Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory

Abstract

Generalizing the notion of Newton polytope, we define the Newton-Okounkov body, respectively, for semigroups of integral points, graded algebras and linear series on varieties. We prove that any semigroup in the lattice $\mathbb{Z}^n$ is asymptotically approximated by the semigroup of all the points in a sublattice and lying in a convex cone. Applying this we obtain several results. We show that for a large class of graded algebras, the Hilbert functions have polynomial growth and their growth coefficients satisfy a Brunn-Minkowski type inequality. We prove analogues of the Fujita approximation theorem for semigroups of integral points and graded algebras, which imply a generalization of this theorem for arbitrary linear series. Applications to intersection theory include a far-reaching generalization of the Kushnirenko theorem (from Newton polytope theory) and a new version of the Hodge inequality. We also give elementary proofs of the Alexandrov-Fenchel inequality in convex geometry and its analogue in algebraic geometry.

  • [Anderson] D. Anderson, Okounkov bodies and toric degenerations.
    @misc{Anderson,
      author={Anderson, D.},
      TITLE={Okounkov bodies and toric degenerations},
      ARXIV={1001.4566},
     }
  • [Arnold] Go to document V. I. Arnold, "Higher-dimensional continued fractions," Regul. Chaotic Dyn., vol. 3, iss. 3, pp. 10-17, 1998.
    @article {Arnold, MRKEY = {1704965},
      AUTHOR = {Arnold, V. I.},
      TITLE = {Higher-dimensional continued fractions},
      JOURNAL = {Regul. Chaotic Dyn.},
      FJOURNAL = {Regular \& Chaotic Dynamics. Regulyarnaya \& Khaoticheskaya Dinamika},
      VOLUME = {3},
      YEAR = {1998},
      NUMBER = {3},
      PAGES = {10--17},
      ISSN = {1560-3547},
      MRCLASS = {11A55 (11J70 13A99 52B70)},
      MRNUMBER = {1704965},
      MRREVIEWER = {Thomas A. Schmidt},
      DOI = {10.1070/rd1998v003n03ABEH000076},
      ZBLNUMBER = {1044.11596},
      }
  • [Bernstein] D. N. Bernstein, "The number of roots of a system of equations," Functional Anal. Appl., vol. 9, iss. 3, pp. 183-185, 1976.
    @article {Bernstein, MRKEY = {0435072},
      AUTHOR = {Bernstein, D. N.},
      TITLE = {The number of roots of a system of equations},
      JOURNAL = {Functional Anal. Appl.},
      FJOURNAL = {Akademija Nauk SSSR. Funkcional$'$nyi Analiz i ego Priloženija},
      VOLUME = {9},
      YEAR = {1976},
      NUMBER = {3},
      PAGES = {183--185},
      ISSN = {0374-1990},
      MRCLASS = {14B99 (12E99 58C25)},
      MRNUMBER = {0435072},
      MRREVIEWER = {A. H. Wallace},
      ZBLCOMMENT = {BIBPROC: YEAR doesn't match found ZBLNUMBER},
      ZBLNUMBER = {0328.32001},
      }
  • [BC] Go to document S. Boucksom and H. Chen, "Okounkov bodies of filtered linear series," Compos. Math., vol. 147, iss. 4, pp. 1205-1229, 2011.
    @article {BC, MRKEY = {2822867},
      AUTHOR = {Boucksom, S{é}bastien and Chen, Huayi},
      TITLE = {Okounkov bodies of filtered linear series},
      JOURNAL = {Compos. Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {147},
      YEAR = {2011},
      NUMBER = {4},
      PAGES = {1205--1229},
      ISSN = {0010-437X},
      MRCLASS = {14G25 (11G50)},
      MRNUMBER = {2822867},
      DOI = {10.1112/S0010437X11005355},
      ZBLNUMBER = {1231.14020},
      }
  • [Burago-Zalgaller] Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, New York: Springer-Verlag, 1988, vol. 285.
    @book {Burago-Zalgaller, MRKEY = {0936419},
      AUTHOR = {Burago, Yu. D. and Zalgaller, V. A.},
      TITLE = {Geometric Inequalities},
      SERIES = {Grundleheren Math. Wissen.},
      VOLUME = {285},
      NOTE = {translated from the Russian by A. B. Sosinski{\u\i},
      {\it Springer Series in Soviet Mathematics}},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1988},
      PAGES = {xiv+331},
      ISBN = {3-540-13615-0},
      MRCLASS = {52A40 (53-02)},
      MRNUMBER = {0936419},
      ZBLNUMBER = {0633.53002},
      }
  • [Askold-Chulkov] S. Chulkov and A. G. Khovanskii, Geometry of Semigroup $\mathbb{Z}^n_{\geq 0}$ and its Appearances in Combinatorics, Algebra and Differential Equations, Moscow: MCMME, 2006.
    @book{Askold-Chulkov,
      author={Chulkov, S. and Khovanskii, A. G.},
      TITLE={Geometry of Semigroup {$\mathbb{Z}^n_{\geq 0}$} and its Appearances in Combinatorics, Algebra and Differential Equations},
      PUBLISHER={MCMME},
      ADDRESS={Moscow},
      YEAR={2006},
     }
  • [Eisenbud] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, New York: Springer-Verlag, 1995, vol. 150.
    @book {Eisenbud, MRKEY = {1322960},
      AUTHOR = {Eisenbud, David},
      TITLE = {Commutative Algebra. With a View Toward Algebraic Geometry},
      SERIES = {Grad. Texts in Math.},
      VOLUME = {150},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1995},
      PAGES = {xvi+785},
      ISBN = {0-387-94268-8; 0-387-94269-6},
      MRCLASS = {13-01 (14A05)},
      MRNUMBER = {1322960},
      MRREVIEWER = {Matthew Miller},
      ZBLNUMBER = {0819.13001},
      }
  • [Fujita] Go to document T. Fujita, "Approximating Zariski decomposition of big line bundles," Kodai Math. J., vol. 17, iss. 1, pp. 1-3, 1994.
    @article {Fujita, MRKEY = {1262949},
      AUTHOR = {Fujita, Takao},
      TITLE = {Approximating {Z}ariski decomposition of big line bundles},
      JOURNAL = {Kodai Math. J.},
      FJOURNAL = {Kodai Mathematical Journal},
      VOLUME = {17},
      YEAR = {1994},
      NUMBER = {1},
      PAGES = {1--3},
      ISSN = {0386-5991},
      MRCLASS = {14J60 (14C20)},
      MRNUMBER = {1262949},
      MRREVIEWER = {Yves Laszlo},
      DOI = {10.2996/kmj/1138039894},
      ZBLNUMBER = {0814.14006},
      }
  • [Hartshorne] R. Hartshorne, Algebraic Geometry, New York: Springer-Verlag, 1977, vol. 52.
    @book {Hartshorne, MRKEY = {0463157},
      AUTHOR = {Hartshorne, Robin},
      TITLE = {Algebraic Geometry},
      SERIES = {Grad. Texts in Math.},
      VOLUME={52},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1977},
      PAGES = {xvi+496},
      ISBN = {0-387-90244-9},
      MRCLASS = {14-01},
      MRNUMBER = {0463157},
      MRREVIEWER = {Robert Speiser},
      ZBLNUMBER = {0367.14001},
      }
  • [Jacobson] N. Jacobson, Basic Algebra. II, San Francisco, CA: W. H. Freeman and Co., 1980.
    @book {Jacobson, MRKEY = {0571884},
      AUTHOR = {Jacobson, Nathan},
      TITLE = {Basic Algebra. {II}},
      PUBLISHER = {W. H. Freeman and Co.},
      ADDRESS = {San Francisco, CA},
      YEAR = {1980},
      PAGES = {xix+666},
      ISBN = {0-7167-1079-X},
      MRCLASS = {00A05},
      MRNUMBER = {0571884},
      MRREVIEWER = {M. F. Smiley},
      ZBLNUMBER = {0441.16001},
      }
  • [Jow] Go to document S. Jow, "Okounkov bodies and restricted volumes along very general curves," Adv. Math., vol. 223, iss. 4, pp. 1356-1371, 2010.
    @article {Jow, MRKEY = {2581374},
      AUTHOR = {Jow, Shin-Yao},
      TITLE = {Okounkov bodies and restricted volumes along very general curves},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {223},
      YEAR = {2010},
      NUMBER = {4},
      PAGES = {1356--1371},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {14C20},
      MRNUMBER = {2581374},
      MRREVIEWER = {Antonio Lanteri},
      DOI = {10.1016/j.aim.2009.09.015},
      ZBLNUMBER = {1187.14012},
      }
  • [Askold-Kiumars-arXiv-1] K. Kaveh and A. G. Khovanskii, Convex bodies and algebraic equations on affine varieties.
    @misc{Askold-Kiumars-arXiv-1,
      author = {Kaveh, Kiumars and Khovanskii, A. G.},
      TITLE = {Convex bodies and algebraic equations on affine varieties},
      ARXIV={0804.4095},
      SORTYEAR={2008},
     }
  • [Askold-Kiumars-arXiv-2] Go to document K. Kaveh and A. G. Khovanskii, "Mixed volume and an extension of intersection theory of divisors," Mosc. Math. J., vol. 10, iss. 2, pp. 343-375, 2010.
    @article {Askold-Kiumars-arXiv-2, MRKEY = {2722802},
      AUTHOR = {Kaveh, Kiumars and Khovanskii, A. G.},
      TITLE = {Mixed volume and an extension of intersection theory of divisors},
      JOURNAL = {Mosc. Math. J.},
      FJOURNAL = {Moscow Mathematical Journal},
      VOLUME = {10},
      YEAR = {2010},
      NUMBER = {2},
      PAGES = {343--375},
      ISSN = {1609-3321},
      MRCLASS = {14C20 (14E05 52A39)},
      MRNUMBER = {2722802},
      MRREVIEWER = {Joaquim Ro{é}},
      ZBLNUMBER = {05938487},
      URL={http://www.ams.org/distribution/mmj/vol10-2-2010/cont10-2-2010.html},
     }
  • [Askold-Kiumars-Kaz] Go to document K. Kaveh and A. G. Khovanskii, "Moment polytopes, semigroup of representations and Kazarnovskii’s theorem," J. Fixed Point Theory Appl., vol. 7, iss. 2, pp. 401-417, 2010.
    @article {Askold-Kiumars-Kaz, MRKEY = {2729398},
      AUTHOR = {Kaveh, Kiumars and Khovanskii, A. G.},
      TITLE = {Moment polytopes, semigroup of representations and {K}azarnovskii's theorem},
      JOURNAL = {J. Fixed Point Theory Appl.},
      FJOURNAL = {Journal of Fixed Point Theory and Applications},
      VOLUME = {7},
      YEAR = {2010},
      NUMBER = {2},
      PAGES = {401--417},
      ISSN = {1661-7738},
      MRCLASS = {20G05 (05E10)},
      MRNUMBER = {2729398},
      MRREVIEWER = {Anthony Henderson},
      DOI = {10.1007/s11784-010-0027-7},
      ZBLNUMBER = {1205.14059},
      }
  • [Askold-Kiumars-horo] Go to document K. Kaveh and A. G. Khovanskii, "Newton polytopes for horospherical spaces," Mosc. Math. J., vol. 11, iss. 2, pp. 265-283, 407, 2011.
    @article {Askold-Kiumars-horo, MRKEY = {2859237},
      AUTHOR = {Kaveh, Kiumars and Khovanskii, A. G.},
      TITLE = {Newton polytopes for horospherical spaces},
      JOURNAL = {Mosc. Math. J.},
      FJOURNAL = {Moscow Mathematical Journal},
      VOLUME = {11},
      YEAR = {2011},
      NUMBER = {2},
      PAGES = {265--283, 407},
      ISSN = {1609-3321},
      MRCLASS = {14M17 (14M25)},
      MRNUMBER = {2859237},
      URL={http://www.ams.org/distribution/mmj/vol11-2-2011/cont11-2-2011.html},
     }
  • [Askold-Kiumars-reductive] Go to document K. Kaveh and A. G. Khovanskii, "Convex bodies associated to actions of reductive groups," Mosc. Math. J., vol. 12, pp. 369-396, 2012.
    @article{Askold-Kiumars-reductive,
      author={Kaveh, Kiumars and Khovanskii, A. G.},
      TITLE = {Convex bodies associated to actions of reductive groups},
      JOURNAL={Mosc. Math. J.},
      VOLUME={12},
      PAGES={369--396},
      YEAR={2012},
      URL={http://www.ams.org/distribution/mmj/vol12-2-2012/cont12-2-2012.html},
     }
  • [Askold-BZ] A. G. Khovanskii, "Algebra and mixed volumes," in Geometric Inequalities, New York: Springer-Verlag, 1988, vol. 285, pp. 182-207.
    @incollection {Askold-BZ, MRKEY = {0936419},
      AUTHOR = {Khovanskii, A. G.},
      TITLE={Algebra and mixed volumes},
      BOOKTITLE = {Geometric Inequalities},
      SERIES = {Grundlehren Math. Wissen.},
      VOLUME = {285},
      NOTE = {translated from the Russian by A. B. Sosinski{\u\i},
      {\it Springer Series in Soviet Mathematics}},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1988},
      PAGES = {182--207},
      ISBN = {3-540-13615-0},
      MRCLASS = {52A40 (53-02)},
      MRNUMBER = {0936419},
      ZBLNUMBER = {0633.53002},
      }
  • [Askold-Hilbert-poly] Go to document A. G. Khovanskii, "The Newton polytope, the Hilbert polynomial and sums of finite sets," Funktsional. Anal. i Prilozhen., vol. 26, iss. 4, pp. 57-63, 96, 1992.
    @article {Askold-Hilbert-poly, MRKEY = {1209944},
      AUTHOR = {Khovanskii, A. G.},
      TITLE = {The {N}ewton polytope, the {H}ilbert polynomial and sums of finite sets},
      JOURNAL = {Funktsional. Anal. i Prilozhen.},
      FJOURNAL = {Rossiĭskaya Akademiya Nauk. Funktsional$'$nyĭAnaliz i ego Prilozheniya},
      VOLUME = {26},
      YEAR = {1992},
      NUMBER = {4},
      PAGES = {57--63, 96},
      ISSN = {0374-1990},
      MRCLASS = {14M25 (20M14 52B20)},
      MRNUMBER = {1209944},
      MRREVIEWER = {Aleksandr G. Aleksandrov},
      DOI = {10.1007/BF01075048},
      NOTE={translated in {\it Funct. Anal. Appl.} {\bf 26} (1992), 276--281},
      }
  • [Askold-finite-sets] Go to document A. G. Khovanskii, "Sums of finite sets, orbits of commutative semigroups and Hilbert functions," Funktsional. Anal. i Prilozhen., vol. 29, iss. 2, pp. 36-50, 95, 1995.
    @article {Askold-finite-sets, MRKEY = {1340302},
      AUTHOR = {Khovanskii, A. G.},
      TITLE = {Sums of finite sets, orbits of commutative semigroups and {H}ilbert functions},
      JOURNAL = {Funktsional. Anal. i Prilozhen.},
      FJOURNAL = {Rossiĭskaya Akademiya Nauk. Funktsional$'$nyĭAnaliz i ego Prilozheniya},
      VOLUME = {29},
      YEAR = {1995},
      NUMBER = {2},
      PAGES = {36--50, 95},
      ISSN = {0374-1990},
      MRCLASS = {20M14 (06F20 13D40)},
      MRNUMBER = {1340302},
      MRREVIEWER = {V. L. Popov},
      DOI = {10.1007/BF01080008},
      NOTE={translated in {\it Funct. Anal. Appl.} {\bf 29} (1995), 109--112},
      }
  • [Askold-Hilbert-function] A. G. Khovanskii, "Intersection theory and Hilbert function," Funct. Anal. Appl., vol. 45, pp. 305-315, 2011.
    @article{Askold-Hilbert-function,
      author = {Khovanskii, A. G.},
      TITLE = {Intersection theory and {H}ilbert function},
      JOURNAL={Funct. Anal. Appl.},
      VOLUME={45},
      YEAR={2011},
      PAGES={305--315},
      NOTE={translation in {\it Funct. Anal. Appl.} {\bf 45} (2011), 305--315},
      }
  • [Askold-convex-families] Go to document A. G. Khovanskii, "Completion of convex families of convex bodies," Mat. Zametki, vol. 91, pp. 440-458, 2012.
    @article{Askold-convex-families,
      author = {Khovanskii, A. G.},
      TITLE = {Completion of convex families of convex bodies},
      JOURNAL={Mat. Zametki},
      VOLUME={91},
      PAGES={440--458},
      YEAR={2012},
      NOTE={translation in {\it Math. Notes} {\bf 91} (2012), 415--429},
      DOI = {10.1134/S000143461203011X},
     }
  • [Kuronya] Go to document A. Kuronya, V. Lozovanu, and C. Maclean, "Convex bodies appearing as Okounkov bodies of divisors," Adv. Math., vol. 229, pp. 2622-2639, 2012.
    @article{Kuronya,
      author={Kuronya, A. and Lozovanu, V. and Maclean, C.},
      TITLE={Convex bodies appearing as {O}kounkov bodies of divisors},
      JOURNAL={Adv. Math.},
      VOLUME={229},
      YEAR={2012},
      PAGES={2622--2639},
      DOI = {10.1016/j.aim.2012.01.013},
     }
  • [Kushnirenko] A. G. Kouchnirenko, "Polyèdres de Newton et nombres de Milnor," Invent. Math., vol. 32, iss. 1, pp. 1-31, 1976.
    @article {Kushnirenko, MRKEY = {0419433},
      AUTHOR = {Kouchnirenko, A. G.},
      TITLE = {Polyèdres de {N}ewton et nombres de {M}ilnor},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {32},
      YEAR = {1976},
      NUMBER = {1},
      PAGES = {1--31},
      ISSN = {0020-9910},
      MRCLASS = {14B05},
      MRNUMBER = {0419433},
      MRREVIEWER = {H. B. Laufer},
      }
  • [Lazarsfeld] Go to document R. Lazarsfeld, Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series, New York: Springer-Verlag, 2004, vol. 48.
    @book {Lazarsfeld, MRKEY = {2095471},
      AUTHOR = {Lazarsfeld, Robert},
      TITLE = {Positivity in Algebraic Geometry. {I}. Classical Setting: Line Bundles and Linear Series},
      SERIES = {Ergeb. Math. Grenzgeb.},
      VOLUME = {48},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {2004},
      PAGES = {xviii+387},
      ISBN = {3-540-22533-1},
      MRCLASS = {14-02 (14C20)},
      MRNUMBER = {2095471},
      MRREVIEWER = {Mihnea Popa},
      DOI = {10.1007/978-3-642-18808-4},
      ZBLNUMBER = {1093.14501},
      }
  • [Lazarsfeld-Mustata] R. Lazarsfeld and M. Mustata, "Convex bodies associated to linear series," Ann. Sci. Éc. Norm. Supér., vol. 42, iss. 5, pp. 783-835, 2009.
    @article {Lazarsfeld-Mustata, MRKEY = {2571958},
      AUTHOR = {Lazarsfeld, Robert and Mustata, Mircea},
      TITLE = {Convex bodies associated to linear series},
      JOURNAL = {Ann. Sci. Éc. Norm. Supér.},
      FJOURNAL = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      VOLUME = {42},
      YEAR = {2009},
      NUMBER = {5},
      PAGES = {783--835},
      ISSN = {0012-9593},
      MRCLASS = {14C20 (14E05)},
      MRNUMBER = {2571958},
      MRREVIEWER = {Zach Teitler},
      ZBLNUMBER = {1182.14004},
      }
  • [Nystrom] D. W. Nystrom, Transforming metrics on a line bundle to the Okounkov body.
    @misc{Nystrom,
      author={Nystrom, D. W.},
      TITLE={Transforming metrics on a line bundle to the {O}kounkov body},
      ARXIV={0903.5167},
     }
  • [Okounkov-Brunn-Minkowski] Go to document A. Okounkov, "Brunn-Minkowski inequality for multiplicities," Invent. Math., vol. 125, iss. 3, pp. 405-411, 1996.
    @article {Okounkov-Brunn-Minkowski, MRKEY = {1400312},
      AUTHOR = {Okounkov, Andrei},
      TITLE = {Brunn-{M}inkowski inequality for multiplicities},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {125},
      YEAR = {1996},
      NUMBER = {3},
      PAGES = {405--411},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {58F05 (14L30 52B11 58F06)},
      MRNUMBER = {1400312},
      DOI = {10.1007/s002220050081},
      ZBLNUMBER = {0893.52004},
      }
  • [Okounkov-log-concave] A. Okounkov, "Why would multiplicities be log-concave?," in The Orbit Method in Geometry and Physics, Boston, MA: Birkhäuser, 2003, vol. 213, pp. 329-347.
    @incollection {Okounkov-log-concave, MRKEY = {1995384},
      AUTHOR = {Okounkov, Andrei},
      TITLE = {Why would multiplicities be log-concave?},
      BOOKTITLE = {The Orbit Method in Geometry and Physics},
      VENUE={{M}arseille, 2000},
      SERIES = {Progr. Math.},
      VOLUME = {213},
      PAGES = {329--347},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {2003},
      MRCLASS = {20C35 (82B10)},
      MRNUMBER = {1995384},
      MRREVIEWER = {Nick Yu. Reshetikhin},
      ZBLNUMBER = {1063.22024},
      }
  • [Parshin] Go to document A. N. Parshin, "Chern classes, adèles and $L$-functions," J. Reine Angew. Math., vol. 341, pp. 174-192, 1983.
    @article {Parshin, MRKEY = {0697316},
      AUTHOR = {Parshin, A. N.},
      TITLE = {Chern classes, adèles and {$L$}-functions},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {341},
      YEAR = {1983},
      PAGES = {174--192},
      ISSN = {0075-4102},
      CODEN = {JRMAA8},
      MRCLASS = {14F20 (11G25 11G40 14J20)},
      MRNUMBER = {0697316},
      MRREVIEWER = {Gerd Faltings},
      DOI = {10.1515/crll.1983.341.174},
      ZBLNUMBER = {0518.14013},
      }
  • [Petersen] L. Petersen, Okounkov bodies of complexity-one $T$-varieties.
    @misc{Petersen,
      author={Petersen, L.},
      TITLE={Okounkov bodies of complexity-one {$T$}-varieties},
      ARXIV={1108.0632},
     }
  • [Zariski] O. Zariski and P. Samuel, Commutative Algebra. Vol. II, D. Van Nostrand Co., Princeton, NJ, 1960.
    @book {Zariski, MRKEY = {0120249},
      AUTHOR = {Zariski, Oscar and Samuel, Pierre},
      TITLE = {Commutative Algebra. {V}ol. {II}},
      SERIES = {The University Series in Higher Mathematics},
      PUBLISHER = {D. Van Nostrand Co., Princeton, NJ},
      YEAR = {1960},
      PAGES = {x+414},
      MRCLASS = {16.00 (14.00)},
      MRNUMBER = {0120249},
      MRREVIEWER = {H. T. Muhly},
      ZBLNUMBER = {0121.27801},
      }
  • [Teissier] B. Teissier, "Du théorème de l’index de Hodge aux inégalités isopérimétriques," C. R. Acad. Sci. Paris Sér. A-B, vol. 288, iss. 4, p. a287-a289, 1979.
    @article {Teissier, MRKEY = {0524795},
      AUTHOR = {Teissier, Bernard},
      TITLE = {Du théorème de l'index de {H}odge aux inégalités isopérimétriques},
      JOURNAL = {C. R. Acad. Sci. Paris Sér. A-B},
      FJOURNAL = {Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Séries A et B},
      VOLUME = {288},
      YEAR = {1979},
      NUMBER = {4},
      PAGES = {A287--A289},
      ISSN = {0151-0509},
      CODEN = {CHASAP},
      MRCLASS = {14C17 (14M99 28A75 52A40)},
      MRNUMBER = {0524795},
      MRREVIEWER = {I. Dolgachev},
      ZBLNUMBER = {0406.14011},
     }
  • [Yuan] Go to document X. Yuan, "On volumes of arithmetic line bundles," Compos. Math., vol. 145, iss. 6, pp. 1447-1464, 2009.
    @article {Yuan, MRKEY = {2575090},
      AUTHOR = {Yuan, Xinyi},
      TITLE = {On volumes of arithmetic line bundles},
      JOURNAL = {Compos. Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {145},
      YEAR = {2009},
      NUMBER = {6},
      PAGES = {1447--1464},
      ISSN = {0010-437X},
      MRCLASS = {14G40 (11G35 11G50)},
      MRNUMBER = {2575090},
      MRREVIEWER = {Yuri Tschinkel},
      DOI = {10.1112/S0010437X0900428X},
      ZBLNUMBER = {1197.14023},
      }

Authors

Kiumars Kaveh

Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260

Askold Georgievich Khovanskii

Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St.,Toronto, Ontario, Canada M5S 2E4 and Moscow Independent University, Institute for Systems Analysis, Russian Academy of Sciences