Integrability of Liouville theory: proof of the DOZZ formula

Abstract

Dorn and Otto (1994) and independently Zamolodchikov and Zamolodchikov (1996) proposed a remarkable explicit expression, the so-called DOZZ formula, for the three point structure constants of Liouville Conformal Field Theory (LCFT), which is expected to describe the scaling limit of large planar maps properly embedded into the Riemann sphere. In this paper we give a proof of the DOZZ formula based on a rigorous probabilistic construction of LCFT in terms of Gaussian Multiplicative Chaos given earlier by F. David and the authors. This result is a fundamental step in the path to prove integrability of LCFT, i.e., to mathematically justify the methods of Conformal Bootstrap used by physicists. From the purely probabilistic point of view, our proof constitutes the first nontrivial rigorous integrability result on Gaussian Multiplicative Chaos measures.

  • [Albeverio1] Go to document S. Albeverio and R. Ho egh-Krohn, "The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time," J. Functional Analysis, vol. 16, pp. 39-82, 1974.
    @ARTICLE{Albeverio1,
      author = {Albeverio, Sergio and H{\o e}gh-Krohn, Raphael},
      title = {The {W}ightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time},
      journal = {J. Functional Analysis},
      volume = {16},
      year = {1974},
      pages = {39--82},
      mrclass = {81.47},
      mrnumber = {0356761},
      mrreviewer = {S. Gudder},
      doi = {10.1016/0022-1236(74)90070-6},
      url = {https://doi.org/10.1016/0022-1236(74)90070-6},
      zblnumber = {0279.60095},
      }
  • [Albeverio2] Go to document S. Albeverio, G. Gallavotti, and R. Ho egh-Krohn, "Some results for the exponential interaction in two or more dimensions," Comm. Math. Phys., vol. 70, iss. 2, pp. 187-192, 1979.
    @ARTICLE{Albeverio2,
      author = {Albeverio, S. and Gallavotti, G. and H{\o e}gh-Krohn, R.},
      title = {Some results for the exponential interaction in two or more dimensions},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {70},
      year = {1979},
      number = {2},
      pages = {187--192},
      issn = {0010-3616},
      mrclass = {81E10},
      mrnumber = {0553970},
      doi = {10.1007/BF01982355},
      url = {https://doi.org/10.1007/BF01982355},
      zblnumber = {0433.60098},
      }
  • [AGT] Go to document L. F. Alday, D. Gaiotto, and Y. Tachikawa, "Liouville correlation functions from four-dimensional gauge theories," Lett. Math. Phys., vol. 91, iss. 2, pp. 167-197, 2010.
    @ARTICLE{AGT,
      author = {Alday, Luis F. and Gaiotto, Davide and Tachikawa, Yuji},
      title = {Liouville correlation functions from four-dimensional gauge theories},
      journal = {Lett. Math. Phys.},
      fjournal = {Letters in Mathematical Physics},
      volume = {91},
      year = {2010},
      number = {2},
      pages = {167--197},
      issn = {0377-9017},
      mrclass = {81T40 (32G81 81T60)},
      mrnumber = {2586871},
      mrreviewer = {Lee-Peng Teo},
      doi = {10.1007/s11005-010-0369-5},
      url = {https://doi.org/10.1007/s11005-010-0369-5},
      zblnumber = {1185.81111},
      }
  • [aru] Go to document J. Aru, Y. Huang, and X. Sun, "Two perspectives of the 2D unit area quantum sphere and their equivalence," Comm. Math. Phys., vol. 356, iss. 1, pp. 261-283, 2017.
    @ARTICLE{aru,
      author = {Aru, Juhan and Huang, Yichao and Sun, Xin},
      title = {Two perspectives of the 2{D} unit area quantum sphere and their equivalence},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {356},
      year = {2017},
      number = {1},
      pages = {261--283},
      issn = {0010-3616},
      mrclass = {83C45 (60G57 81T20 81T40 83C80)},
      mrnumber = {3694028},
      mrreviewer = {Yu. N. Obukhov},
      doi = {10.1007/s00220-017-2979-6},
      url = {https://doi.org/10.1007/s00220-017-2979-6},
      zblnumber = {1408.83023},
      }
  • [baverez] G. Baverez and M. D. Wong, Fusion asymptotics for Liouville correlation functions, 2018.
    @MISC{baverez,
      author = {Baverez, G. and Wong, M. D.},
      title = {Fusion asymptotics for {L}iouville correlation functions},
      year = {2018},
      arxiv = {1807.10207},
      zblnumber = {},
      }
  • [BPZ] Go to document A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, "Infinite conformal symmetry in two-dimensional quantum field theory," Nuclear Phys. B, vol. 241, iss. 2, pp. 333-380, 1984.
    @ARTICLE{BPZ,
      author = {Belavin, A. A. and Polyakov, A. M. and Zamolodchikov, A. B.},
      title = {Infinite conformal symmetry in two-dimensional quantum field theory},
      journal = {Nuclear Phys. B},
      fjournal = {Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems},
      volume = {241},
      year = {1984},
      number = {2},
      pages = {333--380},
      issn = {0550-3213},
      mrclass = {81E13 (17B70 58G37 81D15)},
      mrnumber = {0757857},
      doi = {10.1016/0550-3213(84)90052-X},
      url = {https://doi.org/10.1016/0550-3213(84)90052-X},
      zblnumber = {0661.17013},
      }
  • [Ber] Go to document N. Berestycki, "An elementary approach to Gaussian multiplicative chaos," Electron. Commun. Probab., vol. 22, p. 27, 2017.
    @ARTICLE{Ber,
      author = {Berestycki, Nathanaël},
      title = {An elementary approach to {G}aussian multiplicative chaos},
      journal = {Electron. Commun. Probab.},
      fjournal = {Electronic Communications in Probability},
      volume = {22},
      year = {2017},
      pages = {Paper No. 27, 12},
      issn = {1083-589X},
      mrclass = {60G57 (60G15 60J65)},
      mrnumber = {3652040},
      doi = {10.1214/17-ECP58},
      url = {https://doi.org/10.1214/17-ECP58},
      zblnumber = {1365.60035},
      }
  • [bct] Go to document E. Braaten, T. Curtright, and C. Thorn, "An exact operator solution of the quantum Liouville field theory," Ann. Physics, vol. 147, iss. 2, pp. 365-416, 1983.
    @ARTICLE{bct,
      author = {Braaten, Eric and Curtright, Thomas and Thorn, Charles},
      title = {An exact operator solution of the quantum {L}iouville field theory},
      journal = {Ann. Physics},
      fjournal = {Annals of Physics},
      volume = {147},
      year = {1983},
      number = {2},
      pages = {365--416},
      issn = {0003-4916},
      mrclass = {81E13},
      mrnumber = {0708970},
      mrreviewer = {R. Delbourgo},
      doi = {10.1016/0003-4916(83)90214-2},
      url = {https://doi.org/10.1016/0003-4916(83)90214-2},
      zblnumber = {0538.35071},
      }
  • [BT] Go to document A. Bytsko and J. Teschner, "The integrable structure of nonrational conformal field theory," Adv. Theor. Math. Phys., vol. 17, iss. 4, pp. 701-740, 2013.
    @ARTICLE{BT,
      author = {Bytsko, A. and Teschner, J.},
      title = {The integrable structure of nonrational conformal field theory},
      journal = {Adv. Theor. Math. Phys.},
      fjournal = {Advances in Theoretical and Mathematical Physics},
      volume = {17},
      year = {2013},
      number = {4},
      pages = {701--740},
      issn = {1095-0761},
      mrclass = {81T40 (81R12)},
      mrnumber = {3250766},
      mrreviewer = {Lee-Peng Teo},
      doi = {10.4310/ATMP.2013.v17.n4.a1},
      url = {https://doi.org/10.4310/ATMP.2013.v17.n4.a1},
      zblnumber = {06296983},
      }
  • [bootstrap] Go to document S. Collier, P. Kravchuk, Y. Lin, and X. Yin, "Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ," J. High Energy Phys., iss. 9, p. 150, 2018.
    @ARTICLE{bootstrap,
      author = {Collier, Scott and Kravchuk, Petr and Lin, Ying-Hsuan and Yin, Xi},
      title = {Bootstrapping the spectral function: on the uniqueness of {L}iouville and the universality of {BTZ}},
      journal = {J. High Energy Phys.},
      fjournal = {Journal of High Energy Physics},
      year = {2018},
      number = {9},
      pages = {150, front matter+42},
      issn = {1126-6708},
      mrclass = {81T40},
      mrnumber = {3868337},
      doi = {10.1007/jhep09(2018)150},
      url = {https://doi.org/10.1007/jhep09(2018)150},
      zblnumber = {1398.81202},
      }
  • [ct] Go to document T. L. Curtright and C. B. Thorn, "Conformally invariant quantization of the Liouville theory," Phys. Rev. Lett., vol. 48, iss. 19, pp. 1309-1313, 1982.
    @ARTICLE{ct,
      author = {Curtright, Thomas L. and Thorn, Charles B.},
      title = {Conformally invariant quantization of the {L}iouville theory},
      journal = {Phys. Rev. Lett.},
      fjournal = {Physical Review Letters},
      volume = {48},
      year = {1982},
      number = {19},
      pages = {1309--1313},
      issn = {0031-9007},
      mrclass = {81E99 (81G25)},
      mrnumber = {0653269},
      doi = {10.1103/PhysRevLett.48.1309},
      url = {https://doi.org/10.1103/PhysRevLett.48.1309},
      zblnumber = {},
      }
  • [DKRV] Go to document F. David, A. Kupiainen, R. Rhodes, and V. Vargas, "Liouville quantum gravity on the Riemann sphere," Comm. Math. Phys., vol. 342, iss. 3, pp. 869-907, 2016.
    @ARTICLE{DKRV,
      author = {David, F. and Kupiainen, Antti and Rhodes, Rémi and Vargas, Vincent},
      title = {Liouville quantum gravity on the {R}iemann sphere},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {342},
      year = {2016},
      number = {3},
      pages = {869--907},
      issn = {0010-3616},
      mrclass = {81T20},
      mrnumber = {3465434},
      doi = {10.1007/s00220-016-2572-4},
      url = {https://doi.org/10.1007/s00220-016-2572-4},
      zblnumber = {1336.83042},
      }
  • [DKRV2] Go to document F. David, A. Kupiainen, R. Rhodes, and V. Vargas, "Renormalizability of Liouville Quantum Gravity at the Seiberg bound," Electron. J. Probab., vol. 22, p. 26, 2017.
    @ARTICLE{DKRV2,
      author = {David, F. and Kupiainen, Antti and Rhodes, Rémi and Vargas, Vincent},
      title = {Renormalizability of {L}iouville {Q}uantum {G}ravity at the {S}eiberg bound},
      journal = {Electron. J. Probab.},
      fjournal = {Electronic Journal of Probability},
      volume = {22},
      year = {2017},
      note = {Paper No. 93},
      pages = {26 pp.},
      mrnumber = {3724561},
      doi = {10.1214/17-EJP113},
      url = {https://doi.org/10.1214/17-EJP113},
      zblnumber = {06827070},
      }
  • [DoOt] Go to document H. Dorn and H. -J. Otto, "Two- and three-point functions in Liouville theory," Nuclear Phys. B, vol. 429, iss. 2, pp. 375-388, 1994.
    @ARTICLE{DoOt,
      author = {Dorn, H. and Otto, H.-J.},
      title = {Two- and three-point functions in {L}iouville theory},
      journal = {Nuclear Phys. B},
      fjournal = {Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems},
      volume = {429},
      year = {1994},
      number = {2},
      pages = {375--388},
      issn = {0550-3213},
      mrclass = {81T30 (81T40)},
      mrnumber = {1299071},
      doi = {10.1016/0550-3213(94)00352-1},
      url = {https://doi.org/10.1016/0550-3213(94)00352-1},
      zblnumber = {1020.81770},
      }
  • [Dub0] Go to document J. Dubédat, "SLE and the free field: partition functions and couplings," J. Amer. Math. Soc., vol. 22, iss. 4, pp. 995-1054, 2009.
    @ARTICLE{Dub0,
      author = {Dubédat, Julien},
      title = {S{LE} and the free field: partition functions and couplings},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {22},
      year = {2009},
      number = {4},
      pages = {995--1054},
      issn = {0894-0347},
      mrclass = {60J67 (60G17 60K35)},
      mrnumber = {2525778},
      mrreviewer = {Dmitry Beliaev},
      doi = {10.1090/S0894-0347-09-00636-5},
      url = {https://doi.org/10.1090/S0894-0347-09-00636-5},
      zblnumber = {1204.60079},
      }
  • [DMS] B. Duplantier, "Liouville quantum gravity, KPZ and Schramm-Loewner evolution," in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, 2014, pp. 1035-1061.
    @INPROCEEDINGS{DMS,
      author = {Duplantier, Bertrand},
      title = {Liouville quantum gravity, {KPZ} and {S}chramm-{L}oewner evolution},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{S}eoul 2014. {V}ol. {III}},
      pages = {1035--1061},
      publisher = {Kyung Moon Sa, Seoul},
      year = {2014},
      mrclass = {81T40 (60J67 83C45)},
      mrnumber = {3729063},
      zblnumber = {1373.81322},
      }
  • [Ry1] Go to document S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, "Solving the 3D Ising model with the conformal bootstrap," Phys. Rev. D, vol. 86, iss. 2, p. 025022, 2012.
    @ARTICLE{Ry1,
      author = {El-Showk, Sheer and Paulos, Miguel F. and Poland, David and Rychkov, Slava and Simmons-Duffin, David and Vichi, Alessandro},
      title = {Solving the 3{D} {I}sing model with the conformal bootstrap},
      journal = {Phys. Rev. D},
      volume = {86},
      number = {2},
      year = {2012},
      pages = {025022, 17 pp.},
      doi = {10.1103/PhysRevD.86.025022},
      url = {https://doi.org/10.1103/PhysRevD.86.025022},
      zblnumber = {},
      }
  • [Ry2] Go to document S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, "Solving the 3D Ising model with the conformal bootstrap II. $c$-minimization and precise critical exponents," J. Stat. Phys., vol. 157, iss. 4-5, pp. 869-914, 2014.
    @ARTICLE{Ry2,
      author = {El-Showk, Sheer and Paulos, Miguel F. and Poland, David and Rychkov, Slava and Simmons-Duffin, David and Vichi, Alessandro},
      title = {Solving the 3{D} {I}sing model with the conformal bootstrap {II}. {$c$}-minimization and precise critical exponents},
      journal = {J. Stat. Phys.},
      fjournal = {Journal of Statistical Physics},
      volume = {157},
      year = {2014},
      number = {4-5},
      pages = {869--914},
      issn = {0022-4715},
      mrclass = {82B20 (81T25 81T40 81V10)},
      mrnumber = {3269694},
      doi = {10.1007/s10955-014-1042-7},
      url = {https://doi.org/10.1007/s10955-014-1042-7},
      zblnumber = {1310.82013},
      }
  • [fybu] Go to document Y. V. Fyodorov and J. Bouchaud, "Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential," J. Phys. A, vol. 41, iss. 37, p. 372001, 2008.
    @ARTICLE{fybu,
      author = {Fyodorov, Yan V. and Bouchaud, Jean-Philippe},
      title = {Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential},
      journal = {J. Phys. A},
      fjournal = {Journal of Physics. A. Mathematical and Theoretical},
      volume = {41},
      year = {2008},
      number = {37},
      pages = {372001, 12},
      issn = {1751-8113},
      mrclass = {82B44},
      mrnumber = {2430565},
      doi = {10.1088/1751-8113/41/37/372001},
      url = {https://doi.org/10.1088/1751-8113/41/37/372001},
      zblnumber = {1214.82016},
      }
  • [FLeR] Go to document Y. V. Fyodorov, P. Le Doussal, and A. Rosso, "Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of $1/f$ noises generated by Gaussian free fields," J. Stat. Mech. Theory Exp., iss. 10, p. 10005, 2009.
    @ARTICLE{FLeR,
      author = {Fyodorov, Yan V. and Le Doussal, Pierre and Rosso, Alberto},
      title = {Statistical mechanics of logarithmic {REM}: duality, freezing and extreme value statistics of {$1/f$} noises generated by {G}aussian free fields},
      journal = {J. Stat. Mech. Theory Exp.},
      fjournal = {Journal of Statistical Mechanics: Theory and Experiment},
      year = {2009},
      number = {10},
      pages = {P10005, 32},
      issn = {1742-5468},
      mrclass = {82B44 (81T40)},
      mrnumber = {2882779},
      doi = {10.1088/1742-5468/2009/10/p10005},
      url = {https://doi.org/10.1088/1742-5468/2009/10/p10005},
      zblnumber = {},
      }
  • [gn] Go to document J. -L. Gervais and A. Neveu, "Green functions and scattering amplitudes in Liouville string-field theory (I)," Nucl. Phys. B, vol. 238, iss. 2, pp. 396-406, 1984.
    @ARTICLE{gn,
      author = {Gervais, J.-L. and Neveu, A.},
      title={Green functions and scattering amplitudes in {L}iouville string-field theory (I)},
      journal = {Nucl. Phys. {B}},
      fjournal = {Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems},
      volume = {238},
      year = {1984},
      number = {2},
      pages = {396--406},
      mrclass = {81E13},
      mrnumber = {747098},
      doi = {10.1016/0550-3213(84)90458-9},
      url = {https://doi.org/10.1016/0550-3213(84)90458-9},
      zblnumber = {},
      }
  • [grimmett] Go to document G. Grimmett, Percolation, Second ed., Springer-Verlag, Berlin, 1999, vol. 321.
    @BOOK{grimmett,
      author = {Grimmett, Geoffrey},
      title = {Percolation},
      series = {Grundlehren Math. Wissen.},
      volume = {321},
      edition = {Second},
      publisher = {Springer-Verlag, Berlin},
      year = {1999},
      pages = {xiv+444},
      isbn = {3-540-64902-6},
      mrclass = {60K35 (60-02 82B43)},
      mrnumber = {1707339},
      mrreviewer = {Neal Madras},
      doi = {10.1007/978-3-662-03981-6},
      url = {https://doi.org/10.1007/978-3-662-03981-6},
      zblnumber = {0926.60004},
      }
  • [HaMaWi] Go to document D. Harlow, J. Maltz, and E. Witten, "Analytic continuation of Liouville theory," J. High Energy Phys., iss. 12, p. 71, 2011.
    @ARTICLE{HaMaWi,
      author = {Harlow, Daniel and Maltz, Jonathan and Witten, Edward},
      title = {Analytic continuation of {L}iouville theory},
      journal = {J. High Energy Phys.},
      fjournal = {Journal of High Energy Physics},
      year = {2011},
      number = {12},
      pages = {71 pp.},
      issn = {1126-6708},
      mrclass = {81T40},
      mrnumber = {2935613},
      mrreviewer = {Lee-Peng Teo},
      doi = {10.1007/JHEP12(2011)071},
      url = {https://doi.org/10.1007/JHEP12(2011)071},
      zblnumber = {1306.81287},
      }
  • [hyp] Go to document relax Wolfram Resource Library, Hypergoemetric2F1.
    @MISC{hyp, title={Hypergoemetric2{F}1},
      author={{\relax Wolfram Resource Library}},
      url = {https://reference.wolfram.com/language/ref/Hypergeometric2F1.html},
      zblnumber = {},
      }
  • [cf:Kah] Go to document J. Kahane, "Sur le chaos multiplicatif," Ann. Sci. Math. Québec, vol. 9, iss. 2, pp. 105-150, 1985.
    @ARTICLE{cf:Kah,
      author = {Kahane, Jean-Pierre},
      title = {Sur le chaos multiplicatif},
      journal = {Ann. Sci. Math. Québec},
      fjournal = {Annales des Sciences Mathématiques du Québec},
      volume = {9},
      year = {1985},
      number = {2},
      pages = {105--150},
      issn = {0707-9109},
      mrclass = {60G57 (60G42)},
      mrnumber = {0829798},
      mrreviewer = {S. D. Chatterji},
      zblnumber = {0596.60041},
      url = {http://www.labmath.uqam.ca/~annales/volumes/09-2/PDF/105-150.pdf},
      }
  • [KaraSh] Go to document I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second ed., Springer-Verlag, New York, 1991, vol. 113.
    @BOOK{KaraSh,
      author = {Karatzas, Ioannis and Shreve, Steven E.},
      title = {Brownian Motion and Stochastic Calculus},
      series = {Grad. Texts in Math.},
      volume = {113},
      edition = {Second},
      publisher = {Springer-Verlag, New York},
      year = {1991},
      pages = {xxiv+470},
      isbn = {0-387-97655-8},
      mrclass = {60J65 (35K99 35R60 60G44 60H10 60J60)},
      mrnumber = {1121940},
      doi = {10.1007/978-1-4612-0949-2},
      url = {https://doi.org/10.1007/978-1-4612-0949-2},
      zblnumber = {0734.60060},
      }
  • [cf:KPZ] Go to document V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, "Fractal structure of $2d$-quantum gravity," Modern Phys. Lett. A, vol. 3, iss. 8, pp. 819-826, 1988.
    @ARTICLE{cf:KPZ,
      author = {Knizhnik, V. G. and Polyakov, A. M. and Zamolodchikov, A. B.},
      title = {Fractal structure of {$2d$}-quantum gravity},
      journal = {Modern Phys. Lett. A},
      fjournal = {Modern Physics Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear Physics},
      volume = {3},
      year = {1988},
      number = {8},
      pages = {819--826},
      issn = {0217-7323},
      mrclass = {83C45 (81E13 81E15 81G25)},
      mrnumber = {0947880},
      mrreviewer = {Markku Lehto},
      doi = {10.1142/S0217732388000982},
      url = {https://doi.org/10.1142/S0217732388000982},
      zblnumber = {},
      }
  • [cargese] A. Kupiainen, Constructive Liouville Conformal Field Theory, 2016.
    @MISC{cargese,
      author = {Kupiainen, Antti},
      title = {Constructive {L}iouville Conformal Field Theory},
      arxiv = {1611.05243},
      year = {2016},
      zblnumber = {},
      }
  • [KRV] Go to document A. Kupiainen, R. Rhodes, and V. Vargas, "Local conformal structure of Liouville Quantum Gravity," Comm. Math. Phys., p. 65, 2018.
    @ARTICLE{KRV,
      author = {Kupiainen, Antti and Rhodes, R. and Vargas, V.},
      title = {Local conformal structure of {L}iouville {Q}uantum {G}ravity},
      Journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      year = {2018},
      pages = {65 pp.},
      note = {First online: 08 September 2018},
      doi = {10.1007/s00220-018-3260-3},
      url = {https://doi.org/10.1007/s00220-018-3260-3},
      mrnumber = {4029827},
     },
     
  • [KRVjhep] Go to document A. Kupiainen, R. Rhodes, and V. Vargas, "The DOZZ formula from the path integral," J. High Energy Phys., iss. 5, p. 94, 2018.
    @ARTICLE{KRVjhep,
      author = {Kupiainen, Antti and Rhodes, Rémi and Vargas, Vincent},
      title = {The {DOZZ} formula from the path integral},
      journal = {J. High Energy Phys.},
      fjournal = {Journal of High Energy Physics},
      year = {2018},
      number = {5},
      pages = {94 pp.},
      issn = {1126-6708},
      mrclass = {81T40 (83C47)},
      mrnumber = {3832670},
      mrreviewer = {Lance W. Nielsen},
      doi = {10.1007/JHEP05(2018)094},
      url = {https://doi.org/10.1007/JHEP05(2018)094},
      zblnumber = {1391.83114},
      }
  • [JFL] Go to document J. Le Gall, "Brownian geometry," Jpn. J. Math., vol. 14, iss. 2, pp. 135-174, 2019.
    @ARTICLE{JFL,
      author = {Le Gall, Jean-François},
      title = {Brownian geometry},
      journal = {Jpn. J. Math.},
      fjournal = {Japanese Journal of Mathematics},
      volume = {14},
      year = {2019},
      number = {2},
      pages = {135--174},
      issn = {0289-2316},
      mrclass = {05C80 (05C10 60C05 60D05)},
      mrnumber = {4007665},
      doi = {10.1007/s11537-019-1821-7},
      url = {https://doi.org/10.1007/s11537-019-1821-7},
      zblnumber = {07107324},
      }
  • [MO] D. Maulik and A. Okounkov, "Quantum groups and quantum cohomology," Astérisque, iss. 408, p. ix, 2019.
    @ARTICLE{MO,
      author = {Maulik, Davesh and Okounkov, Andrei},
      title = {Quantum groups and quantum cohomology},
      journal = {Astérisque},
      fjournal = {Astérisque},
      number = {408},
      year = {2019},
      pages = {ix+209},
      issn = {0303-1179},
      isbn = {978-2-85629-900-5},
      mrclass = {14D20 (14F05 16G20 17B37)},
      mrnumber = {3951025},
      zblnumber = {07061145},
      }
  • [MS1] Go to document J. Miller and S. Sheffield, "Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric," Invent. Math., 2019.
    @article{MS1,
      author = {Miller, J. and Sheffield, S.},
      title = {Liouville quantum gravity and the {B}rownian map {I}: the {QLE(}8/3,0) metric},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      year = {2019},
      doi = {10.1007/s00222-019-00905-1},
      url = {https://doi.org/10.1007/s00222-019-00905-1},
      zblnumber = {},
      }
  • [MS2] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, 2016.
    @MISC{MS2,
      author = {Miller, J. and Sheffield, S.},
      title = {Liouville quantum gravity and the {B}rownian map {II}: geodesics and continuity of the embedding},
      arxiv = {1605.03563},
      year = {2016},
      zblnumber = {},
      }
  • [MS3] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, 2016.
    @MISC{MS3,
      author = {Miller, J. and Sheffield, S.},
      title = {Liouville quantum gravity and the {B}rownian map {III}: the conformal structure is determined},
      arxiv = {1608.05391},
      year={2016},
      zblnumber = {},
      }
  • [nakayama] Go to document Y. Nakayama, "Liouville field theory: a decade after the revolution," Internat. J. Modern Phys. A, vol. 19, iss. 17-18, pp. 2771-2930, 2004.
    @ARTICLE{nakayama,
      author = {Nakayama, Yu},
      title = {Liouville field theory: a decade after the revolution},
      journal = {Internat. J. Modern Phys. A},
      fjournal = {International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology},
      volume = {19},
      year = {2004},
      number = {17-18},
      pages = {2771--2930},
      issn = {0217-751X},
      mrclass = {81T40 (81-02 81T30)},
      mrnumber = {2073993},
      mrreviewer = {Marcel L. Vonk},
      doi = {10.1142/S0217751X04019500},
      url = {https://doi.org/10.1142/S0217751X04019500},
      zblnumber = {1080.81056},
      }
  • [OPS] Go to document L. O’Raifeartaigh, J. M. Pawlowski, and V. V. Sreedhar, "The two-exponential Liouville theory and the uniqueness of the three-point function," Phys. Lett. B, vol. 481, iss. 2-4, pp. 436-444, 2000.
    @ARTICLE{OPS,
      author = {O'Raifeartaigh, L. and Pawlowski, J. M. and Sreedhar, V. V.},
      title = {The two-exponential {L}iouville theory and the uniqueness of the three-point function},
      journal = {Phys. Lett. B},
      fjournal = {Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology},
      volume = {481},
      year = {2000},
      number = {2-4},
      pages = {436--444},
      issn = {0370-2693},
      mrclass = {81T10},
      mrnumber = {1762483},
      doi = {10.1016/S0370-2693(00)00448-2},
      url = {https://doi.org/10.1016/S0370-2693(00)00448-2},
      zblnumber = {0990.81057},
      }
  • [OS1] Go to document K. Osterwalder and R. Schrader, "Axioms for Euclidean Green’s functions," Comm. Math. Phys., vol. 31, pp. 83-112, 1973.
    @ARTICLE{OS1,
      author = {Osterwalder, Konrad and Schrader, Robert},
      title = {Axioms for {E}uclidean {G}reen's functions},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {31},
      year = {1973},
      pages = {83--112},
      issn = {0010-3616},
      mrclass = {81.46},
      mrnumber = {0329492},
      mrreviewer = {W. Güttinger},
      doi = {10.1007/BF01645738},
      url = {https://doi.org/10.1007/BF01645738},
      zblnumber = {0274.46047},
      }
  • [OS2] Go to document K. Osterwalder and R. Schrader, "Axioms for Euclidean Green’s functions. II," Comm. Math. Phys., vol. 42, iss. 3, pp. 281-305, 1975.
    @ARTICLE{OS2,
      author = {Osterwalder, Konrad and Schrader, Robert},
      title = {Axioms for {E}uclidean {G}reen's functions. {II}},
      note = {with an appendix by Stephen Summers},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {42},
      number={3},
      year = {1975},
      pages = {281--305},
      issn = {0010-3616},
      mrclass = {81.46},
      mrnumber = {0376002},
      mrreviewer = {W. Güttinger},
      doi = {10.1007/BF01608978},
      url = {https://doi.org/10.1007/BF01608978},
      zblnumber = {0303.46034},
      }
  • [ostrovsky] Go to document D. Ostrovsky, "A review of conjectured laws of total mass of Bacry-Muzy GMC measures on the interval and circle and their applications," Rev. Math. Phys., vol. 30, iss. 10, p. 1830003, 2018.
    @ARTICLE{ostrovsky,
      author = {Ostrovsky, Dmitry},
      title = {A review of conjectured laws of total mass of {B}acry-{M}uzy {GMC} measures on the interval and circle and their applications},
      journal = {Rev. Math. Phys.},
      fjournal = {Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics},
      volume = {30},
      year = {2018},
      number = {10},
      pages = {1830003, 74},
      issn = {0129-055X},
      mrclass = {33B15 (60E07 60E10 60G57 82B44)},
      mrnumber = {3863806},
      mrreviewer = {Frédéric Ouimet},
      doi = {10.1142/S0129055X18300030},
      url = {https://doi.org/10.1142/S0129055X18300030},
      zblnumber = {1416.33003},
      }
  • [ostrovsky2] Go to document D. Ostrovsky, "Mellin transform of the limit lognormal distribution," Comm. Math. Phys., vol. 288, iss. 1, pp. 287-310, 2009.
    @ARTICLE{ostrovsky2,
      author = {Ostrovsky, Dmitry},
      title = {Mellin transform of the limit lognormal distribution},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {288},
      year = {2009},
      number = {1},
      pages = {287--310},
      issn = {0010-3616},
      mrclass = {60E10 (11M36)},
      mrnumber = {2491625},
      mrreviewer = {Philippe Bernardoff},
      doi = {10.1007/s00220-009-0771-y},
      url = {https://doi.org/10.1007/s00220-009-0771-y},
      zblnumber = {1181.62010},
      }
  • [Pol] Go to document A. M. Polyakov, "Quantum geometry of bosonic strings," Phys. Lett. B, vol. 103, iss. 3, pp. 207-210, 1981.
    @ARTICLE{Pol,
      author = {Polyakov, A. M.},
      title = {Quantum geometry of bosonic strings},
      journal = {Phys. Lett. B},
      fjournal = {Physics Letters. B},
      volume = {103},
      year = {1981},
      number = {3},
      pages = {207--210},
      issn = {0031-9163},
      mrclass = {81E99 (58D30 81G05 82A68)},
      mrnumber = {0623209},
      doi = {10.1016/0370-2693(81)90743-7},
      url = {https://doi.org/10.1016/0370-2693(81)90743-7},
      zblnumber = {},
      }
  • [Pol1] A. M. Polyakov, From quarks to strings,, 2008.
    @MISC{Pol1,
      author = {Polyakov, A. M.},
      title = {From quarks to strings,},
      year = {2008},
      arxiv = {0812.0183},
      zblnumber = {},
      }
  • [remy] G. Remy, The Fyodorov-Bouchaud formula and Liouville Conformal Field theory, 2017.
    @MISC{remy,
      author = {Remy, G.},
      title = {The {F}yodorov-{B}ouchaud formula and {L}iouville {C}onformal {F}ield theory},
      arxiv = {1710.06897 },
      year = {2017},
      zblnumber = {},
      }
  • [zhu] G. Remy and T. Zhu, The distribution of Gaussian multiplicative chaos on the unit interval, 2018.
    @MISC{zhu,
      author = {Remy, G. and Zhu, T.},
      title = {The distribution of {G}aussian multiplicative chaos on the unit interval},
      year = {2018},
      arxiv = {1804.02942},
      zblnumber = {},
      }
  • [Rib] S. Ribault, Conformal Field theory on the plane, 2014.
    @MISC{Rib,
      author = {Ribault, S.},
      title = {Conformal Field theory on the plane},
      arxiv = {1406.4290},
      year = {2014},
      zblnumber = {},
      }
  • [review] Go to document R. Rhodes and V. Vargas, "Gaussian multiplicative chaos and applications: A review," Probab. Surv., vol. 11, pp. 315-392, 2014.
    @ARTICLE{review,
      author = {Rhodes, Rémi and Vargas, Vincent},
      title = {Gaussian multiplicative chaos and applications: A review},
      journal = {Probab. Surv.},
      fjournal = {Probability Surveys},
      volume = {11},
      year = {2014},
      pages = {315--392},
      issn = {1549-5787},
      mrclass = {60G57 (28A80 60G15 60G60)},
      mrnumber = {3274356},
      mrreviewer = {Dora Seleši},
      doi = {10.1214/13-PS218},
      url = {https://doi.org/10.1214/13-PS218},
      zblnumber = {1316.60073},
      }
  • [MRM] Go to document R. Rhodes and V. Vargas, "Multidimensional multifractal random measures," Electron. J. Probab., vol. 15, p. no. 9, 241-258, 2010.
    @ARTICLE{MRM,
      author = {Rhodes, Rémi and Vargas, Vincent},
      title = {Multidimensional multifractal random measures},
      journal = {Electron. J. Probab.},
      fjournal = {Electronic Journal of Probability},
      volume = {15},
      year = {2010},
      pages = {no. 9, 241--258},
      issn = {1083-6489},
      mrclass = {60G57 (28A78 28A80)},
      mrnumber = {2609587},
      mrreviewer = {David A. Croydon},
      doi = {10.1214/EJP.v15-746},
      url = {https://doi.org/10.1214/EJP.v15-746},
      zblnumber = {1201.60046},
      }
  • [tail] Go to document R. Rhodes and V. Vargas, "The Tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient," Ann. Probab., vol. 47, pp. 3082-3107, 2019.
    @article{tail,
      author = {Rhodes, Rémi and Vargas, Vincent},
      title = {The Tail expansion of {G}aussian multiplicative chaos and the {L}iouville reflection coefficient},
      journal = {Ann. Probab.},
      fjournal = {Annals of Probability},
      year = {2019},
      volume = {47},
      issue = {5},
      pages = {3082--3107},
      doi = {10.1214/18-APO1333},
      url = {https://doi.org/10.1214/18-AOP1333},
      mrnumber = {4021245},
      zbl = { },
      }
  • [SV] Go to document O. Schiffmann and E. Vasserot, "Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on $\bold{A}^2$," Publ. Math. Inst. Hautes Études Sci., vol. 118, pp. 213-342, 2013.
    @ARTICLE{SV,
      author = {Schiffmann, O. and Vasserot, E.},
      title = {Cherednik algebras, {W}-algebras and the equivariant cohomology of the moduli space of instantons on {$\bold{A}^2$}},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {118},
      year = {2013},
      pages = {213--342},
      issn = {0073-8301},
      mrclass = {81R10 (14D21 14F43 17B35 17B69 20G20 81T13 81T60)},
      mrnumber = {3150250},
      mrreviewer = {Andrei D. Halanay},
      doi = {10.1007/s10240-013-0052-3},
      url = {https://doi.org/10.1007/s10240-013-0052-3},
      zblnumber = {1284.14008},
      }
  • [seiberg] N. Seiberg, "Notes on quantum Liouville theory and quantum gravity," in Common Trends in Mathematics and Quantum Field Theories, , 1990, vol. 102, pp. 319-349.
    @INCOLLECTION{seiberg,
      author = {Seiberg, Nathan},
      title = {Notes on quantum {L}iouville theory and quantum gravity},
      booktitle = {Common {T}rends in {M}athematics and {Q}uantum {F}ield {T}heories},
      venue={Kyoto, 1990},
      series = {Progr. Theoret. Phys. Suppl.},
      volume = {102},
      year = {1990},
      pages = {319--349},
      issn = {0375-9687},
      mrclass = {81T40 (81-02)},
      mrnumber = {1182173},
      mrreviewer = {Mar\'ıa A. H. Vozmediano},
      zblnumber = {0790.53059},
      }
  • [She07] Go to document S. Sheffield, "Gaussian free fields for mathematicians," Probab. Theory Related Fields, vol. 139, iss. 3-4, pp. 521-541, 2007.
    @ARTICLE{She07,
      author = {Sheffield, Scott},
      title = {Gaussian free fields for mathematicians},
      journal = {Probab. Theory Related Fields},
      fjournal = {Probability Theory and Related Fields},
      volume = {139},
      year = {2007},
      number = {3-4},
      pages = {521--541},
      issn = {0178-8051},
      mrclass = {60K35 (60J65 81T10 82B31)},
      mrnumber = {2322706},
      mrreviewer = {Ofer Zeitouni},
      doi = {10.1007/s00440-006-0050-1},
      url = {https://doi.org/10.1007/s00440-006-0050-1},
      zblnumber = {1132.60072},
      }
  • [Tesc] Go to document J. Teschner, "On the Liouville three-point functions," Phys. Lett. B, vol. 363, iss. 1–2, pp. 65-70, 1995.
    @ARTICLE{Tesc,
      author = {Teschner, J.},
      title = {On the {L}iouville three-point functions},
      journal = {Phys. Lett. B},
      volume = {363},
      number = {1--2},
      pages = {65--70},
      year = {1995},
      doi = {10.1016/0370-2693(95)01200-A},
      url = {https://doi.org/10.1016/0370-2693(95)01200-A},
      zblnumber = {},
      }
  • [Tesc1] Go to document J. Teschner, "Liouville theory revisited," Classical Quantum Gravity, vol. 18, iss. 23, p. r153-r222, 2001.
    @ARTICLE{Tesc1,
      author = {Teschner, J.},
      title = {Liouville theory revisited},
      journal = {Classical Quantum Gravity},
      fjournal = {Classical and Quantum Gravity},
      volume = {18},
      year = {2001},
      number = {23},
      pages = {R153--R222},
      issn = {0264-9381},
      mrclass = {81T40 (81-02 81R10)},
      mrnumber = {1867860},
      mrreviewer = {Katrin A. M. Wendland},
      doi = {10.1088/0264-9381/18/23/201},
      url = {https://doi.org/10.1088/0264-9381/18/23/201},
      zblnumber = {1022.81047},
      }
  • [Tesc2] Go to document J. Teschner, "A lecture on the Liouville vertex operators," in Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models, 2004, pp. 436-458.
    @INPROCEEDINGS{Tesc2,
      author = {Teschner, J.},
      title = {A lecture on the {L}iouville vertex operators},
      booktitle = {Proceedings of 6th {I}nternational {W}orkshop on {C}onformal {F}ield {T}heory and {I}ntegrable {M}odels},
      journal = {Internat. J. Modern Phys. A},
      fjournal = {International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology},
      volume = {19},
      year = {2004},
      note = {May, suppl.},
      pages = {436--458},
      issn = {0217-751X},
      mrclass = {81T40},
      mrnumber = {2087125},
      mrreviewer = {Rinat M. Kashaev},
      doi = {10.1142/S0217751X04020567},
      url = {https://doi.org/10.1142/S0217751X04020567},
      zblnumber = {1080.81060},
      }
  • [varg] V. Vargas, Lecture notes on Liouville theory and the DOZZ formula, 2017.
    @MISC{varg,
      author = {Vargas, V.},
      title = {Lecture notes on {L}iouville theory and the {DOZZ} formula},
      arxiv = {1712.00829},
      year = {2017},
      zblnumber = {},
      }
  • [Williams] Go to document D. Williams, "Path decomposition and continuity of local time for one-dimensional diffusions. I," Proc. London Math. Soc. (3), vol. 28, pp. 738-768, 1974.
    @ARTICLE{Williams,
      author = {Williams, David},
      title = {Path decomposition and continuity of local time for one-dimensional diffusions. {I}},
      journal = {Proc. London Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {28},
      year = {1974},
      pages = {738--768},
      issn = {0024-6115},
      mrclass = {60J60},
      mrnumber = {0350881},
      mrreviewer = {F. B. Knight},
      doi = {10.1112/plms/s3-28.4.738},
      url = {https://doi.org/10.1112/plms/s3-28.4.738},
      zblnumber = {0326.60093},
      }
  • [ZaZaarxiv] A. Zamolodchikov and A. Zamolodchikov, "Conformal bootstrap in Liouville field theory," in Proceedings of the Second International A. D. Sakharov Conference on Physics, 1997, pp. 633-636.
    @INPROCEEDINGS{ZaZaarxiv,
      author = {Zamolodchikov, A. and Zamolodchikov, Al.},
      title = {Conformal bootstrap in {L}iouville field theory},
      booktitle = {Proceedings of the {S}econd {I}nternational {A}. {D}. {S}akharov {C}onference on {P}hysics},
      venue = {{M}oscow, 1996},
      pages = {633--636},
      publisher = {World Sci. Publ., River Edge, NJ},
      year = {1997},
      mrclass = {81T40 (81T10)},
      mrnumber = {1668682},
      zblnumber = {0946.81070},
      }
  • [ZaZa] Go to document A. Zamolodchikov and A. Zamolodchikov, "Conformal bootstrap in Liouville field theory," Nuclear Phys. B, vol. 477, iss. 2, pp. 577-605, 1996.
    @ARTICLE{ZaZa,
      author = {Zamolodchikov, A. and Zamolodchikov, Al.},
      title = {Conformal bootstrap in {L}iouville field theory},
      journal = {Nuclear Phys. B},
      fjournal = {Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems},
      volume = {477},
      year = {1996},
      number = {2},
      pages = {577--605},
      issn = {0550-3213},
      mrclass = {81T40},
      mrnumber = {1413469},
      mrreviewer = {Kazuto Oshima},
      doi = {10.1016/0550-3213(96)00351-3},
      url = {https://doi.org/10.1016/0550-3213(96)00351-3},
      zblnumber = {0925.81301},
      }

Authors

Antti Kupiainen

University of Helsinki, 00014 University of Helsinki, Finland

Rémi Rhodes

Aix Marseille Université, CNRS, Centrale Marseille, 13453 Marseille, France

Vincent Vargas

ENS Ulm, DMA, 45 rue d'Ulm, 75005 Paris, France