Abstract
Generalizing the notion of Newton polytope, we define the Newton-Okounkov body, respectively, for semigroups of integral points, graded algebras and linear series on varieties. We prove that any semigroup in the lattice $\mathbb{Z}^n$ is asymptotically approximated by the semigroup of all the points in a sublattice and lying in a convex cone. Applying this we obtain several results. We show that for a large class of graded algebras, the Hilbert functions have polynomial growth and their growth coefficients satisfy a Brunn-Minkowski type inequality. We prove analogues of the Fujita approximation theorem for semigroups of integral points and graded algebras, which imply a generalization of this theorem for arbitrary linear series. Applications to intersection theory include a far-reaching generalization of the Kushnirenko theorem (from Newton polytope theory) and a new version of the Hodge inequality. We also give elementary proofs of the Alexandrov-Fenchel inequality in convex geometry and its analogue in algebraic geometry.