Une version relative de la conjecture des périodes de Kontsevich-Zagier

Abstract

Nous partons d’une série $F=\sum_{r\gg -\infty} f_r \cdot\varpi^r$ où $\varpi$ est l’indéterminée et les coefficients $f_r=f_r(z_1,\dots, z_n)$ sont des fonctions holomorphes définies sur un voisinage ouvert du polydisque fermé $\bar{\mathbb{D}}^n=\{(z_1,\dots,z_n);\, |z_i|\leq 1\}$. En intégrant les coefficients de cette série sur le $n$-cube réel $[0,1]^n$, on obtient la série de Laurent $\int_{[0,1]^n}F$. Lorsque $F$ est algébrique nous dirons que $\int_{[0,1]^n}F$ est une série de périodes. Dans cet article, nous cherchons à déterminer les séries algébriques $F$ telles que $\int_{[0,1]^n}F$ est nulle. En principle, ceci fournit des informations sur les propriétés de transcendance des séries de périodes. Notre résultat principal rappelle la conjecture des périodes de Kontsevich-Zagier sous une forme remaniée.

We start with a series $F=\sum_{r\gg -\infty} f_r \cdot\varpi^r$ with indeterminate $\varpi$ and where the coefficients $f_r=f_r(z_1,\dots,z_n)$ are holomorphic functions defined on an open neighborhood of the closed polydisc $\bar{\mathbb{D}}^n\!=\!\{(z_1,\dots,z_n);\, |z_i|\!\leq\! 1\}$. Integrating the coefficients of this series on the $n$-dimensional real cube $[0,1]^n$ yields a Laurent series $\int_{[0,1]^n}F$. When $F$ is algebraic we say that $\int_{[0,1]^n}F$ is a series of periods. In this article, our goal is to determine the algebraic series $F$ such that $\int_{[0,1]^n}F$ is zero. In principle, this gives informations on the transcendence properties of series of periods. Our main result is reminiscent to the Kontsevich-Zagier conjecture on periods in a modified form.

  • [these-doctorat-I] J. Ayoub, Les Six Opérations de Grothendieck et le Formalisme des Cycles Évanescents dans le Monde Motivique. I, Paris: Math. Soc. France, 2007, vol. 314.
    @book{these-doctorat-I, mrkey = {2423375},
      author = {Ayoub, Joseph},
      title = {Les Six Opérations de {G}rothendieck et le Formalisme des Cycles Évanescents dans le Monde Motivique. {I}},
      series = {Astérisque},
      fjournal = {Astérisque},
      volume = {314},
      year = {2007},
      pages = {x+466 pp. (2008)},
      issn = {0303-1179},
      isbn = {978-2-85629-244-0},
      mrclass = {14F20 (14C25 14F42 18A40 18F10 18F20 18G55 19E15)},
      mrnumber = {2423375},
      mrreviewer = {Christian Haesemeyer},
      publisher = {Math. Soc. France},
      address = {Paris},
      zblnumber = {1146.14001},
      }
  • [these-doctorat-II] J. Ayoub, Les Six Opérations de Grothendieck et le Formalisme des Cycles Évanescents dans le Monde Motivique. II, Paris: Math. Soc. France, 2007, vol. 315.
    @book{these-doctorat-II, mrkey = {2438151},
      author = {Ayoub, Joseph},
      title = {Les Six Opérations de {G}rothendieck et le Formalisme des Cycles Évanescents dans le Monde Motivique. {II}},
      series = {Astérisque},
      fjournal = {Astérisque},
      volume = {315},
      year = {2007},
      pages = {vi+364 pp. (2008)},
      issn = {0303-1179},
      isbn = {978-2-85629-245-7},
      mrclass = {14C25 (14F20 14F42 18A40 19E15)},
      publisher = {Math. Soc. France},
      address = {Paris},
      mrnumber = {2438151},
      mrreviewer = {Christian Haesemeyer},
      zblnumber = {1153.14001},
      }
  • [real-betti] Go to document J. Ayoub, "Note sur les opérations de Grothendieck et la réalisation de Betti," J. Inst. Math. Jussieu, vol. 9, iss. 2, pp. 225-263, 2010.
    @article{real-betti, mrkey = {2602027},
      author = {Ayoub, Joseph},
      title = {Note sur les opérations de {G}rothendieck et la réalisation de {B}etti},
      journal = {J. Inst. Math. Jussieu},
      fjournal = {Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu},
      volume = {9},
      year = {2010},
      number = {2},
      pages = {225--263},
      issn = {1474-7480},
      mrclass = {14F42 (14F20 14F25 18F10 18F20 18G55)},
      mrnumber = {2602027},
      mrreviewer = {Jakob Scholbach},
      doi = {10.1017/S1474748009000127},
      zblnumber = {1202.14018},
      }
  • [mot-rig] J. Ayoub, Motifs des variétés analytiques rigides.
    @misc{mot-rig,
      author = {Ayoub, Joseph},
      title = {Motifs des variétés analytiques rigides},
      note = {preprint, to appear in {\it Mém. Soc. Math. Fr.} {\bf 141/142} (2015)},
      sortyear = {2015},
      }
  • [gal-mot-1] Go to document J. Ayoub, "L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, I," J. reine angew. Math., vol. 693, pp. 1-149, 2014.
    @article{gal-mot-1,
      author = {Ayoub, Joseph},
      title = {L'algèbre de {H}opf et le groupe de {G}alois motiviques d'un corps de caractéristique nulle, {I}},
      journal = {J. reine angew. Math.},
      volume = {693},
      pages = {1--149},
      year = {2014},
      doi = {10.1515/crelle-2012-0089},
      mrnumber = {3259031},
      SORTYEAR={2013},
      zblnumber = {06339932},
     }
  • [gal-mot-2] Go to document J. Ayoub, "L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, II," J. Reine angew. Math., vol. 693, pp. 151-226, 2014.
    @article{gal-mot-2,
      author = {Ayoub, Joseph},
      title = {L'algèbre de {H}opf et le groupe de {G}alois motiviques d'un corps de caractéristique nulle, {II}},
      JOURNAL = {J. Reine angew. Math.},
      FJOURNAL = {Journal für die Reine und angewandte Mathematik},
      VOLUME = {693},
      YEAR = {2014},
      PAGES = {151--226},
      DOI = {10.1515/crelle-2012-0090},
      mrnumber = {3259032},
      SORTYEAR={2013},
      zblnumber = {06339934},
     }
  • [gal-mot-erratum] Go to document J. Ayoub, "Erratum à L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, II," J. Reine angew. Math., vol. 693, p. e1-e2, 2014.
    @article{gal-mot-erratum,
      author = {Ayoub, Joseph},
      title = {Erratum à {L}'algèbre de {H}opf et le groupe de {G}alois motiviques d'un corps de caractéristique nulle, {II}},
      JOURNAL = {J. Reine angew. Math.},
      FJOURNAL = {Journal für die Reine und angewandte Mathematik},
      VOLUME = {693},
      YEAR = {2014},
      PAGES = {e1--e2},
      DOI = {10.1515/crelle-2013-0018},
      mrnumber = {3259035},
      SORTYEAR={2014},
      zblnumber = {06339933},
     }
  • [D-module] A. Borel, P. -P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, New York: Academic Press, 1987, vol. 2.
    @book{D-module,
      author = {A. Borel and P.-P. Grivel and B. Kaup and A. Haefliger and B. Malgrange and F. Ehlers},
      title = {Algebraic $D$-modules},
      series = {Perspect. Math.},
      volume = {2},
      publisher = {Academic Press},
      address = {New York},
      year = {1987},
      zblnumber = {0642.32001},
      mrnumber = {0882000},
      }
  • [Local-stable-ho] Go to document D. Cisinski and F. Déglise, "Local and stable homological algebra in Grothendieck abelian categories," Homology, Homotopy Appl., vol. 11, iss. 1, pp. 219-260, 2009.
    @article{Local-stable-ho, mrkey = {2529161},
      author = {Cisinski, Denis-Charles and D{é}glise, Fr{é}d{é}ric},
      title = {Local and stable homological algebra in {G}rothendieck abelian categories},
      journal = {Homology, Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {11},
      year = {2009},
      number = {1},
      pages = {219--260},
      issn = {1532-0073},
      mrclass = {18G55 (14F42 18E15 18G35)},
      mrnumber = {2529161},
      mrreviewer = {Annette Huber},
      url = {http://projecteuclid.org/euclid.hha/1251832567},
      zblnumber = {1175.18007},
      }
  • [singulier-regulier] P. Deligne, Équations Différentielles à Points Singuliers Réguliers, New York: Springer-Verlag, 1970, vol. 163.
    @book{singulier-regulier, mrkey = {0417174},
      author = {Deligne, Pierre},
      title = {\'{E}quations Différentielles à Points Singuliers Réguliers},
      series = {Lecture Notes in Math},
      volume = {163},
      publisher = {Springer-Verlag},
      year = {1970},
      pages = {iii+133},
      mrclass = {14D05 (14C30)},
      mrnumber = {0417174},
      mrreviewer = {Helmut Hamm},
      address = {New York},
      zblnumber = {0244.14004},
      }
  • [cat-tannak-del] P. Deligne, "Catégories tannakiennes," in The Grothendieck Festschrift, Vol. II, Birkhäuser, Boston, 1990, vol. 87, pp. 111-195.
    @incollection{cat-tannak-del, mrkey = {1106898},
      author = {Deligne, Pierre},
      title = {Catégories tannakiennes},
      booktitle = {The {G}rothendieck {F}estschrift, {V}ol. {II}},
      series = {Progr. Math.},
      volume = {87},
      pages = {111--195},
      publisher = {Birkhäuser, Boston},
      year = {1990},
      mrclass = {14A99 (12H05 18A99)},
      mrnumber = {1106898},
      mrreviewer = {James Milne},
      zblnumber = {0727.14010},
      }
  • [FSV] V. Voevodsky, A. Suslin, and E. M. Friedlander, Cycles, Transfers, and Motivic Homology Theories, Princeton, NJ: Princeton Univ. Press, 2000, vol. 143.
    @book{FSV, mrkey = {1764197},
      author = {Voevodsky, Vladimir and Suslin, Andrei and Friedlander, Eric M.},
      title = {Cycles, Transfers, and Motivic Homology Theories},
      series = {Ann. of Math. Stud.},
      volume = {143},
      publisher = {Princeton Univ. Press},
      address = {Princeton, NJ},
      year = {2000},
      pages = {vi+254},
      isbn = {0-691-04814-2; 0-691-04815-0},
      mrclass = {14F42 (14C25 19E15)},
      mrnumber = {1764197},
      mrreviewer = {Spencer J. Bloch},
      zblnumber = {1021.14006},
      }
  • [deRham-groth] Go to document A. Grothendieck, "On the De Rham cohomology of algebraic varieties," Inst. Hautes Études Sci. Publ. Math., vol. 29, iss. 29, pp. 95-103, 1966.
    @article{deRham-groth, mrkey = {0199194},
      author = {Grothendieck, A.},
      title = {On the {D}e {R}ham cohomology of algebraic varieties},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      number = {29},
      year = {1966},
      pages = {95--103},
      issn = {0073-8301},
      mrclass = {14.55 (32.44)},
      mrnumber = {0199194},
      mrreviewer = {M. F. Atiyah},
      url = {http://www.numdam.org/item?id=PMIHES_1966__29__95_0},
      zblnumber = {0145.17602},
      volume = {29},
      }
  • [EGA31] Go to document A. Grothendieck and J. Dieudonné, "Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I," Inst. Hautes Études Sci. Publ. Math., vol. 11, pp. 5-167, 1961.
    @article{EGA31,
      author = {Grothendieck, A. and Dieudonn{é},
      J.},
      title = {\'{E}léments de géométrie algébrique. {III}. \'{E}tude cohomologique des faisceaux cohérents. {I}},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      year = {1961},
      pages = {5--167},
      volume = {11},
      mrnumber = {0163910},
      zblnumber = {0118.36206},
      URL = {http://www.numdam.org/numdam-bin/fitem?id=PMIHES_1961__11__5_0},
      }
  • [EGA44] Go to document A. Grothendieck and J. Dieudonné, "Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie," Inst. Hautes Études Sci. Publ. Math., vol. 32, pp. 1-361, 1967.
    @article{EGA44, mrkey = {0238860},
      author = {Grothendieck, A. and Dieudonn{é},
      J.},
      title = {\'{E}léments de géométrie algébrique. {IV}. \'{E}tude locale des schémas et des morphismes de schémas, {Q}uatrième partie},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      VOLUME = {32},
      year = {1967},
      pages = {1--361},
      issn = {0073-8301},
      mrclass = {14.55},
      mrnumber = {0238860},
      mrreviewer = {J. P. Murre},
      URL = {http://www.numdam.org/numdam-bin/fitem?id=PMIHES_1967__32__5_0},
      zblnumber = {0153.22301},
      }
  • [kontsevich-periods] M. Kontsevich and D. Zagier, "Periods," in Mathematics Unlimited—2001 and Beyond, New York: Springer-Verlag, 2001, pp. 771-808.
    @incollection{kontsevich-periods, mrkey = {1852188},
      author = {Kontsevich, Maxim and Zagier, Don},
      title = {Periods},
      booktitle = {Mathematics Unlimited---2001 and Beyond},
      pages = {771--808},
      publisher = {Springer-Verlag},
      year = {2001},
      mrclass = {11-02 (11F67 11G40 11G55)},
      mrnumber = {1852188},
      mrreviewer = {F. Beukers},
      address = {New York},
      zblnumber = {1039.11002},
      }
  • [transfers-deRham] Go to document F. Lecomte and N. Wach, "Le complexe motivique de De Rham," Manuscripta Math., vol. 129, iss. 1, pp. 75-90, 2009.
    @article{transfers-deRham, mrkey = {2496957},
      author = {Lecomte, Florence and Wach, Nathalie},
      title = {Le complexe motivique de {D}e {R}ham},
      journal = {Manuscripta Math.},
      fjournal = {Manuscripta Mathematica},
      volume = {129},
      year = {2009},
      number = {1},
      pages = {75--90},
      issn = {0025-2611},
      coden = {MSMHB2},
      mrclass = {14F40 (14C15)},
      mrnumber = {2496957},
      mrreviewer = {Feng-Wen An},
      doi = {10.1007/s00229-008-0248-x},
      zblnumber = {1190.14020},
      }
  • [survey-mixed] Go to document M. Levine, "Mixed motives," in Handbook of $K$-Theory. Vol. 1, 2, New York: Springer-Verlag, 2005, pp. 429-521.
    @incollection{survey-mixed, mrkey = {2181828},
      author = {Levine, Marc},
      title = {Mixed motives},
      booktitle = {Handbook of {$K$}-Theory. {V}ol. 1, 2},
      pages = {429--521},
      publisher = {Springer-Verlag},
      year = {2005},
      mrclass = {14F42 (14C15 18E30 19E15)},
      mrnumber = {2181828},
      mrreviewer = {Annette Huber},
      doi = {10.1007/3-540-27855-9_10},
      address = {New York},
      zblnumber = {1112.14020},
      }
  • [smooth-mot] M. Levine, "Smooth motives," in Motives and Algebraic Cycles, Amer. Math. Soc., Providence, RI, 2009, vol. 56, pp. 175-231.
    @incollection{smooth-mot, mrkey = {2562459},
      author = {Levine, Marc},
      title = {Smooth motives},
      booktitle = {Motives and Algebraic Cycles},
      series = {Fields Inst. Commun.},
      volume = {56},
      pages = {175--231},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2009},
      mrclass = {14C15 (14C25 14F42 19E08 19E15 55P42)},
      mrnumber = {2562459},
      mrreviewer = {Daniel C. Isaksen},
      zblnumber = {1183.14016},
      }
  • [lecture-note-motivic] C. Mazza, V. Voevodsky, and C. Weibel, Lecture Notes on Motivic Cohomology, Providence, RI: Amer. Math. Soc., 2006, vol. 2.
    @book{lecture-note-motivic, mrkey = {2242284},
      author = {Mazza, Carlo and Voevodsky, Vladimir and Weibel, Charles},
      title = {Lecture Notes on Motivic Cohomology},
      series = {Clay Math. Monog.},
      volume = {2},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2006},
      pages = {xiv+216},
      isbn = {978-0-8218-3847-1; 0-8218-3847-4},
      mrclass = {14F42 (19E15)},
      mrnumber = {2242284},
      mrreviewer = {Thomas Geisser},
      zblnumber = {1115.14010},
      }
  • [Oliv-Paul-Arne] Go to document O. Röndigs and P. A. Østvaer, "Modules over Motivic cohomology," Adv. Math., vol. 219, iss. 2, pp. 689-727, 2008.
    @article{Oliv-Paul-Arne, mrkey = {2435654},
      author = {R{ö}ndigs, Oliver and {\O}stv{æ}r, Paul Arne},
      title = {Modules over Motivic cohomology},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {219},
      year = {2008},
      number = {2},
      pages = {689--727},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {14F42 (55U35)},
      mrnumber = {2435654},
      mrreviewer = {Christian Haesemeyer},
      doi = {10.1016/j.aim.2008.05.013},
      zblnumber = {1180.14015},
      }
  • [serre-tate] Go to document . J-P. Serre and J. Tate, "Good reduction of abelian varieties," Ann. of Math., vol. 88, pp. 492-517, 1968.
    @article{serre-tate, mrkey = {0236190},
      author = {Serre, {\relax J-P} and Tate, John},
      title = {Good reduction of abelian varieties},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {88},
      year = {1968},
      pages = {492--517},
      issn = {0003-486X},
      mrclass = {14.51},
      mrnumber = {0236190},
      mrreviewer = {M. J. Greenberg},
      doi = {10.2307/1970722},
      zblnumber = {0172.46101},
      }
  • [cancellation-theorem] V. Voevodsky, "Cancellation theorem," Doc. Math., pp. 671-685, 2010.
    @article{cancellation-theorem, mrkey = {2804268},
      author = {Voevodsky, Vladimir},
      title = {Cancellation theorem},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      year = {2010},
      note = {Extra volume$:$ Andrei A. Suslin sixtieth birthday},
      pages = {671--685},
      issn = {1431-0635},
      mrclass = {14F42 (19E15)},
      mrnumber = {2804268},
      mrreviewer = {Oliver R{ö}ndigs},
      zblnumber = {1202.14022},
      }
  • [voev-mot-simpl-sch] Go to document V. Voevodsky, "Motives over simplicial schemes," J. K-Theory, vol. 5, iss. 1, pp. 1-38, 2010.
    @article{voev-mot-simpl-sch, mrkey = {2600283},
      author = {Voevodsky, Vladimir},
      title = {Motives over simplicial schemes},
      journal = {J. K-Theory},
      fjournal = {Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis \& Topology},
      volume = {5},
      year = {2010},
      number = {1},
      pages = {1--38},
      issn = {1865-2433},
      mrclass = {14F42 (19E15)},
      mrnumber = {2600283},
      mrreviewer = {Thomas Geisser},
      doi = {10.1017/is010001030jkt107},
      zblnumber = {1194.14029},
      }

Authors

Joseph Ayoub

Institut für Mathematik Universität Zürich, Zürich, Switzerland
CNRS LAGA Université Paris 13, Villetaneuse France