Real Gromov-Witten theory in all genera and real enumerative geometry: Construction

Abstract

We construct positive-genus analogues of Welschinger’s invariants for many real symplectic manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold. In some cases, our invariants provide lower bounds for counts of real positive-genus curves in real algebraic varieties. Our approach to the orientability problem is based entirely on the topology of real bundle pairs over symmetric surfaces; the previous attempts involved direct computations for the determinant lines of Fredholm operators over bordered surfaces. We use the notion of real orientation introduced in this paper to obtain isomorphisms of real bundle pairs over families of symmetric surfaces and then apply the determinant functor to these isomorphisms. This allows us to endow the uncompactified moduli spaces of real maps from symmetric surfaces of all topological types with natural orientations and to verify that they extend across the codimension-one boundaries of these spaces, thus implementing a far-reaching proposal from C.-C. Liu’s thesis for a fully fledged real Gromov-Witten theory. The second and third parts of this work concern applications: they describe important properties of our orientations on the moduli spaces, establish some connections with real enumerative geometry, provide the relevant equivariant localization data for projective spaces, and obtain vanishing results in the spirit of Walcher’s predictions.

  • [ACH] Go to document E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of Algebraic Curves. Volume II, Springer, Heidelberg, 2011, vol. 268.
    @BOOK{ACH,
      author = {Arbarello, Enrico and Cornalba, Maurizio and Griffiths, Phillip A.},
      title = {Geometry of Algebraic Curves. {V}olume {II}},
      series = {Grundlehren Math. Wiss.},
      volume = {268},
      note = {with a contribution by Joseph Daniel Harris},
      publisher = {Springer, Heidelberg},
      year = {2011},
      pages = {xxx+963},
      isbn = {978-3-540-42688-2},
      mrclass = {14H10 (32G15)},
      mrnumber = {2807457},
      mrreviewer = {E. Looijenga},
      doi = {10.1007/978-3-540-69392-5},
      url = {https://doi.org/10.1007/978-3-540-69392-5},
      zblnumber = {1235.14002},
      }
  • [AB] Go to document M. F. Atiyah and R. Bott, "The moment map and equivariant cohomology," Topology, vol. 23, iss. 1, pp. 1-28, 1984.
    @ARTICLE{AB,
      author = {Atiyah, M. F. and Bott, R.},
      title = {The moment map and equivariant cohomology},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {23},
      year = {1984},
      number = {1},
      pages = {1--28},
      issn = {0040-9383},
      mrclass = {58F05 (55N91 57R20 57R22)},
      mrnumber = {0721448},
      mrreviewer = {G. J. Heckman},
      doi = {10.1016/0040-9383(84)90021-1},
      url = {https://doi.org/10.1016/0040-9383(84)90021-1},
      zblnumber = {0521.58025},
      }
  • [BHH] Go to document I. Biswas, J. Huisman, and J. Hurtubise, "The moduli space of stable vector bundles over a real algebraic curve," Math. Ann., vol. 347, iss. 1, pp. 201-233, 2010.
    @ARTICLE{BHH,
      author = {Biswas, Indranil and Huisman, Johannes and Hurtubise, Jacques},
      title = {The moduli space of stable vector bundles over a real algebraic curve},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {347},
      year = {2010},
      number = {1},
      pages = {201--233},
      issn = {0025-5831},
      mrclass = {14H60 (14P05)},
      mrnumber = {2593289},
      doi = {10.1007/s00208-009-0442-5},
      url = {https://doi.org/10.1007/s00208-009-0442-5},
      zblnumber = {1195.14048},
      }
  • [Cho] Go to document C. Cho, "Counting real $J$-holomorphic discs and spheres in dimension four and six," J. Korean Math. Soc., vol. 45, iss. 5, pp. 1427-1442, 2008.
    @ARTICLE{Cho,
      author = {Cho, Cheol-Hyun},
      title = {Counting real {$J$}-holomorphic discs and spheres in dimension four and six},
      journal = {J. Korean Math. Soc.},
      fjournal = {Journal of the Korean Mathematical Society},
      volume = {45},
      year = {2008},
      number = {5},
      pages = {1427--1442},
      issn = {0304-9914},
      mrclass = {53D45},
      mrnumber = {2439744},
      mrreviewer = {Jean-Yves Welschinger},
      doi = {10.4134/JKMS.2008.45.5.1427},
      url = {https://doi.org/10.4134/JKMS.2008.45.5.1427},
      zblnumber = {1153.53062},
      }
  • [Remi0] Go to document R. Crétois, "Automorphismes réels d’un fibré et opérateurs de Cauchy-Riemann," Math. Z., vol. 275, iss. 1-2, pp. 453-497, 2013.
    @ARTICLE{Remi0,
      author = {Crétois, Rémi},
      title = {Automorphismes réels d'un fibré et opérateurs de {C}auchy-{R}iemann},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {275},
      year = {2013},
      number = {1-2},
      pages = {453--497},
      issn = {0025-5874},
      mrclass = {32W05 (14H60 53C27 53D45)},
      mrnumber = {3101816},
      mrreviewer = {Ahmed Lesfari},
      doi = {10.1007/s00209-013-1143-z},
      url = {https://doi.org/10.1007/s00209-013-1143-z},
      zblnumber = {1298.14036},
      }
  • [Remi] R. Crétois, Déterminant des opérateurs de Cauchy-Riemann réels et application á l’orientabilité d’espaces de modules de courbes réelles, 2012.
    @MISC{Remi,
      author = {Crétois, Rémi},
      title = {Déterminant des opérateurs de {C}auchy-{R}iemann réels et application á l'orientabilité d'espaces de modules de courbes réelles},
      year = {2012},
      arxiv = {1207.4771},
      zblnumber = {},
      }
  • [Teh] Go to document M. Farajzadeh Tehrani, "Counting genus-zero real curves in symplectic manifolds," Geom. Topol., vol. 20, iss. 2, pp. 629-695, 2016.
    @ARTICLE{Teh,
      author = {Farajzadeh Tehrani, Mohammad},
      title = {Counting genus-zero real curves in symplectic manifolds},
      note = {Part II jointly authored with Aleksey Zinger},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {20},
      year = {2016},
      number = {2},
      pages = {629--695},
      issn = {1465-3060},
      mrclass = {53D45 (14N35)},
      mrnumber = {3493094},
      mrreviewer = {Ritwik Mukherjee},
      doi = {10.2140/gt.2016.20.629},
      url = {https://doi.org/10.2140/gt.2016.20.629},
      zblnumber = {1339.53087},
      }
  • [Teh2] M. Farajzadeh Tehrani, Notes on genus one real Gromov-Witten invariants, 2014.
    @misc{Teh2,
      author = {Farajzadeh Tehrani, Mohammad},
      title = {Notes on genus one real {G}romov-{W}itten invariants},
      year = {2014},
      arxiv = {1406.3786},
      zblnumber = {},
      }
  • [FO] Go to document K. Fukaya and K. Ono, "Arnold conjecture and Gromov-Witten invariant," Topology, vol. 38, iss. 5, pp. 933-1048, 1999.
    @ARTICLE{FO,
      author = {Fukaya, Kenji and Ono, Kaoru},
      title = {Arnold conjecture and {G}romov-{W}itten invariant},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {38},
      year = {1999},
      number = {5},
      pages = {933--1048},
      issn = {0040-9383},
      mrclass = {53D45 (37J10 37J45 53D40 57R17 57R58)},
      mrnumber = {1688434},
      mrreviewer = {David E. Hurtubise},
      doi = {10.1016/S0040-9383(98)00042-1},
      url = {https://doi.org/10.1016/S0040-9383(98)00042-1},
      zblnumber = {0946.53047},
      }
  • [FOOO] Go to document K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I, Amer. Math. Soc., Providence, RI; International Press, Somerville, MA, 2009, vol. 46.
    @BOOK{FOOO,
      author = {Fukaya, Kenji and Oh, Yong-Geun and Ohta, Hiroshi and Ono, Kaoru},
      title = {Lagrangian Intersection {F}loer Theory: Anomaly and Obstruction. {P}art {I}},
      series = {AMS/IP Stud. Adv. Math.},
      volume = {46},
      publisher = {Amer. Math. Soc., Providence, RI; International Press, Somerville, MA},
      year = {2009},
      pages = {xii+396},
      isbn = {978-0-8218-4836-4},
      mrclass = {53D40 (53D12 53D37)},
      mrnumber = {2553465},
      mrreviewer = {Michael J. Usher},
      zblnumber = {1181.53002},
      doi = {10.1090/amsip/046.1},
      }
  • [FOOO9] Go to document K. Fukaya, Y. Oh, H. Ohta, and K. Ono, "Antisymplectic involution and Floer cohomology," Geom. Topol., vol. 21, iss. 1, pp. 1-106, 2017.
    @ARTICLE{FOOO9,
      author = {Fukaya, Kenji and Oh, Yong-Geun and Ohta, Hiroshi and Ono, Kaoru},
      title = {Antisymplectic involution and {F}loer cohomology},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {21},
      year = {2017},
      number = {1},
      pages = {1--106},
      issn = {1465-3060},
      mrclass = {53D40 (14J33 53D45)},
      mrnumber = {3608709},
      mrreviewer = {Michael J. Usher},
      doi = {10.2140/gt.2017.21.1},
      url = {https://doi.org/10.2140/gt.2017.21.1},
      zblnumber = {1359.53069},
      }
  • [growi] A. Gathmann, GROWI.
    @MISC{growi,
      author = {Gathmann, A.},
      title = {{GROWI}},
      note = {available on the author's website},
      zblnumber = {},
      }
  • [Ge2] Go to document P. Georgieva, "Open Gromov-Witten disk invariants in the presence of an anti-symplectic involution," Adv. Math., vol. 301, pp. 116-160, 2016.
    @ARTICLE{Ge2,
      author = {Georgieva, Penka},
      title = {Open {G}romov-{W}itten disk invariants in the presence of an anti-symplectic involution},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {301},
      year = {2016},
      pages = {116--160},
      issn = {0001-8708},
      mrclass = {53D45 (14N35)},
      mrnumber = {3539371},
      mrreviewer = {Ritwik Mukherjee},
      doi = {10.1016/j.aim.2016.06.009},
      url = {https://doi.org/10.1016/j.aim.2016.06.009},
      zblnumber = {1365.53082},
      }
  • [XCapsSetup] Go to document P. Georgieva and A. Zinger, "The moduli space of maps with crosscaps: Fredholm theory and orientability," Comm. Anal. Geom., vol. 23, iss. 3, pp. 499-558, 2015.
    @ARTICLE{XCapsSetup,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {The moduli space of maps with crosscaps: {F}redholm theory and orientability},
      journal = {Comm. Anal. Geom.},
      fjournal = {Communications in Analysis and Geometry},
      volume = {23},
      year = {2015},
      number = {3},
      pages = {499--558},
      issn = {1019-8385},
      mrclass = {53D30 (32V20 53D45 57R91 58B15)},
      mrnumber = {3310524},
      mrreviewer = {Stanis\l aw Tadeusz Janeczko},
      doi = {10.4310/CAG.2015.v23.n3.a3},
      url = {https://doi.org/10.4310/CAG.2015.v23.n3.a3},
      zblnumber = {06428066},
      }
  • [XCapsSigns] Go to document P. Georgieva and A. Zinger, "The moduli space of maps with crosscaps: the relative signs of the natural automorphisms," J. Symplectic Geom., vol. 14, iss. 2, pp. 359-430, 2016.
    @ARTICLE{XCapsSigns,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {The moduli space of maps with crosscaps: the relative signs of the natural automorphisms},
      journal = {J. Symplectic Geom.},
      fjournal = {The Journal of Symplectic Geometry},
      volume = {14},
      year = {2016},
      number = {2},
      pages = {359--430},
      issn = {1527-5256},
      mrclass = {53D30 (32Q60 53D45)},
      mrnumber = {3531975},
      mrreviewer = {Sergiy Koshkin},
      doi = {10.4310/JSG.2016.v14.n2.a2},
      url = {https://doi.org/10.4310/JSG.2016.v14.n2.a2},
      zblnumber = {1365.53083},
      }
  • [RealEnum] Go to document P. Georgieva and A. Zinger, "Enumeration of real curves in $\Bbb{C}\Bbb{P}^{2n-1}$ and a Witten-Dijkgraaf-Verlinde-Verlinde relation for real Gromov-Witten invariants," Duke Math. J., vol. 166, iss. 17, pp. 3291-3347, 2017.
    @ARTICLE{RealEnum,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {Enumeration of real curves in {$\Bbb{C}\Bbb{P}^{2n-1}$} and a {W}itten-{D}ijkgraaf-{V}erlinde-{V}erlinde relation for real {G}romov-{W}itten invariants},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {17},
      pages = {3291--3347},
      issn = {0012-7094},
      mrclass = {53D45 (14N35)},
      mrnumber = {3724219},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.1215/00127094-2017-0023},
      url = {https://doi.org/10.1215/00127094-2017-0023},
      zblnumber = {1384.53070},
      }
  • [RealGWsII] P. Georgieva and A. Zinger, Real Gromov-Witten theory in all genera and real enumerative geometry: properties, 2015.
    @MISC{RealGWsII,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {Real {G}romov-{W}itten theory in all genera and real enumerative geometry: properties},
      year = {2015},
      arxiv = {1507.06633v4},
      zblnumber = {},
      }
  • [RealGWsIII] P. Georgieva and A. Zinger, Real Gromov-Witten theory in all genera and real enumerative geometry: computation, 2015.
    @MISC{RealGWsIII,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {Real {G}romov-{W}itten theory in all genera and real enumerative geometry: computation},
      year = {2015},
      arxiv = {1510.07568},
      zblnumber = {},
      }
  • [RealGWsApp] P. Georgieva and A. Zinger, Real Gromov-Witten theory in all genera and real enumerative geometry: appendix.
    @MISC{RealGWsApp,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {Real {G}romov-{W}itten theory in all genera and real enumerative geometry: appendix},
      note = {available from the authors' websites},
      zblnumber = {},
      sortyear={2019},
      }
  • [RBP] Go to document P. Georgieva and A. Zinger, "On the topology of real bundle pairs over nodal symmetric surfaces," Topology Appl., vol. 214, pp. 109-126, 2016.
    @ARTICLE{RBP,
      author = {Georgieva, Penka and Zinger, Aleksey},
      title = {On the topology of real bundle pairs over nodal symmetric surfaces},
      journal = {Topology Appl.},
      fjournal = {Topology and its Applications},
      volume = {214},
      year = {2016},
      pages = {109--126},
      issn = {0166-8641},
      mrclass = {55R25 (14H60 14N35 14P05)},
      mrnumber = {3571041},
      mrreviewer = {Ferit Öztürk},
      doi = {10.1016/j.topol.2016.10.002},
      url = {https://doi.org/10.1016/j.topol.2016.10.002},
      zblnumber = {1350.14043},
      }
  • [GP] Go to document T. Graber and R. Pandharipande, "Localization of virtual classes," Invent. Math., vol. 135, iss. 2, pp. 487-518, 1999.
    @ARTICLE{GP,
      author = {Graber, T. and Pandharipande, R.},
      title = {Localization of virtual classes},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {135},
      year = {1999},
      number = {2},
      pages = {487--518},
      issn = {0020-9910},
      mrclass = {14C17 (14D20 14N10 14N35)},
      mrnumber = {1666787},
      mrreviewer = {Paolo Aluffi},
      doi = {10.1007/s002220050293},
      url = {https://doi.org/10.1007/s002220050293},
      zblnumber = {0953.14035},
      }
  • [GH] Go to document P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, Inc., New York, 1994.
    @BOOK{GH,
      author = {Griffiths, Phillip and Harris, Joseph},
      title = {Principles of Algebraic Geometry},
      series = {Wiley Classics Library},
      note = {reprint of the 1978 original},
      publisher = {John Wiley \& Sons, Inc., New York},
      year = {1994},
      pages = {xiv+813},
      isbn = {0-471-05059-8},
      mrclass = {14-01},
      mrnumber = {1288523},
      doi = {10.1002/9781118032527},
      url = {https://doi.org/10.1002/9781118032527},
      zblnumber = {0836.14001},
      }
  • [Gr] Go to document M. Gromov, "Pseudo holomorphic curves in symplectic manifolds," Invent. Math., vol. 82, iss. 2, pp. 307-347, 1985.
    @ARTICLE{Gr,
      author = {Gromov, M.},
      title = {Pseudo holomorphic curves in symplectic manifolds},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {82},
      year = {1985},
      number = {2},
      pages = {307--347},
      issn = {0020-9910},
      mrclass = {53C15 (32F25 53C57 57R15)},
      mrnumber = {0809718},
      mrreviewer = {Yakov Eliashberg},
      doi = {10.1007/BF01388806},
      url = {https://doi.org/10.1007/BF01388806},
      zblnumber = {0592.53025},
      }
  • [Huang] Go to document Y. Huang, Two-Dimensional Conformal Geometry and Vertex Operator Algebras, Birkhäuser Boston, Inc., Boston, MA, 1997, vol. 148.
    @BOOK{Huang,
      author = {Huang, Yi-Zhi},
      title = {Two-Dimensional Conformal Geometry and Vertex Operator Algebras},
      series = {Progr. Math.},
      volume = {148},
      publisher = {Birkhäuser Boston, Inc., Boston, MA},
      year = {1997},
      pages = {xiv+280},
      isbn = {0-8176-3829-6},
      mrclass = {17B69 (18D10 81-02 81R10 81T40)},
      mrnumber = {1448404},
      mrreviewer = {Mirko Primc},
      zblnumber = {0884.17021},
      doi = {10.1007/978-1-4612-4276-5},
      }
  • [KM] Go to document F. F. Knudsen and D. Mumford, "The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”," Math. Scand., vol. 39, iss. 1, pp. 19-55, 1976.
    @ARTICLE{KM,
      author = {Knudsen, Finn Faye and Mumford, David},
      title = {The projectivity of the moduli space of stable curves. {I}. {P}reliminaries on ``det'' and ``{D}iv''},
      journal = {Math. Scand.},
      fjournal = {Mathematica Scandinavica},
      volume = {39},
      year = {1976},
      number = {1},
      pages = {19--55},
      issn = {0025-5521},
      mrclass = {14H10 (14F05 14C05)},
      mrnumber = {0437541},
      mrreviewer = {P. E. Newstead},
      doi = {10.7146/math.scand.a-11642},
      url = {https://doi.org/10.7146/math.scand.a-11642},
      zblnumber = {0343.14008},
      }
  • [Kollar] J. Kollár, "Examples of vanishing Gromov-Witten-Welschinger invariants," J. Math. Sci. Univ. Tokyo, vol. 22, iss. 1, pp. 261-278, 2015.
    @ARTICLE{Kollar,
      author = {Kollár, János},
      title = {Examples of vanishing {G}romov-{W}itten-{W}elschinger invariants},
      journal = {J. Math. Sci. Univ. Tokyo},
      fjournal = {The University of Tokyo. Journal of Mathematical Sciences},
      volume = {22},
      year = {2015},
      number = {1},
      pages = {261--278},
      issn = {1340-5705},
      mrclass = {14N35 (53D45)},
      mrnumber = {3329197},
      mrreviewer = {Hsian-Hua Tseng},
      zblnumber = {1366.14049},
      }
  • [LT] J. Li and G. Tian, "Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds," in Topics in Symplectic $4$-Manifolds, Int. Press, Cambridge, MA, 1998, pp. 47-83.
    @INCOLLECTION{LT,
      author = {Li, Jun and Tian, Gang},
      title = {Virtual moduli cycles and {G}romov-{W}itten invariants of general symplectic manifolds},
      booktitle = {Topics in Symplectic {$4$}-Manifolds},
      venue = {{I}rvine, {CA},
      1996},
      series = {First Int. Press Lect. Ser., I},
      pages = {47--83},
      publisher = {Int. Press, Cambridge, MA},
      year = {1998},
      mrclass = {53D45 (53D35 57R17 57R57)},
      mrnumber = {1635695},
      zblnumber = {0978.53136},
      }
  • [Melissa] Go to document C. M. Liu, Moduli of J-Holomorphic Curves with Lagrangian Boundary Conditions, ProQuest LLC, Ann Arbor, MI, 2002.
    @BOOK{Melissa,
      author = {Liu, Chiu-Chu Melissa},
      title = {Moduli of {J}-Holomorphic Curves with {L}agrangian Boundary Conditions},
      note = {thesis (Ph.D.)--Harvard University},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {2002},
      pages = {151},
      isbn = {978-0493-65757-8},
      mrclass = {Thesis},
      mrnumber = {2703393},
      url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3051225},
      zblnumber = {},
      }
  • [McSa94] Go to document D. McDuff and D. Salamon, $J$-Holomorphic Curves and Quantum Cohomology, Amer. Math. Soc., Providence, RI, 1994, vol. 6.
    @BOOK{McSa94,
      author = {McDuff, Dusa and Salamon, Dietmar},
      title = {{$J$}-Holomorphic Curves and Quantum Cohomology},
      series = {Univ. Lecture Ser.},
      volume = {6},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1994},
      pages = {viii+207},
      isbn = {0-8218-0332-8},
      mrclass = {58D10 (14J32 32J17 53C42 57R57 58E12)},
      mrnumber = {1286255},
      mrreviewer = {Bruce Hunt},
      doi = {10.1090/ulect/006},
      url = {https://doi.org/10.1090/ulect/006},
      zblnumber = {0809.53002},
      }
  • [MS] D. McDuff and D. Salamon, $J$-Holomorphic Curves and Symplectic Topology, Second ed., Amer. Math. Soc., Providence, RI, 2012, vol. 52.
    @BOOK{MS,
      author = {McDuff, Dusa and Salamon, Dietmar},
      title = {{$J$}-Holomorphic Curves and Symplectic Topology},
      series = {Amer. Math. Soc. Colloq. Publ.},
      volume = {52},
      edition = {Second},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2012},
      pages = {xiv+726},
      isbn = {978-0-8218-8746-2},
      mrclass = {53D45 (32Q65 53D35)},
      mrnumber = {2954391},
      mrreviewer = {Mark Alan Branson},
      zblnumber = {1272.53002},
      }
  • [Nat] Go to document S. M. Natanzon, "Moduli of real algebraic curves and their superanalogues. Spinors and Jacobians of real curves," Uspekhi Mat. Nauk, vol. 54, iss. 6(330), pp. 3-60, 1999.
    @ARTICLE{Nat,
      author = {Natanzon, S. M.},
      title = {Moduli of real algebraic curves and their superanalogues. {S}pinors and {J}acobians of real curves},
      journal = {Uspekhi Mat. Nauk},
      fjournal = {Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {54},
      year = {1999},
      number = {6(330)},
      pages = {3--60},
      issn = {0042-1316},
      mrclass = {14H15 (14H40 14M30 14P25)},
      mrnumber = {1744657},
      mrreviewer = {Victor Zvonilov},
      doi = {10.1070/rm1999v054n06ABEH000229},
      url = {https://doi.org/10.1070/rm1999v054n06ABEH000229},
      zblnumber = {1002.14012},
      }
  • [NZ] J. Niu and A. Zinger, Lower bounds for the enumerative geometry of positive-genus real curves, 2015.
    @MISC{NZ,
      author = {Niu, J. and Zinger, A.},
      title = {Lower bounds for the enumerative geometry of positive-genus real curves},
      year = {2015},
      arxiv = {1511.02206},
      zblnumber = {},
      }
  • [NZapp] J. Niu and A. Zinger, Lower bounds for the enumerative geometry of positive-genus real curves, appendix.
    @MISC{NZapp,
      author = {Niu, J. and Zinger, A.},
      title = {Lower bounds for the enumerative geometry of positive-genus real curves, appendix},
      note = {available from the authors' websites},
      sortyear={2019},
      zblnumber = {},
      }
  • [PSW] Go to document R. Pandharipande, J. Solomon, and J. Walcher, "Disk enumeration on the quintic 3-fold," J. Amer. Math. Soc., vol. 21, iss. 4, pp. 1169-1209, 2008.
    @ARTICLE{PSW,
      author = {Pandharipande, R. and Solomon, J. and Walcher, J.},
      title = {Disk enumeration on the quintic 3-fold},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {21},
      year = {2008},
      number = {4},
      pages = {1169--1209},
      issn = {0894-0347},
      mrclass = {14N35 (14J32 14N10 53D45)},
      mrnumber = {2425184},
      mrreviewer = {Hans U. Boden},
      doi = {10.1090/S0894-0347-08-00597-3},
      url = {https://doi.org/10.1090/S0894-0347-08-00597-3},
      zblnumber = {1203.53086},
      }
  • [RT] Go to document Y. Ruan and G. Tian, "A mathematical theory of quantum cohomology," J. Differential Geom., vol. 42, iss. 2, pp. 259-367, 1995.
    @ARTICLE{RT,
      author = {Ruan, Yongbin and Tian, Gang},
      title = {A mathematical theory of quantum cohomology},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {42},
      year = {1995},
      number = {2},
      pages = {259--367},
      issn = {0022-040X},
      mrclass = {58D29 (14C05 14N10 58D10)},
      mrnumber = {1366548},
      mrreviewer = {Bernd Siebert},
      zblnumber = {0860.58005},
      doi = {10.4310/jdg/1214457234},
      }
  • [RT2] Go to document Y. Ruan and G. Tian, "Higher genus symplectic invariants and sigma models coupled with gravity," Invent. Math., vol. 130, iss. 3, pp. 455-516, 1997.
    @ARTICLE{RT2,
      author = {Ruan, Yongbin and Tian, Gang},
      title = {Higher genus symplectic invariants and sigma models coupled with gravity},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {130},
      year = {1997},
      number = {3},
      pages = {455--516},
      issn = {0020-9910},
      mrclass = {58D10 (14N10 57R57 58D29)},
      mrnumber = {1483992},
      mrreviewer = {Bernd Siebert},
      doi = {10.1007/s002220050192},
      url = {https://doi.org/10.1007/s002220050192},
      zblnumber = {0904.58066},
      }
  • [Sol] J. P. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, 2006.
    @MISC{Sol,
      author = {Solomon, J. P.},
      title = {Intersection theory on the moduli space of holomorphic curves with {L}agrangian boundary conditions},
      year = {2006},
      arxiv = {math/0606429},
      zblnumber = {},
      }
  • [Wal] Go to document J. Walcher, "Evidence for tadpole cancellation in the topological string," Commun. Number Theory Phys., vol. 3, iss. 1, pp. 111-172, 2009.
    @ARTICLE{Wal,
      author = {Walcher, Johannes},
      title = {Evidence for tadpole cancellation in the topological string},
      journal = {Commun. Number Theory Phys.},
      fjournal = {Communications in Number Theory and Physics},
      volume = {3},
      year = {2009},
      number = {1},
      pages = {111--172},
      issn = {1931-4523},
      mrclass = {14J33 (14J32 14N35 81T45 81T50)},
      mrnumber = {2504755},
      mrreviewer = {Jake Philip Solomon},
      doi = {10.4310/CNTP.2009.v3.n1.a3},
      url = {https://doi.org/10.4310/CNTP.2009.v3.n1.a3},
      zblnumber = {1168.81023},
      }
  • [Wel4] Go to document J. Welschinger, "Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry," Invent. Math., vol. 162, iss. 1, pp. 195-234, 2005.
    @ARTICLE{Wel4,
      author = {Welschinger, Jean-Yves},
      title = {Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {162},
      year = {2005},
      number = {1},
      pages = {195--234},
      issn = {0020-9910},
      mrclass = {53D45 (14N10 14N35 14P25)},
      mrnumber = {2198329},
      mrreviewer = {Eugenii Shustin},
      doi = {10.1007/s00222-005-0445-0},
      url = {https://doi.org/10.1007/s00222-005-0445-0},
      zblnumber = {1082.14052},
      }
  • [Wel6] Go to document J. Welschinger, "Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants," Duke Math. J., vol. 127, iss. 1, pp. 89-121, 2005.
    @ARTICLE{Wel6,
      author = {Welschinger, Jean-Yves},
      title = {Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {127},
      year = {2005},
      number = {1},
      pages = {89--121},
      issn = {0012-7094},
      mrclass = {14N35 (14P25 53D45)},
      mrnumber = {2126497},
      mrreviewer = {Eugenii Shustin},
      doi = {10.1215/S0012-7094-04-12713-7},
      url = {https://doi.org/10.1215/S0012-7094-04-12713-7},
      zblnumber = {1084.14056},
      }
  • [gluing] Go to document A. Zinger, "Enumerative vs. symplectic invariants and obstruction bundles," J. Symplectic Geom., vol. 2, iss. 4, pp. 445-543, 2004.
    @ARTICLE{gluing,
      author = {Zinger, Aleksey},
      title = {Enumerative vs. symplectic invariants and obstruction bundles},
      journal = {J. Symplectic Geom.},
      fjournal = {The Journal of Symplectic Geometry},
      volume = {2},
      year = {2004},
      number = {4},
      pages = {445--543},
      issn = {1527-5256},
      mrclass = {53D45},
      mrnumber = {2197218},
      mrreviewer = {Klaus Mohnke},
      zblnumber = {1095.14051},
      doi = {10.4310/JSG.2004.v2.n4.a1},
      }
  • [g1cone] Go to document A. Zinger, "On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps," Adv. Math., vol. 214, iss. 2, pp. 878-933, 2007.
    @ARTICLE{g1cone,
      author = {Zinger, Aleksey},
      title = {On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {214},
      year = {2007},
      number = {2},
      pages = {878--933},
      issn = {0001-8708},
      mrclass = {14N35},
      mrnumber = {2349722},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.1016/j.aim.2007.03.009},
      url = {https://doi.org/10.1016/j.aim.2007.03.009},
      zblnumber = {1126.14063},
      }
  • [pseudo] Go to document A. Zinger, "Pseudocycles and integral homology," Trans. Amer. Math. Soc., vol. 360, iss. 5, pp. 2741-2765, 2008.
    @ARTICLE{pseudo,
      author = {Zinger, Aleksey},
      title = {Pseudocycles and integral homology},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {360},
      year = {2008},
      number = {5},
      pages = {2741--2765},
      issn = {0002-9947},
      mrclass = {57R95 (53D45 55N99)},
      mrnumber = {2373332},
      mrreviewer = {Yunfeng Jiang},
      doi = {10.1090/S0002-9947-07-04440-6},
      url = {https://doi.org/10.1090/S0002-9947-07-04440-6},
      zblnumber = {1213.57031},
      }
  • [g1diff] Go to document A. Zinger, "Standard versus reduced genus-one Gromov-Witten invariants," Geom. Topol., vol. 12, iss. 2, pp. 1203-1241, 2008.
    @ARTICLE{g1diff,
      author = {Zinger, Aleksey},
      title = {Standard versus reduced genus-one {G}romov-{W}itten invariants},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {12},
      year = {2008},
      number = {2},
      pages = {1203--1241},
      issn = {1465-3060},
      mrclass = {14N35 (14D20 53D45)},
      mrnumber = {2403808},
      mrreviewer = {Michael A. Rose},
      doi = {10.2140/gt.2008.12.1203},
      url = {https://doi.org/10.2140/gt.2008.12.1203},
      zblnumber = {1167.14009},
      }
  • [g1comp] Go to document A. Zinger, "A sharp compactness theorem for genus-one pseudo-holomorphic maps," Geom. Topol., vol. 13, iss. 5, pp. 2427-2522, 2009.
    @ARTICLE{g1comp,
      author = {Zinger, Aleksey},
      title = {A sharp compactness theorem for genus-one pseudo-holomorphic maps},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {13},
      year = {2009},
      number = {5},
      pages = {2427--2522},
      issn = {1465-3060},
      mrclass = {53D45 (32Q65)},
      mrnumber = {2529940},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.2140/gt.2009.13.2427},
      url = {https://doi.org/10.2140/gt.2009.13.2427},
      zblnumber = {1174.14012},
      }
  • [g1comp2] Go to document A. Zinger, "Reduced genus-one Gromov-Witten invariants," J. Differential Geom., vol. 83, iss. 2, pp. 407-460, 2009.
    @ARTICLE{g1comp2,
      author = {Zinger, Aleksey},
      title = {Reduced genus-one {G}romov-{W}itten invariants},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {83},
      year = {2009},
      number = {2},
      pages = {407--460},
      issn = {0022-040X},
      mrclass = {53D45 (14D20 14N35)},
      mrnumber = {2577474},
      mrreviewer = {Dragos Nicolae Oprea},
      zblnumber = {1186.53100},
      doi = {10.4310/jdg/1261495337},
      }
  • [anal] A. Zinger, Basic Riemannian geometry and Sobolev estimates used in symplectic topology, 2010.
    @MISC{anal,
      author = {Zinger, Aleksey},
      title = {Basic {R}iemannian geometry and {S}obolev estimates used in symplectic topology},
      year = {2010},
      arxiv = {1012.3980},
      zblnumber = {},
      }
  • [FanoGV] Go to document A. Zinger, "A comparison theorem for Gromov-Witten invariants in the symplectic category," Adv. Math., vol. 228, iss. 1, pp. 535-574, 2011.
    @ARTICLE{FanoGV,
      author = {Zinger, Aleksey},
      title = {A comparison theorem for {G}romov-{W}itten invariants in the symplectic category},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {228},
      year = {2011},
      number = {1},
      pages = {535--574},
      issn = {0001-8708},
      mrclass = {53D45},
      mrnumber = {2822239},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.1016/j.aim.2011.05.021},
      url = {https://doi.org/10.1016/j.aim.2011.05.021},
      zblnumber = {1225.14046},
      }
  • [detLB] Go to document A. Zinger, "The determinant line bundle for Fredholm operators: construction, properties, and classification," Math. Scand., vol. 118, iss. 2, pp. 203-268, 2016.
    @ARTICLE{detLB,
      author = {Zinger, Aleksey},
      title = {The determinant line bundle for {F}redholm operators: construction, properties, and classification},
      journal = {Math. Scand.},
      fjournal = {Mathematica Scandinavica},
      volume = {118},
      year = {2016},
      number = {2},
      pages = {203--268},
      issn = {0025-5521},
      mrclass = {58J52 (14D20)},
      mrnumber = {3515189},
      doi = {10.7146/math.scand.a-23687},
      url = {https://doi.org/10.7146/math.scand.a-23687},
      zblnumber = {1354.58032},
      }
  • [RealRT] A. Zinger, Real Ruan-Tian perturbations, 2017.
    @MISC{RealRT,
      author = {Zinger, Aleksey},
      title = {Real {R}uan-{T}ian perturbations},
      year = {2017},
      arxiv = {1701.01420},
      zblnumber = {},
      }

Authors

Penka Georgieva

Sorbonne Université, Université Paris Diderot, CNRS, Institut de Math#233;matiques de Jussieu-Paris Rive Gauche, IMJ-PRG, F-75005, Paris, France

Aleksey Zinger

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794