Abstract
We prove the hard Lefschetz theorem and the Hodge-Riemann relations for a commutative ring associated to an arbitrary matroid M. We use the Hodge-Riemann relations to resolve a conjecture of Heron, Rota, and Welsh that postulates the log-concavity of the coefficients of the characteristic polynomial of $\mathrm {M}$. We furthermore conclude that the $f$-vector of the independence complex of a matroid forms a log-concave sequence, proving a conjecture of Mason and Welsh for general matroids.
-
[ABj-pr] K. A. Adiprasito and A. Björner, Filtered geometric lattices and Lefschetz section theorems over the tropical semiring, 2014.
@MISC{ABj-pr,
author = {Adiprasito, Karim A. and Björner, Anders},
title = {Filtered geometric lattices and {L}efschetz section theorems over the tropical semiring},
year = {2014},
arxiv = {1401.7301},
zblnumber = {},
} -
[Adiprasito] K. A. Adiprasito and R. Sanyal, Log-concavity of Whitney numbers via measure concentration, 2016.
@MISC{Adiprasito,
author = {Adiprasito, A. Karim and Sanyal, Raman},
title = {Log-concavity of {W}hitney numbers via measure concentration},
arxiv = {1606.09412},
year = {2016},
zblnumber = {},
} -
[AignerEncyclopedia]
M. Aigner, "Whitney numbers," in Combinatorial Geometries, Cambridge Univ. Press, Cambridge, 1987, vol. 29, pp. 139-160.
@INCOLLECTION{AignerEncyclopedia,
author = {Aigner, Martin},
title = {Whitney numbers},
booktitle = {Combinatorial Geometries},
series = {Encyclopedia Math. Appl.},
volume = {29},
pages = {139--160},
publisher = {Cambridge Univ. Press, Cambridge},
year = {1987},
mrclass = {05B35},
mrnumber = {0921072},
zblnumber = {0631.05015},
doi = {10.1017/CBO9781107325715.010},
} -
@BOOK{Aigner,
author = {Aigner, Martin},
title = {A Course in Enumeration},
series = {Grad. Texts in Math.},
volume = {238},
publisher = {Springer, Berlin},
year = {2007},
pages = {x+561},
isbn = {978-3-540-39032-9},
mrclass = {05-01 (05A05 05A15 05E05)},
mrnumber = {2339282},
mrreviewer = {Miklós Bóna},
zblnumber = {1123.05001},
doi = {10.1007/978-3-540-39035-0},
} -
[Ardila-Klivans]
F. Ardila and C. J. Klivans, "The Bergman complex of a matroid and phylogenetic trees," J. Combin. Theory Ser. B, vol. 96, iss. 1, pp. 38-49, 2006.
@ARTICLE{Ardila-Klivans,
author = {Ardila, Federico and Klivans, Caroline J.},
title = {The {B}ergman complex of a matroid and phylogenetic trees},
journal = {J. Combin. Theory Ser. B},
fjournal = {Journal of Combinatorial Theory. Series B},
volume = {96},
year = {2006},
number = {1},
pages = {38--49},
issn = {0095-8956},
mrclass = {05B35},
mrnumber = {2185977},
mrreviewer = {Neil L. White},
doi = {10.1016/j.jctb.2005.06.004},
url = {https://doi.org/10.1016/j.jctb.2005.06.004},
zblnumber = {1082.05021},
} -
[BH]
F. Babaee and J. Huh, "A tropical approach to a generalized Hodge conjecture for positive currents," Duke Math. J., vol. 166, iss. 14, pp. 2749-2813, 2017.
@ARTICLE{BH,
author = {Babaee, Farhad and Huh, June},
title = {A tropical approach to a generalized {H}odge conjecture for positive currents},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {166},
year = {2017},
number = {14},
pages = {2749--2813},
issn = {0012-7094},
mrclass = {14C30 (14M25 14T05 32J27 32U40 42B05)},
mrnumber = {3707289},
doi = {10.1215/00127094-2017-0017},
url = {https://doi.org/10.1215/00127094-2017-0017},
zblnumber = {06803182},
} -
[Batyrev-Blume]
V. Batyrev and M. Blume, "The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces," Tohoku Math. J. (2), vol. 63, iss. 4, pp. 581-604, 2011.
@ARTICLE{Batyrev-Blume,
author = {Batyrev, Victor and Blume, Mark},
title = {The functor of toric varieties associated with {W}eyl chambers and {L}osev-{M}anin moduli spaces},
journal = {Tohoku Math. J. (2)},
fjournal = {The Tohoku Mathematical Journal. Second Series},
volume = {63},
year = {2011},
number = {4},
pages = {581--604},
issn = {0040-8735},
mrclass = {14M25 (14D20 17B22)},
mrnumber = {2872957},
mrreviewer = {Martijn Kool},
doi = {10.2748/tmj/1325886282},
url = {https://doi.org/10.2748/tmj/1325886282},
zblnumber = {1255.14041},
} -
[Bifet-DeConcini-Procesi]
E. Bifet, C. De Concini, and C. Procesi, "Cohomology of regular embeddings," Adv. Math., vol. 82, iss. 1, pp. 1-34, 1990.
@ARTICLE{Bifet-DeConcini-Procesi,
author = {Bifet, Emili and De Concini, Corrado and Procesi, Claudio},
title = {Cohomology of regular embeddings},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {82},
year = {1990},
number = {1},
pages = {1--34},
issn = {0001-8708},
mrclass = {14L30 (14M17 55N91)},
mrnumber = {1057441},
mrreviewer = {Michel Brion},
doi = {10.1016/0001-8708(90)90082-X},
url = {https://doi.org/10.1016/0001-8708(90)90082-X},
zblnumber = {0743.14018},
} -
[Billera]
L. J. Billera, "The algebra of continuous piecewise polynomials," Adv. Math., vol. 76, iss. 2, pp. 170-183, 1989.
@ARTICLE{Billera,
author = {Billera, Louis J.},
title = {The algebra of continuous piecewise polynomials},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {76},
year = {1989},
number = {2},
pages = {170--183},
issn = {0001-8708},
mrclass = {13C13 (65D07)},
mrnumber = {1013666},
mrreviewer = {Ralf Fröberg},
doi = {10.1016/0001-8708(89)90047-9},
url = {https://doi.org/10.1016/0001-8708(89)90047-9},
zblnumber = {0703.13015},
} -
[Birkhoff]
G. D. Birkhoff, "A determinant formula for the number of ways of coloring a map," Ann. of Math. (2), vol. 14, iss. 1-4, pp. 42-46, 1912/13.
@ARTICLE{Birkhoff,
author = {Birkhoff, George D.},
title = {A determinant formula for the number of ways of coloring a map},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {14},
year = {1912/13},
number = {1-4},
pages = {42--46},
issn = {0003-486X},
mrclass = {DML},
mrnumber = {1502436},
doi = {10.2307/1967597},
url = {https://doi.org/10.2307/1967597},
zblnumber = {43.0574.02},
} -
[Bjorner]
A. Björner, "The homology and shellability of matroids and geometric lattices," in Matroid Applications, Cambridge Univ. Press, Cambridge, 1992, vol. 40, pp. 226-283.
@INCOLLECTION{Bjorner,
author = {Bj{ö}rner, Anders},
title = {The homology and shellability of matroids and geometric lattices},
booktitle = {Matroid Applications},
series = {Encyclopedia Math. Appl.},
volume = {40},
pages = {226--283},
publisher = {Cambridge Univ. Press, Cambridge},
year = {1992},
mrclass = {52B40 (05B35 55N99)},
mrnumber = {1165544},
mrreviewer = {Michel Yves Jambu},
doi = {10.1017/CBO9780511662041.008},
url = {https://doi.org/10.1017/CBO9780511662041.008},
zblnumber = {0772.05027},
} -
[Brion] M. Brion, "Piecewise polynomial functions, convex polytopes and enumerative geometry," in Parameter Spaces, Polish Acad. Sci. Inst. Math., Warsaw, 1996, vol. 36, pp. 25-44.
@INCOLLECTION{Brion,
author = {Brion, Michel},
title = {Piecewise polynomial functions, convex polytopes and enumerative geometry},
booktitle = {Parameter Spaces},
venue = {{W}arsaw, 1994},
series = {Banach Center Publ.},
volume = {36},
pages = {25--44},
publisher = {Polish Acad. Sci. Inst. Math., Warsaw},
year = {1996},
mrclass = {14M25 (14N10 52A39 52B20)},
mrnumber = {1481477},
zblnumber = {0878.14035},
} -
[Brylawski]
T. Brylawski, "The broken-circuit complex," Trans. Amer. Math. Soc., vol. 234, iss. 2, pp. 417-433, 1977.
@ARTICLE{Brylawski,
author = {Brylawski, Tom},
title = {The broken-circuit complex},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {234},
year = {1977},
number = {2},
pages = {417--433},
issn = {0002-9947},
mrclass = {05B35 (05B25 05C15)},
mrnumber = {0468931},
doi = {10.2307/1997928},
url = {https://doi.org/10.2307/1997928},
zblnumber = {0368.05022},
} -
[Cattani]
E. Cattani, "Mixed Lefschetz theorems and Hodge-Riemann bilinear relations," Int. Math. Res. Not. IMRN, iss. 10, p. I, 2008.
@ARTICLE{Cattani,
author = {Cattani, Eduardo},
title = {Mixed {L}efschetz theorems and {H}odge-{R}iemann bilinear relations},
journal = {Int. Math. Res. Not. IMRN},
fjournal = {International Mathematics Research Notices. IMRN},
year = {2008},
number = {10},
pages = {Art. ID rnn025, 20},
issn = {1073-7928},
mrclass = {32G20 (32J25 32J27)},
mrnumber = {2429243},
mrreviewer = {Matt Kerr},
doi = {10.1093/imrn/rnn025},
url = {https://doi.org/10.1093/imrn/rnn025},
zblnumber = {1149.32014},
} -
[CM]
M. A. A. de Cataldo and L. Migliorini, "The hard Lefschetz theorem and the topology of semismall maps," Ann. Sci. École Norm. Sup. (4), vol. 35, iss. 5, pp. 759-772, 2002.
@ARTICLE{CM,
author = {de Cataldo, Mark Andrea A. and Migliorini, Luca},
title = {The hard {L}efschetz theorem and the topology of semismall maps},
journal = {Ann. Sci. École Norm. Sup. (4)},
fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
volume = {35},
year = {2002},
number = {5},
pages = {759--772},
issn = {0012-9593},
mrclass = {32S60},
mrnumber = {1951443},
mrreviewer = {Jean-Paul Brasselet},
doi = {10.1016/S0012-9593(02)01108-4},
url = {https://doi.org/10.1016/S0012-9593(02)01108-4},
zblnumber = {1021.14004},
} -
[Danilov]
V. I. Danilov, "The geometry of toric varieties," Uspekhi Mat. Nauk, vol. 33, iss. 2(200), pp. 85-134, 247, 1978.
@ARTICLE{Danilov,
author = {Danilov, V. I.},
title = {The geometry of toric varieties},
journal = {Uspekhi Mat. Nauk},
fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
volume = {33},
year = {1978},
number = {2(200)},
pages = {85--134, 247},
issn = {0042-1316},
mrclass = {14A20 (14L30)},
mrnumber = {0495499},
mrreviewer = {I. Dolgachev},
zblnumber = {0425.14013},
doi = {10.1070/RM1978v033n02ABEH002305},
} -
[DeConcini-Procesi]
C. De Concini and C. Procesi, "Wonderful models of subspace arrangements," Selecta Math. (N.S.), vol. 1, iss. 3, pp. 459-494, 1995.
@ARTICLE{DeConcini-Procesi,
author = {De Concini, C. and Procesi, C.},
title = {Wonderful models of subspace arrangements},
journal = {Selecta Math. (N.S.)},
fjournal = {Selecta Mathematica. New Series},
volume = {1},
year = {1995},
number = {3},
pages = {459--494},
issn = {1022-1824},
mrclass = {14D99 (32G13 52B30)},
mrnumber = {1366622},
mrreviewer = {V. Leksin},
doi = {10.1007/BF01589496},
url = {https://doi.org/10.1007/BF01589496},
zblnumber = {0842.14038},
} -
[Ewald]
G. Ewald, Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, New York, 1996, vol. 168.
@BOOK{Ewald,
author = {Ewald, Günter},
title = {Combinatorial Convexity and Algebraic Geometry},
series = {Grad. Texts in Math.},
volume = {168},
publisher = {Springer-Verlag, New York},
year = {1996},
pages = {xiv+372},
isbn = {0-387-94755-8},
mrclass = {52B20 (14M25 52B05)},
mrnumber = {1418400},
mrreviewer = {P. McMullen},
doi = {10.1007/978-1-4612-4044-0},
url = {https://doi.org/10.1007/978-1-4612-4044-0},
zblnumber = {0869.52001},
} -
[Feichtner-Yuzvinsky]
E. M. Feichtner and S. Yuzvinsky, "Chow rings of toric varieties defined by atomic lattices," Invent. Math., vol. 155, iss. 3, pp. 515-536, 2004.
@ARTICLE{Feichtner-Yuzvinsky,
author = {Feichtner, Eva Maria and Yuzvinsky, Sergey},
title = {Chow rings of toric varieties defined by atomic lattices},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {155},
year = {2004},
number = {3},
pages = {515--536},
issn = {0020-9910},
mrclass = {14C15 (14M25)},
mrnumber = {2038195},
mrreviewer = {G. K. Sankaran},
doi = {10.1007/s00222-003-0327-2},
url = {https://doi.org/10.1007/s00222-003-0327-2},
zblnumber = {1083.14059},
} -
[Fulton]
W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NJ, 1993, vol. 131.
@BOOK{Fulton,
author = {Fulton, William},
title = {Introduction to Toric Varieties},
series = {Ann. of Math. Stud.},
volume = {131},
titlenote = {The William H. Roever Lectures in Geometry},
publisher = {Princeton University Press, Princeton, NJ},
year = {1993},
pages = {xii+157},
isbn = {0-691-00049-2},
mrclass = {14M25 (14-02 14J30)},
mrnumber = {1234037},
mrreviewer = {T. Oda},
doi = {10.1515/9781400882526},
url = {https://doi.org/10.1515/9781400882526},
zblnumber = {0813.14039},
} -
[FMSS] W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels, "Intersection theory on spherical varieties," J. Algebraic Geom., vol. 4, iss. 1, pp. 181-193, 1995.
@ARTICLE{FMSS,
author = {Fulton, W. and MacPherson, R. and Sottile, F. and Sturmfels, B.},
title = {Intersection theory on spherical varieties},
journal = {J. Algebraic Geom.},
fjournal = {Journal of Algebraic Geometry},
volume = {4},
year = {1995},
number = {1},
pages = {181--193},
issn = {1056-3911},
mrclass = {14C15 (14C25 14L30)},
mrnumber = {1299008},
mrreviewer = {Michel Brion},
zblnumber = {0819.14019},
} -
[Fulton-Sturmfels]
W. Fulton and B. Sturmfels, "Intersection theory on toric varieties," Topology, vol. 36, iss. 2, pp. 335-353, 1997.
@ARTICLE{Fulton-Sturmfels,
author = {Fulton, William and Sturmfels, Bernd},
title = {Intersection theory on toric varieties},
journal = {Topology},
fjournal = {Topology. An International Journal of Mathematics},
volume = {36},
year = {1997},
number = {2},
pages = {335--353},
issn = {0040-9383},
mrclass = {14M25 (14C17 52B20)},
mrnumber = {1415592},
mrreviewer = {Michel Brion},
doi = {10.1016/0040-9383(96)00016-X},
url = {https://doi.org/10.1016/0040-9383(96)00016-X},
zblnumber = {0885.14025},
} -
[GM]
I. M. Gelcprimefand and R. D. MacPherson, "A combinatorial formula for the Pontrjagin classes," Bull. Amer. Math. Soc. (N.S.), vol. 26, iss. 2, pp. 304-309, 1992.
@ARTICLE{GM,
author = {Gel{\cprime}fand, I. M. and MacPherson, R. D.},
title = {A combinatorial formula for the {P}ontrjagin classes},
journal = {Bull. Amer. Math. Soc. (N.S.)},
fjournal = {American Mathematical Society. Bulletin. New Series},
volume = {26},
year = {1992},
number = {2},
pages = {304--309},
issn = {0273-0979},
mrclass = {57R20 (05B35)},
mrnumber = {1129313},
mrreviewer = {Norman Levitt},
doi = {10.1090/S0273-0979-1992-00282-3},
url = {https://doi.org/10.1090/S0273-0979-1992-00282-3},
zblnumber = {0756.57015},
} -
[SMT]
M. Goresky and R. MacPherson, Stratified Morse Theory, Springer-Verlag, Berlin, 1988, vol. 14.
@BOOK{SMT,
author = {Goresky, Mark and MacPherson, Robert},
title = {Stratified {M}orse {T}heory},
series = {Ergeb. Math. Grenzgeb.},
volume = {14},
publisher = {Springer-Verlag, Berlin},
year = {1988},
pages = {xiv+272},
isbn = {3-540-17300-5},
mrclass = {57R70 (14F45 32C10 32C42 57N80 58A35 58C27)},
mrnumber = {0932724},
mrreviewer = {K. Lamotke},
doi = {10.1007/978-3-642-71714-7},
url = {https://doi.org/10.1007/978-3-642-71714-7},
zblnumber = {0639.14012},
} -
[Gibney-Maclagan]
A. Gibney and D. Maclagan, "Lower and upper bounds on nef cones," Inter. Math. Res. Not. IMRN, iss. 14, pp. 3224-3255, 2012.
@ARTICLE{Gibney-Maclagan,
author = {Gibney, Angela and Maclagan, Diane},
title = {Lower and upper bounds on nef cones},
journal = {Inter. Math. Res. Not. IMRN},
year = {2012},
number = {14},
pages = {3224--3255},
zblnumber = {1284.14020},
mrnumber = {2946224},
doi = {10.1093/imrn/rnr121},
} -
[Heron] A. P. Heron, "Matroid polynomials," in Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), Inst. Math. Appl., Southend-on-Sea, 1972, pp. 164-202.
@incollection{Heron,
author = {Heron, A. P.},
title = {Matroid polynomials},
booktitle = {Combinatorics ({P}roc. {C}onf. {C}ombinatorial {M}ath., {M}ath. {I}nst., {O}xford, 1972)},
pages = {164--202},
publisher = {Inst. Math. Appl., Southend-on-Sea},
year = {1972},
mrclass = {05B35},
mrnumber = {0340058},
mrreviewer = {Ann Miller},
zblnumber = {0469.05001},
note = {D. J. A. Welsh and D. R. Woodall, editors},
} -
[Hoggar]
S. G. Hoggar, "Chromatic polynomials and logarithmic concavity," J. Combinatorial Theory Ser. B, vol. 16, iss. 3, pp. 248-254, 1974.
@ARTICLE{Hoggar,
author = {Hoggar, S. G.},
title = {Chromatic polynomials and logarithmic concavity},
journal = {J. Combinatorial Theory Ser. B},
fjournal = {Journal of Combinatorial Theory. Series B},
volume = {16},
number = {3},
year = {1974},
pages = {248--254},
mrclass = {05C15},
mrnumber = {0342424},
mrreviewer = {Ruth Bari},
zblnumber = {0268.05104},
doi = {10.1016/0095-8956(74)90071-9},
} -
[Huh]
J. Huh, "Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs," J. Amer. Math. Soc., vol. 25, iss. 3, pp. 907-927, 2012.
@ARTICLE{Huh,
author = {Huh, June},
title = {Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the American Mathematical Society},
volume = {25},
year = {2012},
number = {3},
pages = {907--927},
issn = {0894-0347},
mrclass = {14B05 (05B35 14C17)},
mrnumber = {2904577},
mrreviewer = {Paolo Aluffi},
doi = {10.1090/S0894-0347-2012-00731-0},
url = {https://doi.org/10.1090/S0894-0347-2012-00731-0},
zblnumber = {1243.14005},
} -
[Huh-Katz]
J. Huh and E. Katz, "Log-concavity of characteristic polynomials and the Bergman fan of matroids," Math. Ann., vol. 354, iss. 3, pp. 1103-1116, 2012.
@ARTICLE{Huh-Katz,
author = {Huh, June and Katz, Eric},
title = {Log-concavity of characteristic polynomials and the {B}ergman fan of matroids},
journal = {Math. Ann.},
fjournal = {Mathematische Annalen},
volume = {354},
year = {2012},
number = {3},
pages = {1103--1116},
issn = {0025-5831},
mrclass = {05B35},
mrnumber = {2983081},
mrreviewer = {Talmage J. Reid},
doi = {10.1007/s00208-011-0777-6},
url = {https://doi.org/10.1007/s00208-011-0777-6},
zblnumber = {1258.05021},
} -
[Hrushovski]
E. Hrushovski, "Unimodular minimal structures," J. London Math. Soc. (2), vol. 46, iss. 3, pp. 385-396, 1992.
@ARTICLE{Hrushovski,
author = {Hrushovski, Ehud},
title = {Unimodular minimal structures},
journal = {J. London Math. Soc. (2)},
fjournal = {Journal of the London Mathematical Society. Second Series},
volume = {46},
year = {1992},
number = {3},
pages = {385--396},
issn = {0024-6107},
mrclass = {03C45 (03C60)},
mrnumber = {1190425},
mrreviewer = {John T. Baldwin},
doi = {10.1112/jlms/s2-46.3.385},
url = {https://doi.org/10.1112/jlms/s2-46.3.385},
zblnumber = {0804.03023},
} -
[IKMZ] I. Itenberg, L. Katzarkov, G. Mikhalkin, and I. Zharkov, Tropical homology, 2016.
@MISC{IKMZ,
author = {Itenberg, Ilya and Katzarkov, Ludmil and Mikhalkin, Grigory and Zharkov, Ilya},
year = {2016},
title = {Tropical homology},
arxiv = {1604.01838},
zblnumber = {},
} -
[Jacobson] N. Jacobson, Basic Algebra I, Second edition, W. H. Freeman and Company, New York, 1985.
@BOOK{Jacobson,
author = {Jacobson, Nathan},
title = {Basic Algebra I, Second edition},
publisher = {W. H. Freeman and Company, New York},
year = {1985},
zblnumber = {0557.16001},
mrnumber = {0780184},
} -
[Katz-Payne]
E. Katz and S. Payne, "Realization spaces for tropical fans," in Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, Springer, Berlin, 2011, vol. 6, pp. 73-88.
@INCOLLECTION{Katz-Payne,
author = {Katz, Eric and Payne, Sam},
title = {Realization spaces for tropical fans},
booktitle = {Combinatorial Aspects of Commutative Algebra and Algebraic Geometry},
series = {Abel Symp.},
volume = {6},
pages = {73--88},
publisher = {Springer, Berlin},
year = {2011},
mrclass = {14T05 (14M25)},
mrnumber = {2810427},
mrreviewer = {Ethan G. Cotterill},
doi = {10.1007/978-3-642-19492-4_6},
url = {https://doi.org/10.1007/978-3-642-19492-4_6},
zblnumber = {1248.14066},
} -
@BOOK{Kozlov,
author = {Kozlov, Dmitry},
title = {Combinatorial Algebraic Topology},
series = {Algorithms Comput. Math.},
volume = {21},
publisher = {Springer, Berlin},
year = {2008},
pages = {xx+389},
isbn = {978-3-540-71961-8},
mrclass = {55-02 (05C15 05C25 06A07 52B70 55U10 57-02)},
mrnumber = {2361455},
mrreviewer = {Rade Živaljević},
doi = {10.1007/978-3-540-71962-5},
url = {https://doi.org/10.1007/978-3-540-71962-5},
zblnumber = {1130.55001},
} -
@BOOK{SourceBook,
author = {Kung, Joseph P. S.},
title = {A Source Book in Matroid Theory},
titlenote = {with a foreword by Gian-Carlo Rota},
publisher = {Birkhäuser Boston, Boston, MA},
year = {1986},
pages = {413},
isbn = {0-8176-3173-9},
mrclass = {05B35},
mrnumber = {0890330},
mrreviewer = {Ulrich Faigle},
doi = {10.1007/978-1-4684-9199-9},
url = {https://doi.org/10.1007/978-1-4684-9199-9},
zblnumber = {0597.05019},
} -
[Kung] J. P. S. Kung, "The geometric approach to matroid theory," in Gian-Carlo Rota on Combinatorics, Birkhäuser Boston, Boston, MA, 1995, pp. 604-622.
@INCOLLECTION{Kung,
author = {Kung, Joseph P. S.},
title = {The geometric approach to matroid theory},
booktitle = {Gian-{C}arlo {R}ota on Combinatorics},
series = {Contemp. Mathematicians},
pages = {604--622},
publisher = {Birkhäuser Boston, Boston, MA},
year = {1995},
mrclass = {05B35},
mrnumber = {1392975},
zblnumber = {0841.01031},
} -
[Lazarsfeld]
R. Lazarsfeld, Positivity in Algebraic Geometry. II. Positivity for Vector Bundles, and Multiplier Ideals, Springer-Verlag, Berlin, 2004, vol. 49.
@BOOK{Lazarsfeld,
author = {Lazarsfeld, Robert},
title = {Positivity in Algebraic Geometry. {II}. Positivity for Vector Bundles, and Multiplier Ideals},
series = {Ergeb. Math. Grenzgeb.},
volume = {49},
publisher = {Springer-Verlag, Berlin},
year = {2004},
pages = {xviii+385},
isbn = {3-540-22534-X},
mrclass = {14-02 (14C20 14F05 14F17)},
mrnumber = {2095472},
mrreviewer = {Mihnea Popa},
doi = {10.1007/978-3-642-18810-7},
zblnumber = {1093.14500},
} -
[Lee]
C. W. Lee, "P.L.-spheres, convex polytopes, and stress," Discrete Comput. Geom., vol. 15, iss. 4, pp. 389-421, 1996.
@ARTICLE{Lee,
author = {Lee, C. W.},
title = {P.{L}.-spheres, convex polytopes, and stress},
journal = {Discrete Comput. Geom.},
fjournal = {Discrete \& Computational Geometry. An International Journal of Mathematics and Computer Science},
volume = {15},
year = {1996},
number = {4},
pages = {389--421},
issn = {0179-5376},
mrclass = {52B11 (52C25)},
mrnumber = {1384883},
mrreviewer = {Tiong Seng Tay},
doi = {10.1007/BF02711516},
url = {https://doi.org/10.1007/BF02711516},
zblnumber = {0856.52009},
} -
[Lenz]
M. Lenz, "The $f$-vector of a representable-matroid complex is log-concave," Adv. in Appl. Math., vol. 51, iss. 5, pp. 543-545, 2013.
@ARTICLE{Lenz,
author = {Lenz, Matthias},
title = {The {$f$}-vector of a representable-matroid complex is log-concave},
journal = {Adv. in Appl. Math.},
fjournal = {Advances in Applied Mathematics},
volume = {51},
year = {2013},
number = {5},
pages = {543--545},
issn = {0196-8858},
mrclass = {05B35 (05A20 05C31 05E45)},
mrnumber = {3118543},
mrreviewer = {John J. Watkins},
doi = {10.1016/j.aam.2013.07.001},
url = {https://doi.org/10.1016/j.aam.2013.07.001},
zblnumber = {1301.05382},
} -
[Mason] J. H. Mason, "Matroids: unimodal conjectures and Motzkin’s theorem," in Combinatorics, Inst. Math. Appl., Southend-on-Sea, 1972, pp. 207-220.
@incollection{Mason,
author = {Mason, J. H.},
title = {Matroids: unimodal conjectures and {M}otzkin's theorem},
booktitle = {Combinatorics},
venue={{P}roc. {C}onf. {C}ombinatorial {M}ath., {M}ath. {I}nst., {O}xford, 1972},
pages = {207--220},
publisher = {Inst. Math. Appl., Southend-on-Sea},
note = {D. J. A. Welsh and D. R. Woodall, editors},
year = {1972},
mrclass = {05B35},
mrnumber = {0349445},
mrreviewer = {W. Dorfler},
zblnumber = {0469.05001},
} -
[McDaniel]
C. McDaniel, "The strong Lefschetz property for coinvariant rings of finite reflection groups," J. Algebra, vol. 331, pp. 68-95, 2011.
@ARTICLE{McDaniel,
author = {McDaniel, Chris},
title = {The strong {L}efschetz property for coinvariant rings of finite reflection groups},
journal = {J. Algebra},
fjournal = {Journal of Algebra},
volume = {331},
year = {2011},
pages = {68--95},
issn = {0021-8693},
mrclass = {13A50 (20F55)},
mrnumber = {2774648},
mrreviewer = {Angelina Chin},
doi = {10.1016/j.jalgebra.2010.11.007},
url = {https://doi.org/10.1016/j.jalgebra.2010.11.007},
zblnumber = {1244.13005},
} -
[PolytopeAlgebra]
P. McMullen, "The polytope algebra," Adv. Math., vol. 78, iss. 1, pp. 76-130, 1989.
@ARTICLE{PolytopeAlgebra,
author = {McMullen, Peter},
title = {The polytope algebra},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {78},
year = {1989},
number = {1},
pages = {76--130},
issn = {0001-8708},
mrclass = {52B45},
mrnumber = {1021549},
mrreviewer = {Ren Ding},
doi = {10.1016/0001-8708(89)90029-7},
url = {https://doi.org/10.1016/0001-8708(89)90029-7},
zblnumber = {0686.52005},
} -
@ARTICLE{McMullen,
author = {McMullen, Peter},
title = {On simple polytopes},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {113},
year = {1993},
number = {2},
pages = {419--444},
issn = {0020-9910},
mrclass = {52B05 (52B35)},
mrnumber = {1228132},
mrreviewer = {Bernd Kind},
doi = {10.1007/BF01244313},
url = {https://doi.org/10.1007/BF01244313},
zblnumber = {0803.52007},
} -
[Weights]
P. McMullen, "Weights on polytopes," Discrete Comput. Geom., vol. 15, iss. 4, pp. 363-388, 1996.
@ARTICLE{Weights,
author = {McMullen, P.},
title = {Weights on polytopes},
journal = {Discrete Comput. Geom.},
fjournal = {Discrete \& Computational Geometry. An International Journal of Mathematics and Computer Science},
volume = {15},
year = {1996},
number = {4},
pages = {363--388},
issn = {0179-5376},
mrclass = {52B05},
mrnumber = {1384882},
mrreviewer = {Tiong Seng Tay},
doi = {10.1007/BF02711515},
url = {https://doi.org/10.1007/BF02711515},
zblnumber = {0849.52011},
} -
[Meyer-Smith]
D. M. Meyer and L. Smith, PoincarĂ© Duality Algebras, Macaulay’s Dual Systems, and Steenrod Operations, Cambridge University Press, Cambridge, 2005, vol. 167.
@BOOK{Meyer-Smith,
author = {Meyer, Dagmar M. and Smith, Larry},
title = {Poincaré Duality Algebras, {M}acaulay's Dual Systems, and {S}teenrod Operations},
series = {Cambridge Tracts in Math.},
volume = {167},
publisher = {Cambridge University Press, Cambridge},
year = {2005},
pages = {viii+193},
isbn = {978-0-521-85064-3; 0-521-85064-9},
mrclass = {13A50 (55S10)},
mrnumber = {2177162},
mrreviewer = {Adriana Ciampella},
doi = {10.1017/CBO9780511542855},
url = {https://doi.org/10.1017/CBO9780511542855},
zblnumber = {1083.13003},
} -
[Miller-Sturmfels]
E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer-Verlag, New York, 2005, vol. 227.
@BOOK{Miller-Sturmfels,
author = {Miller, Ezra and Sturmfels, Bernd},
title = {Combinatorial Commutative Algebra},
series = {Grad. Texts in Math.},
volume = {227},
publisher = {Springer-Verlag, New York},
year = {2005},
pages = {xiv+417},
isbn = {0-387-22356-8},
mrclass = {13-01 (05-01 05E99 13D02 14M15 14M25)},
mrnumber = {2110098},
mrreviewer = {Joseph Gubeladze},
zblnumber = {1090.13001},
doi = {10.1007/b138602},
} -
@BOOK{Neumann,
author = {von Neumann, John},
title = {Continuous Geometry},
series = {Princeton Landmarks in Mathematics},
note = {with a foreword by Israel Halperin; reprint of the 1960 original, Princeton Paperbacks},
publisher = {Princeton University Press, Princeton, NJ},
year = {1998},
pages = {xiv+299},
isbn = {0-691-05893-8},
mrclass = {51-02 (01A75 06-02 06B35)},
mrnumber = {1619428},
mrreviewer = {R. J. Bumcrot},
doi = {10.1515/9781400883950},
url = {https://doi.org/10.1515/9781400883950},
zblnumber = {0919.51002},
} -
[Oda] T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin, 1988, vol. 15.
@BOOK{Oda,
author = {Oda, Tadao},
title = {Convex Bodies and Algebraic Geometry},
series = {Ergeb. Math. Grenzgeb.},
volume = {15},
note = {{\em {A}n {I}ntroduction to the {T}heory of {T}oric {V}arieties}; translated from the Japanese},
publisher = {Springer-Verlag, Berlin},
year = {1988},
pages = {viii+212},
isbn = {3-540-17600-4},
mrclass = {14L32 (14-02 52A25 52A43)},
mrnumber = {0922894},
mrreviewer = {I. Dolgachev},
zblnumber = {0628.52002},
} -
[Orlik-Terao]
P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin, 1992, vol. 300.
@BOOK{Orlik-Terao,
author = {Orlik, Peter and Terao, Hiroaki},
title = {Arrangements of Hyperplanes},
series = {Grundlehren Math. Wiss.},
volume = {300},
publisher = {Springer-Verlag, Berlin},
year = {1992},
pages = {xviii+325},
isbn = {3-540-55259-6},
mrclass = {52B30 (14F35 20F36 20F55 32S25 57N65)},
mrnumber = {1217488},
mrreviewer = {Michel Yves Jambu},
doi = {10.1007/978-3-662-02772-1},
url = {https://doi.org/10.1007/978-3-662-02772-1},
zblnumber = {0757.55001},
} -
[Oxley] J. G. Oxley, Matroid Theory, The Clarendon Press, Oxford University Press, New York, 1992.
@BOOK{Oxley,
author = {Oxley, James G.},
title = {Matroid Theory},
series = {Oxford Sci. Publ.},
publisher = {The Clarendon Press, Oxford University Press, New York},
year = {1992},
pages = {xii+532},
isbn = {0-19-853563-5},
mrclass = {05B35 (90C27)},
mrnumber = {1207587},
mrreviewer = {Talmage J. Reid},
zblnumber = {0784.05002},
} -
[Pillay] A. Pillay, Geometric Stability Theory, The Clarendon Press, Oxford University Press, New York, 1996, vol. 32.
@BOOK{Pillay,
author = {Pillay, Anand},
title = {Geometric Stability Theory},
series = {Oxford Logic Guides},
volume = {32},
note = {Oxford Science Publications},
publisher = {The Clarendon Press, Oxford University Press, New York},
year = {1996},
pages = {x+361},
isbn = {0-19-853437-X},
mrclass = {03C45 (03-02 20A15)},
mrnumber = {1429864},
mrreviewer = {Alexandre Ivanov},
zblnumber = {0871.03023},
} -
[Read]
R. C. Read, "An introduction to chromatic polynomials," J. Combinatorial Theory, vol. 4, pp. 52-71, 1968.
@ARTICLE{Read,
author = {Read, Ronald C.},
title = {An introduction to chromatic polynomials},
journal = {J. Combinatorial Theory},
volume = {4},
year = {1968},
pages = {52--71},
mrclass = {05.55},
mrnumber = {0224505},
mrreviewer = {K. Wagner},
zblnumber = {0173.26203},
doi = {10.1016/S0021-9800(68)80087-0}
} -
[Foundations]
G. Rota, "On the foundations of combinatorial theory. I. Theory of Möbius functions," Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, vol. 2, pp. 340-368 (1964), 1964.
@ARTICLE{Foundations,
author = {Rota, Gian-Carlo},
title = {On the foundations of combinatorial theory. {I}. {T}heory of {M}öbius functions},
journal = {Z. Wahrscheinlichkeitstheorie und Verw. Gebiete},
volume = {2},
year = {1964},
pages = {340--368 (1964)},
mrclass = {05.05},
mrnumber = {0174487},
mrreviewer = {M. A. Harrison},
doi = {10.1007/BF00531932},
url = {https://doi.org/10.1007/BF00531932},
zblnumber = {0121.02406},
} -
[Rota] G. Rota, "Combinatorial theory, old and new," in Actes du Congrès International des Mathématiciens. Tome 3, Gauthier-Villars, Paris, 1971, pp. 229-233.
@incollection{Rota,
author = {Rota, Gian-Carlo},
title = {Combinatorial theory, old and new},
booktitle = {Actes du {C}ongrès {I}nternational des {M}athématiciens. {T}ome 3},
venue={{N}ice, 1970},
pages = {229--233},
publisher = {Gauthier-Villars, Paris},
year = {1971},
mrclass = {05B25},
mrnumber = {0505646},
zblnumber = {0362.05044},
} -
[Arrangements] R. P. Stanley, "An introduction to hyperplane arrangements," in Geometric Combinatorics, Amer. Math. Soc., Providence, RI, 2007, vol. 13, pp. 389-496.
@INCOLLECTION{Arrangements,
author = {Stanley, Richard P.},
title = {An introduction to hyperplane arrangements},
booktitle = {Geometric Combinatorics},
series = {IAS/Park City Math. Ser.},
volume = {13},
pages = {389--496},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2007},
mrclass = {52C35 (05B35 55R80)},
mrnumber = {2383131},
zblnumber = {1136.52009},
} -
[Welsh] D. J. A. Welsh, "Combinatorial problems in matroid theory," in Combinatorial Mathematics and its Applications, Academic Press, London, 1971, pp. 291-306.
@INCOLLECTION{Welsh,
author = {Welsh, D. J. A.},
title = {Combinatorial problems in matroid theory},
booktitle = {Combinatorial {M}athematics and its {A}pplications},
venue = {{P}roc. {C}onf., {O}xford, 1969},
pages = {291--306},
publisher = {Academic Press, London},
year = {1971},
mrclass = {05.35},
mrnumber = {0278975},
zblnumber = {0233.05001},
} -
[WelshBook] D. J. A. Welsh, Matroid Theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976.
@BOOK{WelshBook,
author = {Welsh, D. J. A.},
title = {Matroid Theory},
series = {L. M. S. Monographs, No. 8},
publisher = {Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York},
year = {1976},
pages = {xi+433},
mrclass = {05B35},
mrnumber = {0427112},
mrreviewer = {W. T. Tutte},
zblnumber = {0343.05002},
} -
@BOOK{white,
author = {White, Neil},
title = {Combinatorial Geometries},
series = {Encyclopedia Math. Appl.},
volume = {29},
publisher = {Cambridge Univ. Press, Cambridge},
year = {1987},
zblnumber = {0626.00007},
mrnumber = {0921065},
doi = {10.1017/CBO9781107325715},
} -
[WhitneyLE]
H. Whitney, "A logical expansion in mathematics," Bull. Amer. Math. Soc., vol. 38, iss. 8, pp. 572-579, 1932.
@ARTICLE{WhitneyLE,
author = {Whitney, Hassler},
title = {A logical expansion in mathematics},
journal = {Bull. Amer. Math. Soc.},
fjournal = {Bulletin of the American Mathematical Society},
volume = {38},
year = {1932},
number = {8},
pages = {572--579},
issn = {0002-9904},
mrclass = {DML},
mrnumber = {1562461},
doi = {10.1090/S0002-9904-1932-05460-X},
url = {https://doi.org/10.1090/S0002-9904-1932-05460-X},
zblnumber = {0005.14602},
} -
[Whitney]
H. Whitney, "On the abstract properties of linear dependence," Amer. J. Math., vol. 57, iss. 3, pp. 509-533, 1935.
@ARTICLE{Whitney,
author = {Whitney, Hassler},
title = {On the abstract properties of linear dependence},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {57},
year = {1935},
number = {3},
pages = {509--533},
issn = {0002-9327},
mrclass = {DML},
mrnumber = {1507091},
doi = {10.2307/2371182},
url = {https://doi.org/10.2307/2371182},
zblnumber = {0012.00404},
} -
[Zaslavsky]
T. Zaslavsky, "The Möbius function and the characteristic polynomial," in Combinatorial Geometries, Cambridge Univ. Press, Cambridge, 1987, vol. 29, pp. 114-138.
@INCOLLECTION{Zaslavsky,
author = {Zaslavsky, Thomas},
title = {The {M}öbius function and the characteristic polynomial},
booktitle = {Combinatorial Geometries},
series = {Encyclopedia Math. Appl.},
volume = {29},
pages = {114--138},
publisher = {Cambridge Univ. Press, Cambridge},
year = {1987},
mrclass = {03B35 (05A15 05C15)},
mrnumber = {0921071},
zblnumber = {0632.05017},
doi = {10.1017/CBO9781107325715.009},
}