Abstract
Let $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset\mathrm{SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $G$. We prove that necessarily $G=\mathrm{SU}(p,q)$ with $p\geq qn$ and there exists a holomorphic or antiholomorphic $\rho$-equivariant map from the complex hyperbolic $n$-space to the symmetric space associated to $\mathrm{SU}(p,q)$. This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of $\mathrm{SU}(p,q)$, the representation $\rho$ extends to a representation of $\mathrm{SU}(n,1)$ in $\mathrm{SU}(p,q)$.
-
@MISC{BMQ,
author = {Bogomolov, F. A. and McQuillan, M. L.},
note = {IHES preprint},
title = {Rational curves on foliated varieties},
year = {2001},
URL = {preprints.ihes.fr/M01/M01-07.ps.gz},
} -
[BGPG1]
S. B. Bradlow, O. Garc’ia-Prada, and P. B. Gothen, "Surface group representations and ${ U}(p,q)$-Higgs bundles," J. Differential Geom., vol. 64, iss. 1, pp. 111-170, 2003.
@ARTICLE{BGPG1, mrkey = {2015045},
number = {1},
issn = {0022-040X},
author = {Bradlow, Steven B. and Garc{\'ı}a-Prada, Oscar and Gothen, Peter B.},
mrclass = {53D30 (57R19)},
url = {http://projecteuclid.org/euclid.jdg/1090426889},
journal = {J. Differential Geom.},
zblnumber = {1070.53054},
volume = {64},
mrnumber = {2015045},
fjournal = {Journal of Differential Geometry},
mrreviewer = {Ignasi Mundet-Riera},
coden = {JDGEAS},
title = {Surface group representations and {${\rm U}(p,q)$}-{H}iggs bundles},
year = {2003},
pages = {111--170},
} -
[BGPG2]
S. B. Bradlow, O. Garc’ia-Prada, and P. B. Gothen, "Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces," Geom. Dedicata, vol. 122, pp. 185-213, 2006.
@ARTICLE{BGPG2, mrkey = {2295550},
issn = {0046-5755},
author = {Bradlow, Steven B. and Garc{\'ı}a-Prada, Oscar and Gothen, Peter B.},
mrclass = {14D20 (53D30 58D29)},
doi = {10.1007/s10711-007-9127-y},
journal = {Geom. Dedicata},
zblnumber = {1132.14029},
volume = {122},
mrnumber = {2295550},
fjournal = {Geometriae Dedicata},
mrreviewer = {Anna Wienhard},
coden = {GEMDAT},
title = {Maximal surface group representations in isometry groups of classical {H}ermitian symmetric spaces},
year = {2006},
pages = {185--213},
} -
[BH]
M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, New York: Springer-Verlag, 1999, vol. 319.
@BOOK{BH, mrkey = {1744486},
author = {Bridson, Martin R. and Haefliger, Andr{é}},
mrclass = {53C23 (20F65 53C70 57M07)},
series = {Grundl. Math. Wissen.},
address = {New York},
isbn = {3-540-64324-9},
publisher = {Springer-Verlag},
doi = {10.1007/978-3-662-12494-9},
zblnumber = {0988.53001},
volume = {319},
mrnumber = {1744486},
mrreviewer = {Athanase Papadopoulos},
title = {Metric Spaces of Non-positive Curvature},
year = {1999},
pages = {xxii+643},
} -
[BI07]
M. Burger and A. Iozzi, "Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity," Geom. Dedicata, vol. 125, pp. 1-23, 2007.
@ARTICLE{BI07, mrkey = {2322535},
issn = {0046-5755},
author = {Burger, Marc and Iozzi, Alessandra},
mrclass = {53C24 (22E41)},
doi = {10.1007/s10711-006-9108-6},
journal = {Geom. Dedicata},
zblnumber = {1134.53020},
volume = {125},
mrnumber = {2322535},
fjournal = {Geometriae Dedicata},
coden = {GEMDAT},
title = {Bounded differential forms, generalized {M}ilnor-{W}ood inequality and an application to deformation rigidity},
year = {2007},
pages = {1--23},
} -
[BI08]
M. Burger and A. Iozzi, "A measurable Cartan theorem and applications to deformation rigidity in complex hyperbolic geometry," Pure Appl. Math. Q., vol. 4, iss. 1, Special Issue: In honor of Grigory Margulis. Part 2, pp. 181-202, 2008.
@ARTICLE{BI08, mrkey = {2406001},
number = {1, Special Issue: In honor of Grigory Margulis. Part 2},
issn = {1558-8599},
author = {Burger, Marc and Iozzi, Alessandra},
mrclass = {22E40 (30F45 32Q45)},
doi = {10.4310/PAMQ.2008.v4.n1.a8},
journal = {Pure Appl. Math. Q.},
zblnumber = {1145.32013},
volume = {4},
mrnumber = {2406001},
fjournal = {Pure and Applied Mathematics Quarterly},
mrreviewer = {John R. Parker},
title = {A measurable {C}artan theorem and applications to deformation rigidity in complex hyperbolic geometry},
year = {2008},
pages = {181--202},
} -
[BIW09]
M. Burger, A. Iozzi, and A. Wienhard, "Tight homomorphisms and Hermitian symmetric spaces," Geom. Funct. Anal., vol. 19, iss. 3, pp. 678-721, 2009.
@ARTICLE{BIW09, mrkey = {2563767},
number = {3},
issn = {1016-443X},
author = {Burger, Marc and Iozzi, Alessandra and Wienhard, Anna},
mrclass = {53C24 (32M15 53C35)},
doi = {10.1007/s00039-009-0020-8},
journal = {Geom. Funct. Anal.},
zblnumber = {1188.53050},
volume = {19},
mrnumber = {2563767},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Michelle Bucher-Karlsson},
coden = {GFANFB},
title = {Tight homomorphisms and {H}ermitian symmetric spaces},
year = {2009},
pages = {678--721},
} -
[BIW]
M. Burger, A. Iozzi, and A. Wienhard, "Surface group representations with maximal Toledo invariant," Ann. of Math., vol. 172, iss. 1, pp. 517-566, 2010.
@ARTICLE{BIW, mrkey = {2680425},
number = {1},
issn = {0003-486X},
author = {Burger, Marc and Iozzi, Alessandra and Wienhard, Anna},
mrclass = {22E41 (20F67 57M07)},
doi = {10.4007/annals.2010.172.517},
journal = {Ann. of Math.},
zblnumber = {1208.32014},
volume = {172},
mrnumber = {2680425},
fjournal = {Annals of Mathematics. Second Series},
coden = {ANMAAH},
title = {Surface group representations with maximal {T}oledo invariant},
year = {2010},
pages = {517--566},
} -
[CW]
J. -G. Cao and P. Wong, "Finsler geometry of projectivized vector bundles," J. Math. Kyoto Univ., vol. 43, iss. 2, pp. 369-410, 2003.
@ARTICLE{CW, mrkey = {2051030},
number = {2},
issn = {0023-608X},
author = {Cao, J.-G. and Wong, Pit-Mann},
mrclass = {53C60},
journal = {J. Math. Kyoto Univ.},
zblnumber = {1086.53092},
volume = {43},
mrnumber = {2051030},
fjournal = {Journal of Mathematics of Kyoto University},
mrreviewer = {Min Ru},
coden = {JMKYAZ},
title = {Finsler geometry of projectivized vector bundles},
year = {2003},
pages = {369--410},
url = {http://projecteuclid.org/euclid.kjm/1250283732},
} -
[CorletteFlatGBundles]
K. Corlette, "Flat $G$-bundles with canonical metrics," J. Differential Geom., vol. 28, iss. 3, pp. 361-382, 1988.
@ARTICLE{CorletteFlatGBundles, mrkey = {0965220},
number = {3},
issn = {0022-040X},
author = {Corlette, Kevin},
mrclass = {58E20 (32L99 53C10)},
url = {http://projecteuclid.org/euclid.jdg/1214442469},
journal = {J. Differential Geom.},
zblnumber = {0676.58007},
volume = {28},
mrnumber = {0965220},
fjournal = {Journal of Differential Geometry},
mrreviewer = {John C. Wood},
coden = {JDGEAS},
title = {Flat {$G$}-bundles with canonical metrics},
year = {1988},
pages = {361--382},
} -
[CorletteArchimedean]
K. Corlette, "Archimedean superrigidity and hyperbolic geometry," Ann. of Math., vol. 135, iss. 1, pp. 165-182, 1992.
@ARTICLE{CorletteArchimedean, mrkey = {1147961},
number = {1},
issn = {0003-486X},
author = {Corlette, Kevin},
mrclass = {57S30 (22E40 53C25 57M50 58E20)},
doi = {10.2307/2946567},
journal = {Ann. of Math.},
zblnumber = {0768.53025},
volume = {135},
mrnumber = {1147961},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Christopher W. Stark},
coden = {ANMAAH},
title = {Archimedean superrigidity and hyperbolic geometry},
year = {1992},
pages = {165--182},
} -
[Dani]
S. G. Dani, "A simple proof of Borel’s density theorem," Math. Z., vol. 174, iss. 1, pp. 81-94, 1980.
@ARTICLE{Dani, mrkey = {0591617},
number = {1},
issn = {0025-5874},
author = {Dani, Shrikrishna G.},
mrclass = {22D40 (20G20 58F17)},
doi = {10.1007/BF01215084},
journal = {Math. Z.},
zblnumber = {0432.22008},
volume = {174},
mrnumber = {0591617},
fjournal = {Mathematische Zeitschrift},
mrreviewer = {Paul Milnes},
coden = {MAZEAX},
title = {A simple proof of {B}orel's density theorem},
year = {1980},
pages = {81--94},
} -
@BOOK{Fischer, mrkey = {0430286},
author = {Fischer, Gerd},
mrclass = {32-01},
series = {Lecture Notes in Math.},
address = {New York},
publisher = {Springer-Verlag},
volume = {538},
mrnumber = {0430286},
mrreviewer = {Andrew Markoe},
title = {Complex Analytic Geometry},
year = {1976},
pages = {vii+201},
zblnumber = {0343.32002},
doi = {10.1007/BFb0080338},
} -
[God] C. Godbillon, Feuilletages. Études Géométriques, Basel: Birkhäuser, 1991.
@BOOK{God, mrkey = {1120547},
author = {Godbillon, Claude},
mrclass = {57R30 (58A17 58F18)},
series = {Progr. Math.},
isbn = {3-7643-2638-7},
address = {Basel},
publisher = {Birkhäuser},
vollume = {98},
mrnumber = {1120547},
mrreviewer = {J. Chrastina},
title = {Feuilletages. {É}tudes G{é}om{é}triques},
year = {1991},
pages = {xiv+474},
zblnumber = {0724.58002},
} -
[GoldmanThesis]
W. M. Goldman, Discontinuous Groups and the Euler Class, Ann Arbor, MI: ProQuest LLC, 1980.
@BOOK{GoldmanThesis, mrkey = {2630832},
author = {Goldman, William Mark},
mrclass = {Thesis},
url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8029408},
address = {Ann Arbor, MI},
publisher = {ProQuest LLC},
mrnumber = {2630832},
note = {Thesis (Ph.D.)--University of California, Berkeley},
title = {Discontinuous Groups and the {E}uler Class},
year = {1980},
pages = {138},
} -
[GoldmanComponents]
W. M. Goldman, "Topological components of spaces of representations," Invent. Math., vol. 93, iss. 3, pp. 557-607, 1988.
@ARTICLE{GoldmanComponents, mrkey = {0952283},
number = {3},
issn = {0020-9910},
author = {Goldman, William M.},
mrclass = {57M05 (22E40 32G15)},
doi = {10.1007/BF01410200},
journal = {Invent. Math.},
zblnumber = {0655.57019},
volume = {93},
mrnumber = {0952283},
fjournal = {Inventiones Mathematicae},
mrreviewer = {William Harvey},
coden = {INVMBH},
title = {Topological components of spaces of representations},
year = {1988},
pages = {557--607},
} -
[GoldmanMillsonLocalRigidity]
W. M. Goldman and J. J. Millson, "Local rigidity of discrete groups acting on complex hyperbolic space," Invent. Math., vol. 88, iss. 3, pp. 495-520, 1987.
@ARTICLE{GoldmanMillsonLocalRigidity, mrkey = {0884798},
number = {3},
issn = {0020-9910},
author = {Goldman, W. M. and Millson, J. J.},
mrclass = {22E40 (57S25)},
doi = {10.1007/BF01391829},
journal = {Invent. Math.},
zblnumber = {0627.22012},
volume = {88},
mrnumber = {0884798},
fjournal = {Inventiones Mathematicae},
mrreviewer = {G. A. So{\u\i}fer},
coden = {INVMBH},
title = {Local rigidity of discrete groups acting on complex hyperbolic space},
year = {1987},
pages = {495--520},
} -
[GriffithsSchmid]
P. Griffiths and W. Schmid, "Locally homogeneous complex manifolds," Acta Math., vol. 123, pp. 253-302, 1969.
@ARTICLE{GriffithsSchmid, mrkey = {0259958},
issn = {0001-5962},
author = {Griffiths, Phillip and Schmid, Wilfried},
mrclass = {57.60 (32.00)},
doi = {10.1007/BF02392390},
journal = {Acta Math.},
zblnumber = {0209.25701},
volume = {123},
mrnumber = {0259958},
fjournal = {Acta Mathematica},
mrreviewer = {S. Kobayashi},
title = {Locally homogeneous complex manifolds},
year = {1969},
pages = {253--302},
} -
[Gromov1]
M. Gromov, "Foliated Plateau problem. I: Minimal varieties," Geom. Funct. Anal., vol. 1, iss. 1, pp. 14-79, 1991.
@ARTICLE{Gromov1, mrkey = {1091610},
number = {1},
issn = {1016-443X},
author = {Gromov, M.},
mrclass = {53C23 (53C12 58E15)},
doi = {10.1007/BF01895417},
journal = {Geom. Funct. Anal.},
zblnumber = {0768.53011},
volume = {1},
mrnumber = {1091610},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Thomas H. Otway},
coden = {GFANFB},
title = {Foliated {P}lateau problem. {I}: {M}inimal varieties},
year = {1991},
pages = {14--79},
} -
[Gromov2]
M. Gromov, "Foliated Plateau problem. II: Harmonic maps of foliations," Geom. Funct. Anal., vol. 1, iss. 3, pp. 253-320, 1991.
@ARTICLE{Gromov2, mrkey = {1118731},
number = {3},
issn = {1016-443X},
author = {Gromov, M.},
mrclass = {58E20 (49Q99 53C12)},
doi = {10.1007/BF01896204},
journal = {Geom. Funct. Anal.},
zblnumber = {0768.53012},
volume = {1},
mrnumber = {1118731},
fjournal = {Geometric and Functional Analysis},
mrreviewer = {Viktor Schroeder},
coden = {GFANFB},
title = {Foliated {P}lateau problem. {II}: {H}armonic maps of foliations},
year = {1991},
pages = {253--320},
} -
[GPS]
M. Gromov and I. Piatetski-Shapiro, "Nonarithmetic groups in Lobachevsky spaces," Inst. Hautes Études Sci. Publ. Math., iss. 66, pp. 93-103, 1988.
@ARTICLE{GPS, mrkey = {0932135},
number = {66},
issn = {0073-8301},
author = {Gromov, M. and Piatetski-Shapiro, I.},
mrclass = {22E40},
url = {http://www.numdam.org/numdam-bin/item?id=PMIHES_1987__66__93_0},
journal = {Inst. Hautes Études Sci. Publ. Math.},
zblnumber = {0649.22007},
mrnumber = {0932135},
fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
mrreviewer = {Gopal Prasad},
title = {Nonarithmetic groups in {L}obachevsky spaces},
year = {1988},
pages = {93--103},
} -
[GromovSchoen]
M. Gromov and R. Schoen, "Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one," Inst. Hautes Études Sci. Publ. Math., vol. 76, pp. 165-246, 1992.
@ARTICLE{GromovSchoen, mrkey = {1215595},
volume = {76},
issn = {0073-8301},
author = {Gromov, Mikhail and Schoen, Richard},
mrclass = {58E20 (22E40)},
url = {http://www.numdam.org/item?id=PMIHES_1992__76__165_0},
journal = {Inst. Hautes Études Sci. Publ. Math.},
zblnumber = {0896.58024},
mrnumber = {1215595},
fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
mrreviewer = {Caio J. C. Negreiros},
coden = {PMIHA6},
title = {Harmonic maps into singular spaces and {$p$}-adic superrigidity for lattices in groups of rank one},
year = {1992},
pages = {165--246},
} -
[GW]
O. Guichard and A. Wienhard, "Anosov representations: domains of discontinuity and applications," Invent. Math., vol. 190, iss. 2, pp. 357-438, 2012.
@ARTICLE{GW, mrkey = {2981818},
number = {2},
issn = {0020-9910},
author = {Guichard, Olivier and Wienhard, Anna},
mrclass = {22F30 (32G15 53C30 53D25)},
doi = {10.1007/s00222-012-0382-7},
journal = {Invent. Math.},
zblnumber = {1270.20049},
volume = {190},
mrnumber = {2981818},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Pablo Su{á}rez-Serrato},
coden = {INVMBH},
title = {Anosov representations: domains of discontinuity and applications},
year = {2012},
pages = {357--438},
} -
[Hernandez]
L. Hernández, "Maximal representations of surface groups in bounded symmetric domains," Trans. Amer. Math. Soc., vol. 324, iss. 1, pp. 405-420, 1991.
@ARTICLE{Hernandez, mrkey = {1033234},
number = {1},
issn = {0002-9947},
author = {Hern{á}ndez, Luis},
mrclass = {32M15 (22E40)},
doi = {10.2307/2001515},
journal = {Trans. Amer. Math. Soc.},
zblnumber = {0733.32024},
volume = {324},
mrnumber = {1033234},
fjournal = {Transactions of the American Mathematical Society},
mrreviewer = {Jean-Jacques Loeb},
coden = {TAMTAM},
title = {Maximal representations of surface groups in bounded symmetric domains},
year = {1991},
pages = {405--420},
} -
[JohnsonMillson]
D. Johnson and J. J. Millson, "Deformation spaces associated to compact hyperbolic manifolds," in Discrete Groups in Geometry and Analysis, Boston: Birkhäuser, 1987, vol. 67, pp. 48-106.
@INCOLLECTION{JohnsonMillson, mrkey = {0900823},
author = {Johnson, Dennis and Millson, John J.},
mrclass = {22E40 (22E41 32G13 32M15)},
series = {Progr. Math.},
address = {Boston},
publisher = {Birkhäuser},
doi = {10.1007/978-1-4899-6664-3_3},
zblnumber = {0664.53023},
volume = {67},
mrnumber = {0900823},
booktitle = {Discrete Groups in Geometry and Analysis},
mrreviewer = {T. N. Venkataramana},
venue = {{N}ew {H}aven, {C}onn., 1984},
title = {Deformation spaces associated to compact hyperbolic manifolds},
pages = {48--106},
year = {1987},
} -
[Klingler]
B. Klingler, "Local rigidity for complex hyperbolic lattices and Hodge theory," Invent. Math., vol. 184, iss. 3, pp. 455-498, 2011.
@ARTICLE{Klingler, mrkey = {2800692},
number = {3},
issn = {0020-9910},
author = {Klingler, B.},
mrclass = {22E40 (14C30)},
doi = {10.1007/s00222-010-0293-4},
journal = {Invent. Math.},
zblnumber = {1239.22009},
volume = {184},
mrnumber = {2800692},
fjournal = {Inventiones Mathematicae},
mrreviewer = {William Goldman},
coden = {INVMBH},
title = {Local rigidity for complex hyperbolic lattices and {H}odge theory},
year = {2011},
pages = {455--498},
} -
[K]
S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton, NJ: Princeton Univ. Press, 1987, vol. 15.
@BOOK{K, mrkey = {0909698},
author = {Kobayashi, Shoshichi},
mrclass = {53C55 (32-02 32L05 32L10 32L20)},
series = {Publ. Math. Soc. Japan},
isbn = {0-691-08467-X},
address = {Princeton, NJ},
publisher = {Princeton Univ. Press},
doi = {10.1515/9781400858682},
zblnumber = {0708.53002},
volume = {15},
mrnumber = {0909698},
note = {Kan{ô} Memorial Lectures, 5},
mrreviewer = {Daniel M. Burns, Jr.},
title = {Differential Geometry of Complex Vector Bundles},
year = {1987},
pages = {xii+305},
} -
[KozMobRank1]
V. Koziarz and J. Maubon, "Harmonic maps and representations of non-uniform lattices of ${ PU}(m,1)$," Ann. Inst. Fourier $($Grenoble$)$, vol. 58, iss. 2, pp. 507-558, 2008.
@ARTICLE{KozMobRank1, mrkey = {2410381},
number = {2},
issn = {0373-0956},
author = {Koziarz, Vincent and Maubon, Julien},
mrclass = {22E40 (53C24 58E20)},
journal = {Ann. Inst. Fourier $($Grenoble$)$},
zblnumber = {1147.22009},
volume = {58},
mrnumber = {2410381},
fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
mrreviewer = {John R. Parker},
coden = {AIFUA7},
title = {Harmonic maps and representations of non-uniform lattices of {${\rm PU}(m,1)$}},
year = {2008},
pages = {507--558},
doi = {10.5802/aif.2359},
} -
[KozMobRank2]
V. Koziarz and J. Maubon, "Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type," Geom. Dedicata, vol. 137, pp. 85-111, 2008.
@ARTICLE{KozMobRank2, mrkey = {2449147},
issn = {0046-5755},
author = {Koziarz, Vincent and Maubon, Julien},
mrclass = {22E40 (32L05 53C24)},
doi = {10.1007/s10711-008-9288-3},
journal = {Geom. Dedicata},
zblnumber = {1159.22006},
volume = {137},
mrnumber = {2449147},
fjournal = {Geometriae Dedicata},
mrreviewer = {Anna Wienhard},
coden = {GEMDAT},
title = {Representations of complex hyperbolic lattices into rank 2 classical {L}ie groups of {H}ermitian type},
year = {2008},
pages = {85--111},
} -
[KozMobequidistrib] V. Koziarz and J. Maubon, On the equidistribution of totally geodesic submanifolds in locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors, 2014.
@MISC{KozMobequidistrib,
author = {Koziarz, Vincent and Maubon, Julien},
arxiv = {1407.6561},
title = {On the equidistribution of totally geodesic submanifolds in locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors},
year = {2014},
} -
[Margulis] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, New York: Springer-Verlag, 1991, vol. 17.
@BOOK{Margulis, mrkey = {1090825},
author = {Margulis, G. A.},
mrclass = {22E40 (20Hxx 22-02 22D40)},
series = {Ergeb. Math. Grenzgeb.},
address = {New York},
isbn = {3-540-12179-X},
publisher = {Springer-Verlag},
volume = {17},
mrnumber = {1090825},
mrreviewer = {Gopal Prasad},
title = {Discrete Subgroups of Semisimple {L}ie Groups},
year = {1991},
pages = {x+388},
zblnumber = {0732.22008},
} -
[MarkmanXia]
E. Markman and E. Z. Xia, "The moduli of flat ${ PU}(p,p)$-structures with large Toledo invariants," Math. Z., vol. 240, iss. 1, pp. 95-109, 2002.
@ARTICLE{MarkmanXia, mrkey = {1906709},
number = {1},
issn = {0025-5874},
author = {Markman, E. and Xia, E. Z.},
mrclass = {14D20 (14H60)},
doi = {10.1007/s002090100364},
journal = {Math. Z.},
zblnumber = {1008.32006},
volume = {240},
mrnumber = {1906709},
fjournal = {Mathematische Zeitschrift},
mrreviewer = {Steven B. Bradlow},
coden = {MAZEAX},
title = {The moduli of flat {${\rm PU}(p,p)$}-structures with large {T}oledo invariants},
year = {2002},
pages = {95--109},
} -
[Maubon] J. Maubon, "Higgs bundles and representations of complex hyperbolic lattices," in Handbook of Group Actions. Vol. II, Int. Press, Somerville, MA, 2015, vol. 32, pp. 201-244.
@INCOLLECTION{Maubon, mrkey = {3382029},
author = {Maubon, Julien},
mrclass = {32G20 (32L05 32M15 53C07 53C43)},
series = {Adv. Lect. Math. (ALM)},
publisher = {Int. Press, Somerville, MA},
volume = {32},
mrnumber = {3382029},
booktitle = {Handbook of Group Actions. {V}ol. {II}},
mrreviewer = {Daniel Greb},
title = {Higgs bundles and representations of complex hyperbolic lattices},
pages = {201--244},
year = {2015},
} -
[Mok]
N. Mok, "On holomorphic immersions into Kähler manifolds of constant holomorphic sectional curvature," Sci. China Ser. A, vol. 48, iss. suppl., pp. 123-145, 2005.
@ARTICLE{Mok, mrkey = {2156495},
number = {suppl.},
issn = {1006-9283},
author = {Mok, Ngaiming},
mrclass = {32Q15 (32Q30 53C55)},
doi = {10.1007/BF02884700},
journal = {Sci. China Ser. A},
zblnumber = {1128.32014},
volume = {48},
mrnumber = {2156495},
fjournal = {Science in China. Series A. Mathematics},
mrreviewer = {Qi Lin Yang},
title = {On holomorphic immersions into {K}ähler manifolds of constant holomorphic sectional curvature},
year = {2005},
pages = {123--145},
} -
[P]
T. L. Payne, "Closures of totally geodesic immersions into locally symmetric spaces of noncompact type," Proc. Amer. Math. Soc., vol. 127, iss. 3, pp. 829-833, 1999.
@ARTICLE{P, mrkey = {1468202},
number = {3},
issn = {0002-9939},
author = {Payne, Tracy L.},
mrclass = {53C30 (53C35 53C42)},
doi = {10.1090/S0002-9939-99-04552-9},
journal = {Proc. Amer. Math. Soc.},
zblnumber = {0936.53034},
volume = {127},
mrnumber = {1468202},
fjournal = {Proceedings of the American Mathematical Society},
mrreviewer = {Raul Quiroga},
coden = {PAMYAR},
title = {Closures of totally geodesic immersions into locally symmetric spaces of noncompact type},
year = {1999},
pages = {829--833},
} -
[Per]
J. V. Pereira, "Global stability for holomorphic foliations on Kaehler manifolds," Qual. Theory Dyn. Syst., vol. 2, iss. 2, pp. 381-384, 2001.
@ARTICLE{Per, mrkey = {1913291},
number = {2},
issn = {1575-5460},
author = {Pereira, J. V.},
mrclass = {32S65 (32Q15 37F75)},
doi = {10.1007/BF02969347},
journal = {Qual. Theory Dyn. Syst.},
zblnumber = {1074.53019},
volume = {2},
mrnumber = {1913291},
fjournal = {Qualitative Theory of Dynamical Systems},
mrreviewer = {M. G. Soares},
title = {Global stability for holomorphic foliations on {K}aehler manifolds},
year = {2001},
pages = {381--384},
} -
[Pop]
D. Popovici, "A simple proof of a theorem by Uhlenbeck and Yau," Math. Z., vol. 250, iss. 4, pp. 855-872, 2005.
@ARTICLE{Pop, mrkey = {2180378},
number = {4},
issn = {0025-5874},
author = {Popovici, Dan},
mrclass = {32L05 (32C30 32L10 32Q15)},
doi = {10.1007/s00209-005-0780-2},
journal = {Math. Z.},
zblnumber = {1083.32018},
volume = {250},
mrnumber = {2180378},
fjournal = {Mathematische Zeitschrift},
mrreviewer = {Julien Keller},
coden = {MAZEAX},
title = {A simple proof of a theorem by {U}hlenbeck and {Y}au},
year = {2005},
pages = {855--872},
} -
[Pozzetti]
M. B. Pozzetti, "Maximal representations of complex hyperbolic lattices into ${ SU}(M,N)$," Geom. Funct. Anal., vol. 25, iss. 4, pp. 1290-1332, 2015.
@ARTICLE{Pozzetti, mrkey = {3385634},
number = {4},
issn = {1016-443X},
author = {Pozzetti, Maria Beatrice},
mrclass = {32M05 (22E40 32M15 32Q45)},
doi = {10.1007/s00039-015-0338-3},
journal = {Geom. Funct. Anal.},
zblnumber = {1325.22007},
volume = {25},
mrnumber = {3385634},
fjournal = {Geometric and Functional Analysis},
title = {Maximal representations of complex hyperbolic lattices into {${\rm SU}(M,N)$}},
year = {2015},
pages = {1290--1332},
} -
[Raghunathan] M. S. Raghunathan, Discrete Subgroups of Lie Groups, New York: Springer-Verlag, 1972, vol. 68.
@BOOK{Raghunathan, mrkey = {0507234},
author = {Raghunathan, M. S.},
mrclass = {22E40},
series = {Ergeb. Math. Grenzgeb.},
address = {New York},
publisher = {Springer-Verlag},
volume = {68},
mrnumber = {0507234},
mrreviewer = {J. S. Joel},
title = {Discrete Subgroups of {L}ie Groups},
year = {1972},
pages = {ix+227},
zblnumber = {0254.22005},
} -
[RatnerMeasure]
M. Ratner, "On Raghunathan’s measure conjecture," Ann. of Math., vol. 134, iss. 3, pp. 545-607, 1991.
@ARTICLE{RatnerMeasure, mrkey = {1135878},
number = {3},
issn = {0003-486X},
author = {Ratner, Marina},
mrclass = {22E40 (58F11 58F17)},
doi = {10.2307/2944357},
journal = {Ann. of Math.},
zblnumber = {0763.28012},
volume = {134},
mrnumber = {1135878},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {S. G. Dani},
coden = {ANMAAH},
title = {On {R}aghunathan's measure conjecture},
year = {1991},
pages = {545--607},
} -
[RatnerTopo]
M. Ratner, "Raghunathan’s topological conjecture and distributions of unipotent flows," Duke Math. J., vol. 63, iss. 1, pp. 235-280, 1991.
@ARTICLE{RatnerTopo, mrkey = {1106945},
number = {1},
issn = {0012-7094},
author = {Ratner, Marina},
mrclass = {22E40 (22D40 28D10)},
doi = {10.1215/S0012-7094-91-06311-8},
journal = {Duke Math. J.},
zblnumber = {0733.22007},
volume = {63},
mrnumber = {1106945},
fjournal = {Duke Mathematical Journal},
mrreviewer = {Gopal Prasad},
coden = {DUMJAO},
title = {Raghunathan's topological conjecture and distributions of unipotent flows},
year = {1991},
pages = {235--280},
} -
[Richardson]
R. W. Richardson, "Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups," Duke Math. J., vol. 57, iss. 1, pp. 1-35, 1988.
@ARTICLE{Richardson, mrkey = {0952224},
number = {1},
issn = {0012-7094},
author = {Richardson, R. W.},
mrclass = {20G15 (14L30 17B45 22E46)},
doi = {10.1215/S0012-7094-88-05701-8},
journal = {Duke Math. J.},
zblnumber = {0685.20035},
volume = {57},
mrnumber = {0952224},
fjournal = {Duke Mathematical Journal},
mrreviewer = {Michel Brion},
coden = {DUMJAO},
title = {Conjugacy classes of {$n$}-tuples in {L}ie algebras and algebraic groups},
year = {1988},
pages = {1--35},
} -
[Ro80]
H. L. Royden, "The Ahlfors-Schwarz lemma in several complex variables," Comment. Math. Helv., vol. 55, iss. 4, pp. 547-558, 1980.
@ARTICLE{Ro80, mrkey = {0604712},
number = {4},
issn = {0010-2571},
author = {Royden, H. L.},
mrclass = {32H20},
doi = {10.1007/BF02566705},
journal = {Comment. Math. Helv.},
zblnumber = {0484.53053},
volume = {55},
mrnumber = {0604712},
fjournal = {Commentarii Mathematici Helvetici},
mrreviewer = {Marcus Wright},
coden = {COMHAX},
title = {The {A}hlfors-{S}chwarz lemma in several complex variables},
year = {1980},
pages = {547--558},
} -
[Sampson]
J. H. Sampson, "Applications of harmonic maps to Kähler geometry," in Complex Differential Geometry and Nonlinear Differential Equations, Providence, RI: Amer. Math. Soc., 1986, vol. 49, pp. 125-134.
@INCOLLECTION{Sampson, mrkey = {0833809},
author = {Sampson, J. H.},
mrclass = {58E20 (32C10 53C55)},
series = {Contemp. Math.},
address = {Providence, RI},
publisher = {Amer. Math. Soc.},
doi = {10.1090/conm/049/833809},
zblnumber = {0605.58019},
volume = {49},
mrnumber = {0833809},
booktitle = {Complex Differential Geometry and Nonlinear Differential Equations},
mrreviewer = {Toru Ishihara},
venue = {{B}runswick, {M}aine, 1984},
title = {Applications of harmonic maps to {K}ähler geometry},
pages = {125--134},
year = {1986},
} -
[Shah]
N. A. Shah, "Uniformly distributed orbits of certain flows on homogeneous spaces," Math. Ann., vol. 289, iss. 2, pp. 315-334, 1991.
@ARTICLE{Shah, mrkey = {1092178},
number = {2},
issn = {0025-5831},
author = {Shah, Nimish A.},
mrclass = {22E40 (58F11)},
doi = {10.1007/BF01446574},
journal = {Math. Ann.},
zblnumber = {0702.22014},
volume = {289},
mrnumber = {1092178},
fjournal = {Mathematische Annalen},
mrreviewer = {T. N. Venkataramana},
coden = {MAANA},
title = {Uniformly distributed orbits of certain flows on homogeneous spaces},
year = {1991},
pages = {315--334},
} -
[Sibley]
B. Sibley, "Asymptotics of the Yang-Mills flow for holomorphic vector bundles over Kähler manifolds: the canonical structure of the limit," J. Reine Angew. Math., vol. 706, pp. 123-191, 2015.
@ARTICLE{Sibley, mrkey = {3393366},
issn = {0075-4102},
author = {Sibley, Benjamin},
mrclass = {53C44 (53C55 58E15)},
doi = {10.1515/crelle-2013-0063},
journal = {J. Reine Angew. Math.},
zblnumber = {1329.58006},
volume = {706},
mrnumber = {3393366},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
mrreviewer = {Yu Zheng},
title = {Asymptotics of the {Y}ang-{M}ills flow for holomorphic vector bundles over {K}ähler manifolds: the canonical structure of the limit},
year = {2015},
pages = {123--191},
} -
[S1]
C. T. Simpson, "Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization," J. Amer. Math. Soc., vol. 1, iss. 4, pp. 867-918, 1988.
@ARTICLE{S1, mrkey = {0944577},
number = {4},
issn = {0894-0347},
author = {Simpson, Carlos T.},
mrclass = {58E15 (32L15 53C25 53C55)},
doi = {10.2307/1990994},
journal = {J. Amer. Math. Soc.},
zblnumber = {0669.58008},
volume = {1},
mrnumber = {0944577},
fjournal = {Journal of the American Mathematical Society},
title = {Constructing variations of {H}odge structure using {Y}ang-{M}ills theory and applications to uniformization},
year = {1988},
pages = {867--918},
} -
[S2]
C. T. Simpson, "Higgs bundles and local systems," Inst. Hautes Études Sci. Publ. Math., vol. 75, pp. 5-95, 1992.
@ARTICLE{S2, mrkey = {1179076},
volume = {75},
issn = {0073-8301},
author = {Simpson, Carlos T.},
mrclass = {32G13 (14D07 53C07 58D27 58E15)},
journal = {Inst. Hautes Études Sci. Publ. Math.},
zblnumber = {0814.32003},
mrnumber = {1179076},
fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
mrreviewer = {William Goldman},
coden = {PMIHA6},
title = {Higgs bundles and local systems},
year = {1992},
pages = {5--95},
doi = {10.1007/BF02699491},
} -
[Siu]
Y. T. Siu, "The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds," Ann. of Math., vol. 112, iss. 1, pp. 73-111, 1980.
@ARTICLE{Siu, mrkey = {0584075},
number = {1},
issn = {0003-486X},
author = {Siu, Yum Tong},
mrclass = {53C55 (32H99 58E20)},
doi = {10.2307/1971321},
journal = {Ann. of Math.},
zblnumber = {0517.53058},
volume = {112},
mrnumber = {0584075},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {M. Kalka},
coden = {ANMAAH},
title = {The complex-analyticity of harmonic maps and the strong rigidity of compact {K}ähler manifolds},
year = {1980},
pages = {73--111},
} -
[Sullivan]
D. Sullivan, "Cycles for the dynamical study of foliated manifolds and complex manifolds," Invent. Math., vol. 36, pp. 225-255, 1976.
@ARTICLE{Sullivan, mrkey = {0433464},
issn = {0020-9910},
author = {Sullivan, Dennis},
mrclass = {57D15},
doi = {10.1007/BF01390011},
journal = {Invent. Math.},
zblnumber = {0335.57015},
volume = {36},
mrnumber = {0433464},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Robert Roussarie},
title = {Cycles for the dynamical study of foliated manifolds and complex manifolds},
year = {1976},
pages = {225--255},
} -
[ToledoHarmonic]
D. Toledo, "Harmonic maps from surfaces to certain Kaehler manifolds," Math. Scand., vol. 45, iss. 1, pp. 13-26, 1979.
@ARTICLE{ToledoHarmonic, mrkey = {0567429},
number = {1},
issn = {0025-5521},
author = {Toledo, Domingo},
mrclass = {58E20 (32H30 53C55)},
journal = {Math. Scand.},
zblnumber = {0435.58008},
volume = {45},
mrnumber = {0567429},
fjournal = {Mathematica Scandinavica},
mrreviewer = {Samuel I. Goldberg},
coden = {MTSCAN},
title = {Harmonic maps from surfaces to certain {K}aehler manifolds},
year = {1979},
pages = {13--26},
url = {http://www.mscand.dk/article/view/11821/9837},
} -
[ToledoRepresentations]
D. Toledo, "Representations of surface groups in complex hyperbolic space," J. Differential Geom., vol. 29, iss. 1, pp. 125-133, 1989.
@ARTICLE{ToledoRepresentations, mrkey = {0978081},
number = {1},
issn = {0022-040X},
author = {Toledo, Domingo},
mrclass = {57N05 (22E40 32G13 57S25 58E20)},
url = {http://projecteuclid.org/euclid.jdg/1214442638},
journal = {J. Differential Geom.},
zblnumber = {0676.57012},
volume = {29},
mrnumber = {0978081},
fjournal = {Journal of Differential Geometry},
mrreviewer = {Robert Brooks},
coden = {JDGEAS},
title = {Representations of surface groups in complex hyperbolic space},
year = {1989},
pages = {125--133},
} -
[UhlenbeckYau]
K. Uhlenbeck and S. -T. Yau, "On the existence of Hermitian-Yang-Mills connections in stable vector bundles," Comm. Pure Appl. Math., vol. 39, p. s257-s293, 1986.
@ARTICLE{UhlenbeckYau, mrkey = {0861491},
issn = {0010-3640},
author = {Uhlenbeck, K. and Yau, S.-T.},
mrclass = {58G05 (32L15 53C05 58E15)},
doi = {10.1002/cpa.3160390714},
journal = {Comm. Pure Appl. Math.},
zblnumber = {0615.58045},
volume = {39},
mrnumber = {0861491},
fjournal = {Communications on Pure and Applied Mathematics},
mrreviewer = {Daniel S. Freed},
coden = {CPAMA},
title = {On the existence of {H}ermitian-{Y}ang-{M}ills connections in stable vector bundles},
year = {1986},
pages = {S257--S293},
} -
[westwick]
R. Westwick, "Spaces of linear transformations of equal rank," Linear Algebra and Appl., vol. 5, pp. 49-64, 1972.
@ARTICLE{westwick, mrkey = {0296081},
author = {Westwick, R.},
mrclass = {15A03},
journal = {Linear Algebra and Appl.},
zblnumber = {0236.15002},
volume = {5},
mrnumber = {0296081},
mrreviewer = {J. E. Whitesitt},
title = {Spaces of linear transformations of equal rank},
year = {1972},
pages = {49--64},
doi = {10.1016/0024-3795(72)90018-3},
} -
[Wolf]
J. A. Wolf, "The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components," Bull. Amer. Math. Soc., vol. 75, pp. 1121-1237, 1969.
@ARTICLE{Wolf, mrkey = {0251246},
issn = {0002-9904},
author = {Wolf, Joseph A.},
mrclass = {32.32 (22.00)},
doi = {10.1090/S0002-9904-1969-12359-1},
journal = {Bull. Amer. Math. Soc.},
zblnumber = {0183.50901},
volume = {75},
mrnumber = {0251246},
fjournal = {Bulletin of the American Mathematical Society},
mrreviewer = {W. Klingenberg},
title = {The action of a real semisimple group on a complex flag manifold. {I}. {O}rbit structure and holomorphic arc components},
year = {1969},
pages = {1121--1237},
} -
[Xia]
E. Z. Xia, "The moduli of flat ${ PU}(2,1)$ structures on Riemann surfaces," Pacific J. Math., vol. 195, iss. 1, pp. 231-256, 2000.
@ARTICLE{Xia, mrkey = {1781622},
number = {1},
issn = {0030-8730},
author = {Xia, Eugene Z.},
mrclass = {32G13 (14H60 53C07)},
doi = {10.2140/pjm.2000.195.231},
journal = {Pacific J. Math.},
zblnumber = {1014.32010},
volume = {195},
mrnumber = {1781622},
fjournal = {Pacific Journal of Mathematics},
mrreviewer = {Usha N. Bhosle},
coden = {PJMAAI},
title = {The moduli of flat {${\rm PU}(2,1)$} structures on {R}iemann surfaces},
year = {2000},
pages = {231--256},
} -
[You]
D. C. Youla, "A normal form for a matrix under the unitary congruence group," Canad. J. Math., vol. 13, pp. 694-704, 1961.
@ARTICLE{You, mrkey = {0132754},
issn = {0008-414X},
author = {Youla, D. C.},
mrclass = {15.30},
doi = {10.4153/CJM-1961-059-8},
journal = {Canad. J. Math.},
zblnumber = {0103.25201},
volume = {13},
mrnumber = {0132754},
fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
mrreviewer = {O. Taussky-Todd},
title = {A normal form for a matrix under the unitary congruence group},
year = {1961},
pages = {694--704},
}