = {2},
      pages = {431--476},
      issn = {0020-9910},
      mrclass = {11G18 (11F32 11F80 11S37)},
      mrnumber = {1047143},
      mrreviewer = {Glenn Stevens},
      doi = {10.1007/BF01231195},
      url = {https://doi.org/10.1007/BF01231195},
      zblnumber = {0773.11039},
      }
  • [RoSc] Go to document B. J. Rosser and L. Schoenfeld, "Approximate formulas for some functions of prime numbers," Illinois J. Math., vol. 6, pp. 64-94, 1962.
    @ARTICLE{RoSc,
      author = {Rosser, J. Barkley and Schoenfeld, Lowell},
      title = {Approximate formulas for some functions of prime numbers},
      journal = {Illinois J. Math.},
      fjournal = {Illinois Journal of Mathematics},
      volume = {6},
      year = {1962},
      pages = {64--94},
      issn = {0019-2082},
      mrclass = {10.42},
      mrnumber = {0137689},
      mrreviewer = {B. K. Ghosh},
      zblnumber = {0122.05001},
      doi = {10.1215/ijm/1255631807},
      url = {https://doi.org/10.1215/ijm/1255631807},
      }
  • [SerreIHES] Go to document . J-P. Serre, "Quelques applications du théorème de densité de Chebotarev," Inst. Hautes Études Sci. Publ. Math., vol. 54, pp. 323-401, 1981.
    @ARTICLE{SerreIHES,
      author = {Serre, {\relax J-P}},
      title = {Quelques applications du th{é}orème de densit{é} de {C}hebotarev},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Math{é}matiques},
      volume = {54},
      year = {1981},
      pages = {323--401},
      issn = {0073-8301},
      mrclass = {12A75 (10D99 10H25 14G25)},
      mrnumber = {0644559},
      mrreviewer = {J. Tunnell},
      url = {http://archive.numdam.org/article/PMIHES_1981__54__123_0.pdf},
      zblnumber = {0496.12011},
      }
  • [SerreDuke] Go to document . J-P. Serre, "Sur les représentations modulaires de degré $2$ de ${ Gal}(\overline{\bf Q}/{\bf Q})$," Duke Math. J., vol. 54, iss. 1, pp. 179-230, 1987.
    @ARTICLE{SerreDuke,
      author = {Serre, {\relax J-P}},
      title = {Sur les repr{é}sentations modulaires de degr{é} {$2$} de {${\rm Gal}(\overline{\bf Q}/{\bf Q})$}},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {54},
      year = {1987},
      number = {1},
      pages = {179--230},
      issn = {0012-7094},
      mrclass = {11F11 (11G05 14G15 14G25 14K15)},
      mrnumber = {0885783},
      mrreviewer = {M. A. Kenku},
      doi = {10.1215/S0012-7094-87-05413-5},
      url = {https://doi.org/10.1215/S0012-7094-87-05413-5},
      zblnumber = {0641.10026},
      }
  • [Sc] Go to document L. Schoenfeld, "Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II," Math. Comp., vol. 30, iss. 134, pp. 337-360, 1976.
    @ARTICLE{Sc,
      author = {Schoenfeld, Lowell},
      title = {Sharper bounds for the {C}hebyshev functions {$\theta (x)$} and {$\psi (x)$}. {II}},
      journal = {Math. Comp.},
      fjournal = {Mathematics of Computation},
      volume = {30},
      year = {1976},
      number = {134},
      pages = {337--360},
      issn = {0025-5718},
      mrclass = {10H05},
      mrnumber = {0457374},
      mrreviewer = {R. P. Brent},
      doi = {10.2307/2005976},
      url = {https://doi.org/10.2307/2005976},
      zblnumber = {0326.10037},
      }
  • [Sho0] T. N. Shorey, "Some exponential Diophantine equations," in New Advances in Transcendence Theory, Cambridge Univ. Press, Cambridge, 1988, pp. 352-365.
    @INCOLLECTION{Sho0,
      author = {Shorey, T. N.},
      title = {Some exponential {D}iophantine equations},
      booktitle = {New Advances in Transcendence Theory},
      venue = {{D}urham, 1986},
      pages = {352--365},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1988},
      mrclass = {11D61 (11J87)},
      mrnumber = {0972011},
      mrreviewer = {Daniel Bertrand},
      zblnumber = {},
      }
  • [Sho00] Go to document T. N. Shorey, "Perfect powers in products of arithmetical progressions with fixed initial term," Indag. Math. (N.S.), vol. 7, iss. 4, pp. 521-525, 1996.
    @ARTICLE{Sho00,
      author = {Shorey, T. N.},
      title = {Perfect powers in products of arithmetical progressions with fixed initial term},
      journal = {Indag. Math. (N.S.)},
      fjournal = {Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae. New Series},
      volume = {7},
      year = {1996},
      number = {4},
      pages = {521--525},
      issn = {0019-3577},
      mrclass = {11D41 (11B25)},
      mrnumber = {1620124},
      mrreviewer = {A. Peth{ő}},
      doi = {10.1016/S0019-3577(97)89137-9},
      url = {https://doi.org/10.1016/S0019-3577(97)89137-9},
      zblnumber = {0874.11034},
      }
  • [Sho1] T. N. Shorey, "Diophantine approximations, Diophantine equations, transcendence and applications," Indian J. Pure Appl. Math., vol. 37, iss. 1, pp. 9-39, 2006.
    @ARTICLE{Sho1,
      author = {Shorey, T. N.},
      title = {Diophantine approximations, {D}iophantine equations, transcendence and applications},
      journal = {Indian J. Pure Appl. Math.},
      fjournal = {Indian Journal of Pure and Applied Mathematics},
      volume = {37},
      year = {2006},
      number = {1},
      pages = {9--39},
      issn = {0019-5588},
      mrclass = {11J04 (11D45 11D61 11J86)},
      mrnumber = {2254063},
      mrreviewer = {Roland Qu\^{e}me},
      zblnumber = {1207.11074},
      }
  • [ShTi] Go to document T. N. Shorey and R. Tijdeman, "Perfect powers in products of terms in an arithmetical progression," Compositio Math., vol. 75, iss. 3, pp. 307-344, 1990.
    @ARTICLE{ShTi,
      author = {Shorey, T. N. and Tijdeman, R.},
      title = {Perfect powers in products of terms in an arithmetical progression},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {75},
      year = {1990},
      number = {3},
      pages = {307--344},
      issn = {0010-437X},
      mrclass = {11D61 (11B25)},
      mrnumber = {1070417},
      mrreviewer = {A. Peth{ő}},
      url = {http://www.numdam.org/item?id=CM_1990__75_3_307_0},
      zblnumber = {0708.11021},
      }
  • [Siksek] Go to document S. Siksek, "The modular approach to Diophantine equations," in Explicit Methods in Number Theory, Soc. Math. France, Paris, 2012, vol. 36, pp. 151-179.
    @INCOLLECTION{Siksek,
      author = {Siksek, Samir},
      title = {The modular approach to {D}iophantine equations},
      booktitle = {Explicit Methods in Number Theory},
      series = {Panor. Synthèses},
      volume = {36},
      pages = {151--179},
      publisher = {Soc. Math. France, Paris},
      year = {2012},
      mrclass = {11D41 (11D61 11G05 11G07)},
      mrnumber = {3098134},
      mrreviewer = {Nikos Tzanakis},
      zblnumber = {1343.11042},
      doi = {10.1007/978-0-387-49894-2_7},
      url = {https://doi.org/10.1007/978-0-387-49894-2_7},
     }
  • [Strom] K. R. Stromberg, Introduction to Classical Real Analysis, Wadsworth International, Belmont, Calif., 1981.
    @BOOK{Strom,
      author = {Stromberg, Karl R.},
      title = {Introduction to Classical Real Analysis},
      series = {Wadsworth Internat. Math. Ser.},
      publisher = {Wadsworth International, Belmont, Calif.},
      year = {1981},
      pages = {ix+575},
      isbn = {0-534-98012-0},
      mrclass = {26-01 (26A42 42-01)},
      mrnumber = {0604364},
      mrreviewer = {R. P. Boas, Jr.},
      zblnumber = {0454.26001},
      }
  • [Tenenbaum] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, Cambridge, 1995, vol. 46.
    @BOOK{Tenenbaum,
      author = {Tenenbaum, G{é}rald},
      title = {Introduction to Analytic and Probabilistic Number Theory},
      series = {Cambridge Stud. Adv. Math.},
      volume = {46},
      note = {translated from the second French edition (1995) by C. B. Thomas},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1995},
      pages = {xvi+448},
      isbn = {0-521-41261-7},
      mrclass = {11-02 (11Kxx 11Mxx 11Nxx)},
      mrnumber = {1342300},
      mrreviewer = {H. G. Diamond},
      zblnumber = {0831.11001},
      }
  • [Varnavides] Go to document P. Varnavides, "On certain sets of positive density," J. London Math. Soc., vol. 34, pp. 358-360, 1959.
    @ARTICLE{Varnavides,
      author = {Varnavides, P.},
      title = {On certain sets of positive density},
      journal = {J. London Math. Soc.},
      fjournal = {The Journal of the London Mathematical Society},
      volume = {34},
      year = {1959},
      pages = {358--360},
      issn = {0024-6107},
      mrclass = {10.00},
      mrnumber = {0106865},
      mrreviewer = {P. Erd{ő}s},
      doi = {10.1112/jlms/s1-34.3.358},
      url = {https://doi.org/10.1112/jlms/s1-34.3.358},
      zblnumber = {0088.25702},
      }
  • [Wi] Go to document A. Wiles, "Modular elliptic curves and Fermat’s Last Theorem," Ann. of Math. (2), vol. 141, iss. 3, pp. 443-551, 1995.
    @ARTICLE{Wi,
      author = {Wiles, Andrew},
      title = {Modular elliptic curves and {F}ermat's {L}ast {T}heorem},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {141},
      year = {1995},
      number = {3},
      pages = {443--551},
      issn = {0003-486X},
      mrclass = {11G05 (11D41 11F11 11F80 11G18)},
      mrnumber = {1333035},
      mrreviewer = {Karl Rubin},
      doi = {10.2307/2118559},
      url = {https://doi.org/10.2307/2118559},
      zblnumber = {0823.11029},
      }

Authors

Michael A. Bennett

University of British Columbia, Vancouver, B.C., Canada

Samir Siksek

Mathematics Institute, University of Warwick, Coventry, United Kingdom