Deforming three-manifolds with positive scalar curvature

Abstract

In this paper we prove that the moduli space of metrics with positive scalar curvature of an orientable compact three-manifold is path-connected. The proof uses the Ricci flow with surgery, the conformal method, and the connected sum construction of Gromov and Lawson. The work of Perelman on Hamilton’s Ricci flow is fundamental. As one of the applications we prove the path-connectedness of the space of trace-free asymptotically flat solutions to the vacuum Einstein constraint equations on $\mathbb{R}^3$.

  • [BARTNIKISENBERG04] R. Bartnik and J. Isenberg, "The constraint equations," in The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Basel: Birkhäuser, 2004, pp. 1-38.
    @incollection {BARTNIKISENBERG04, MRKEY = {2098912},
      AUTHOR = {Bartnik, Robert and Isenberg, Jim},
      TITLE = {The constraint equations},
      BOOKTITLE = {The {E}instein Equations and the Large Scale Behavior of Gravitational Fields},
      PAGES = {1--38},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Basel},
      YEAR = {2004},
      MRCLASS = {83C05},
      MRNUMBER = {2098912},
      MRREVIEWER = {Hans P. K{ü}nzle},
      ZBLNUMBER = {1073.83009},
      }
  • [BESSONetal08] Go to document L. Bessières, G. Besson, M. Boileau, S. Maillot, and J. Porti, "Collapsing irreducible 3-manifolds with nontrivial fundamental group," Invent. Math., vol. 179, iss. 2, pp. 435-460, 2010.
    @article {BESSONetal08, MRKEY = {2570121},
      AUTHOR = {Bessi{è}res, L. and Besson, G. and Boileau, M. and Maillot, S. and Porti, J.},
      TITLE = {Collapsing irreducible 3-manifolds with nontrivial fundamental group},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {179},
      YEAR = {2010},
      NUMBER = {2},
      PAGES = {435--460},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {53C23 (53C44 57M50 57N16)},
      MRNUMBER = {2570121},
      MRREVIEWER = {Darryl McCullough},
      DOI = {10.1007/s00222-009-0222-6},
      ZBLNUMBER = {1188.57013},
      }
  • [BESSONetal09] Go to document L. Bessières, G. Besson, S. Maillot, M. Boileau, and J. Porti, Geometrisation of 3-Manifolds, European Mathematical Society (EMS), Zürich, 2010, vol. 13.
    @book {BESSONetal09, MRKEY = {2683385},
      AUTHOR = {Bessi{è}res, Laurent and Besson, G{é}rard and Maillot, Sylvain and Boileau, Michel and Porti, Joan},
      TITLE = {Geometrisation of 3-Manifolds},
      SERIES = {EMS Tracts Math.},
      VOLUME = {13},
      PUBLISHER = {European Mathematical Society (EMS), Zürich},
      YEAR = {2010},
      PAGES = {x+237},
      ISBN = {978-3-03719-082-1},
      MRCLASS = {57M50 (53C44)},
      MRNUMBER = {2683385},
      MRREVIEWER = {Yu Ding},
      DOI = {10.4171/082},
      ZBLNUMBER = {05796326},
      }
  • [BOTVINNIKGILKEY96] Go to document B. Botvinnik and P. B. Gilkey, "Metrics of positive scalar curvature on spherical space forms," Canad. J. Math., vol. 48, iss. 1, pp. 64-80, 1996.
    @article {BOTVINNIKGILKEY96, MRKEY = {1382476},
      AUTHOR = {Botvinnik, Boris and Gilkey, Peter B.},
      TITLE = {Metrics of positive scalar curvature on spherical space forms},
      JOURNAL = {Canad. J. Math.},
      FJOURNAL = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      VOLUME = {48},
      YEAR = {1996},
      NUMBER = {1},
      PAGES = {64--80},
      ISSN = {0008-414X},
      CODEN = {CJMAAB},
      MRCLASS = {58G12 (53C21 55N22 57R15 57R57 58G25)},
      MRNUMBER = {1382476},
      MRREVIEWER = {Jonathan M. Rosenberg},
      DOI = {10.4153/CJM-1996-003-0},
      ZBLNUMBER = {0859.58026},
      }
  • [CAOZHU06] Go to document H. Cao and X. Zhu, "A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow," Asian J. Math., vol. 10, iss. 2, pp. 165-492, 2006.
    @article {CAOZHU06, MRKEY = {2233789},
      AUTHOR = {Cao, Huai-Dong and Zhu, Xi-Ping},
      TITLE = {A complete proof of the {P}oincaré and geometrization conjectures---application of the {H}amilton-{P}erelman theory of the {R}icci flow},
      JOURNAL = {Asian J. Math.},
      FJOURNAL = {Asian Journal of Mathematics},
      VOLUME = {10},
      YEAR = {2006},
      NUMBER = {2},
      PAGES = {165--492},
      ISSN = {1093-6106},
      MRCLASS = {53C44 (53C21 57M40 57M50)},
      MRNUMBER = {2233789},
      MRREVIEWER = {John Urbas},
      ZBLNUMBER = {1200.53057},
      URL = {http://www.intlpress.com/AJM/p/2006/10_2/AJM-10-2-165-492.pdf},
     }
  • [CARR88] Go to document R. Carr, "Construction of manifolds of positive scalar curvature," Trans. Amer. Math. Soc., vol. 307, iss. 1, pp. 63-74, 1988.
    @article {CARR88, MRKEY = {0936805},
      AUTHOR = {Carr, Rodney},
      TITLE = {Construction of manifolds of positive scalar curvature},
      JOURNAL = {Trans. Amer. Math. Soc.},
      FJOURNAL = {Transactions of the American Mathematical Society},
      VOLUME = {307},
      YEAR = {1988},
      NUMBER = {1},
      PAGES = {63--74},
      ISSN = {0002-9947},
      CODEN = {TAMTAM},
      MRCLASS = {53C20},
      MRNUMBER = {0936805},
      MRREVIEWER = {Viktor Schroeder},
      DOI = {10.2307/2000751},
      ZBLNUMBER = {0654.53049},
      }
  • [CERF68] Go to document J. Cerf, Sur les Difféomorphismes de la Sphère de Dimension Trois $(\Gamma _{4}=0)$, New York: Springer-Verlag, 1968, vol. 53.
    @book {CERF68, MRKEY = {0229250},
      AUTHOR = {Cerf, Jean},
      TITLE = {Sur les Difféomorphismes de la Sphère de Dimension Trois {$(\Gamma \sb{4}=0)$}},
      SERIES = {Lecture Notes in Math.},
      VOLUME={53},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1968},
      PAGES = {xii+133},
      MRCLASS = {57.31},
      MRNUMBER = {0229250},
      MRREVIEWER = {N. H. Kuiper},
      ZBLNUMBER = {0164.24502},
      DOI = {10.1007/BFb0060395},
     }
  • [CHENLUTIAN06] Go to document X. Chen, P. Lu, and G. Tian, "A note on uniformization of Riemann surfaces by Ricci flow," Proc. Amer. Math. Soc., vol. 134, iss. 11, pp. 3391-3393, 2006.
    @article {CHENLUTIAN06, MRKEY = {2231924},
      AUTHOR = {Chen, Xiuxiong and Lu, Peng and Tian, Gang},
      TITLE = {A note on uniformization of {R}iemann surfaces by {R}icci flow},
      JOURNAL = {Proc. Amer. Math. Soc.},
      FJOURNAL = {Proceedings of the American Mathematical Society},
      VOLUME = {134},
      YEAR = {2006},
      NUMBER = {11},
      PAGES = {3391--3393},
      ISSN = {0002-9939},
      CODEN = {PAMYAR},
      MRCLASS = {53C44},
      MRNUMBER = {2231924},
      MRREVIEWER = {Christine Guenther},
      DOI = {10.1090/S0002-9939-06-08360-2},
      ZBLNUMBER = {1113.53042},
      }
  • [CHOW91] Go to document B. Chow, "The Ricci flow on the $2$-sphere," J. Differential Geom., vol. 33, iss. 2, pp. 325-334, 1991.
    @article {CHOW91, MRKEY = {1094458},
      AUTHOR = {Chow, Bennett},
      TITLE = {The {R}icci flow on the {$2$}-sphere},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {33},
      YEAR = {1991},
      NUMBER = {2},
      PAGES = {325--334},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {53C21 (35K55 58G11 58G30)},
      MRNUMBER = {1094458},
      MRREVIEWER = {Thomas H. Otway},
      URL = {http://projecteuclid.org/euclid.jdg/1214446319},
      ZBLNUMBER = {0734.53033},
      }
  • [COLDINGMINICOZZI05] Go to document T. H. Colding and W. P. Minicozzi II, "Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman," J. Amer. Math. Soc., vol. 18, iss. 3, pp. 561-569, 2005.
    @article {COLDINGMINICOZZI05, MRKEY = {2138137},
      AUTHOR = {Colding, Tobias H. and Minicozzi, II, William P.},
      TITLE = {Estimates for the extinction time for the {R}icci flow on certain 3-manifolds and a question of {P}erelman},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {18},
      YEAR = {2005},
      NUMBER = {3},
      PAGES = {561--569},
      ISSN = {0894-0347},
      MRCLASS = {53C44},
      MRNUMBER = {2138137},
      MRREVIEWER = {James McCoy},
      DOI = {10.1090/S0894-0347-05-00486-8},
      ZBLNUMBER = {1083.53058},
      }
  • [DERHAM50] Go to document G. de Rham, "Complexes à automorphismes et homéomorphie différentiable," Ann. Inst. Fourier Grenoble, vol. 2, pp. 51-67 (1951), 1950.
    @article {DERHAM50, MRKEY = {0043468},
      AUTHOR = {de Rham, G.},
      TITLE = {Complexes à automorphismes et homéomorphie différentiable},
      JOURNAL = {Ann. Inst. Fourier Grenoble},
      FJOURNAL = {Université de Grenoble. Annales de l'Institut Fourier},
      VOLUME = {2},
      YEAR = {1950},
      PAGES = {51--67 (1951)},
      ISSN = {0373-0956},
      MRCLASS = {56.0X},
      MRNUMBER = {0043468},
      MRREVIEWER = {H. Samelson},
      ZBLNUMBER ={0043.17601},
      DOI = {10.5802/aif.19},
     }
  • [GROMOVLAWSON80] Go to document M. Gromov and B. H. Lawson Jr., "The classification of simply connected manifolds of positive scalar curvature," Ann. of Math., vol. 111, iss. 3, pp. 423-434, 1980.
    @article {GROMOVLAWSON80, MRKEY = {0577131},
      AUTHOR = {Gromov, Mikhael and Lawson, Jr., H. Blaine},
      TITLE = {The classification of simply connected manifolds of positive scalar curvature},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {111},
      YEAR = {1980},
      NUMBER = {3},
      PAGES = {423--434},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {53C15 (57R15)},
      MRNUMBER = {0577131},
      MRREVIEWER = {N. J. Hitchin},
      DOI = {10.2307/1971103},
      ZBLNUMBER = {0463.53025},
      }
  • [GROMOVLAWSON83] Go to document M. Gromov and B. H. Lawson Jr., "Positive scalar curvature and the Dirac operator on complete Riemannian manifolds," Inst. Hautes Études Sci. Publ. Math., iss. 58, pp. 83-196 (1984), 1983.
    @article {GROMOVLAWSON83, MRKEY = {0720933},
      AUTHOR = {Gromov, Mikhael and Lawson, Jr., H. Blaine},
      TITLE = {Positive scalar curvature and the {D}irac operator on complete {R}iemannian manifolds},
      JOURNAL = {Inst. Hautes Études Sci. Publ. Math.},
      FJOURNAL = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      NUMBER = {58},
      YEAR = {1983},
      PAGES = {83--196 (1984)},
      ISSN = {0073-8301},
      CODEN = {PMIHA6},
      MRCLASS = {58G10 (53C20 57N10 57R99)},
      MRNUMBER = {0720933},
      MRREVIEWER = {Howard D. Rees},
      URL = {http://www.numdam.org/item?id=PMIHES_1983__58__83_0},
      ZBLNUMBER = {0538.53047},
      }
  • [HAMILTON82] Go to document R. S. Hamilton, "Three-manifolds with positive Ricci curvature," J. Differential Geom., vol. 17, iss. 2, pp. 255-306, 1982.
    @article {HAMILTON82, MRKEY = {0664497},
      AUTHOR = {Hamilton, Richard S.},
      TITLE = {Three-manifolds with positive {R}icci curvature},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {17},
      YEAR = {1982},
      NUMBER = {2},
      PAGES = {255--306},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {53C25 (35K55 58G30)},
      MRNUMBER = {0664497},
      MRREVIEWER = {J. L. Kazdan},
      URL = {http://projecteuclid.org/euclid.jdg/1214436922},
      ZBLNUMBER = {0504.53034},
      }
  • [HAMILTON88] Go to document R. S. Hamilton, "The Ricci flow on surfaces," in Mathematics and General Relativity, Providence, RI: Amer. Math. Soc., 1988, vol. 71, pp. 237-262.
    @incollection {HAMILTON88, MRKEY = {0954419},
      AUTHOR = {Hamilton, Richard S.},
      TITLE = {The {R}icci flow on surfaces},
      BOOKTITLE = {Mathematics and General Relativity},
      VENUE={{S}anta {C}ruz, {CA},
      1986},
      SERIES = {Contemp. Math.},
      VOLUME = {71},
      PAGES = {237--262},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1988},
      MRCLASS = {53C20 (35K55 58G11)},
      MRNUMBER = {0954419},
      MRREVIEWER = {Dennis M. DeTurck},
      DOI = {10.1090/conm/071/954419},
      ZBLNUMBER = {0663.53031},
      }
  • [HAMILTON97] R. S. Hamilton, "Four-manifolds with positive isotropic curvature," Comm. Anal. Geom., vol. 5, iss. 1, pp. 1-92, 1997.
    @article {HAMILTON97, MRKEY = {1456308},
      AUTHOR = {Hamilton, Richard S.},
      TITLE = {Four-manifolds with positive isotropic curvature},
      JOURNAL = {Comm. Anal. Geom.},
      FJOURNAL = {Communications in Analysis and Geometry},
      VOLUME = {5},
      YEAR = {1997},
      NUMBER = {1},
      PAGES = {1--92},
      ISSN = {1019-8385},
      MRCLASS = {53C21 (53C20 57R99 58G11)},
      MRNUMBER = {1456308},
      MRREVIEWER = {Ben Andrews},
      ZBLNUMBER = {0892.53018},
      }
  • [HATCHER83] Go to document A. E. Hatcher, "A proof of the Smale conjecture, ${ Diff}(S^{3})\simeq { O}(4)$," Ann. of Math., vol. 117, iss. 3, pp. 553-607, 1983.
    @article {HATCHER83, MRKEY = {0701256},
      AUTHOR = {Hatcher, Allen E.},
      TITLE = {A proof of the {S}male conjecture, {${\rm Diff}(S\sp{3})\simeq {\rm O}(4)$}},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {117},
      YEAR = {1983},
      NUMBER = {3},
      PAGES = {553--607},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {57M99 (57S05)},
      MRNUMBER = {0701256},
      MRREVIEWER = {R. C. Kirby},
      DOI = {10.2307/2007035},
      ZBLNUMBER = {0531.57028},
      }
  • [HEMPEL04] J. Hempel, 3-manifolds, Providence, RI: AMS Chelsea Publishing, 2004.
    @book {HEMPEL04, MRKEY = {2098385},
      AUTHOR = {Hempel, John},
      TITLE = {3-manifolds},
      PUBLISHER = {AMS Chelsea Publishing},
      ADDRESS={Providence, RI},
      YEAR = {2004},
      PAGES = {xii+195},
      ISBN = {0-8218-3695-1},
      MRCLASS = {57N10},
      MRNUMBER = {2098385},
      ZBLNUMBER = {1058.57001},
      }
  • [HITCHIN74] Go to document N. Hitchin, "Harmonic spinors," Advances in Math., vol. 14, pp. 1-55, 1974.
    @article {HITCHIN74, MRKEY = {0358873},
      AUTHOR = {Hitchin, Nigel},
      TITLE = {Harmonic spinors},
      JOURNAL = {Advances in Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {14},
      YEAR = {1974},
      PAGES = {1--55},
      ISSN = {0001-8708},
      MRCLASS = {58G10 (14C30 32J25)},
      MRNUMBER = {0358873},
      MRREVIEWER = {F. Hirzebruch},
      ZBLNUMBER = {0284.58016},
      DOI = {10.1016/0001-8708(74)90021-8},
     }
  • [KLEINERLOTT08] Go to document B. Kleiner and J. Lott, "Notes on Perelman’s papers," Geom. Topol., vol. 12, iss. 5, pp. 2587-2855, 2008.
    @article {KLEINERLOTT08, MRKEY = {2460872},
      AUTHOR = {Kleiner, Bruce and Lott, John},
      TITLE = {Notes on {P}erelman's papers},
      JOURNAL = {Geom. Topol.},
      FJOURNAL = {Geometry \& Topology},
      VOLUME = {12},
      YEAR = {2008},
      NUMBER = {5},
      PAGES = {2587--2855},
      ISSN = {1465-3060},
      MRCLASS = {53C44 (57M40)},
      MRNUMBER = {2460872},
      MRREVIEWER = {G{é}rard Besson},
      DOI = {10.2140/gt.2008.12.2587},
      ZBLNUMBER = {1204.53033},
      }
  • [KRECKSTOLZ93] Go to document M. Kreck and S. Stolz, "Nonconnected moduli spaces of positive sectional curvature metrics," J. Amer. Math. Soc., vol. 6, iss. 4, pp. 825-850, 1993.
    @article {KRECKSTOLZ93, MRKEY = {1205446},
      AUTHOR = {Kreck, Matthias and Stolz, Stephan},
      TITLE = {Nonconnected moduli spaces of positive sectional curvature metrics},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {6},
      YEAR = {1993},
      NUMBER = {4},
      PAGES = {825--850},
      ISSN = {0894-0347},
      MRCLASS = {53C20 (53C21 57R20 58D27 58G10)},
      MRNUMBER = {1205446},
      DOI = {10.2307/2152742},
      ZBLNUMBER = {0793.53041},
      }
  • [KUIPER49] Go to document N. H. Kuiper, "On conformally-flat spaces in the large," Ann. of Math., vol. 50, pp. 916-924, 1949.
    @article {KUIPER49, MRKEY = {0031310},
      AUTHOR = {Kuiper, N. H.},
      TITLE = {On conformally-flat spaces in the large},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {50},
      YEAR = {1949},
      PAGES = {916--924},
      ISSN = {0003-486X},
      MRCLASS = {53.0X},
      MRNUMBER = {0031310},
      MRREVIEWER = {V. Hlavat{ý}},
      ZBLNUMBER = {0041.09303},
      DOI = {10.2307/1969587},
     }
  • [KUIPER50] Go to document N. H. Kuiper, "On compact conformally Euclidean spaces of dimension $>2$," Ann. of Math., vol. 52, pp. 478-490, 1950.
    @article {KUIPER50, MRKEY = {0037575},
      AUTHOR = {Kuiper, N. H.},
      TITLE = {On compact conformally {E}uclidean spaces of dimension {$>2$}},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {52},
      YEAR = {1950},
      PAGES = {478--490},
      ISSN = {0003-486X},
      MRCLASS = {53.0X},
      MRNUMBER = {0037575},
      MRREVIEWER = {J. A. Schouten},
      ZBLNUMBER = {0039.17701},
      DOI = {10.2307/1969480},
     }
  • [LEEPARKER87] Go to document J. M. Lee and T. H. Parker, "The Yamabe problem," Bull. Amer. Math. Soc., vol. 17, iss. 1, pp. 37-91, 1987.
    @article {LEEPARKER87, MRKEY = {0888880},
      AUTHOR = {Lee, John M. and Parker, Thomas H.},
      TITLE = {The {Y}amabe problem},
      JOURNAL = {Bull. Amer. Math. Soc.},
      FJOURNAL = {American Mathematical Society. Bulletin. New Series},
      VOLUME = {17},
      YEAR = {1987},
      NUMBER = {1},
      PAGES = {37--91},
      ISSN = {0273-0979},
      CODEN = {BAMOAD},
      MRCLASS = {53-02 (35J60 53A30 53C20 58E15 58G30)},
      MRNUMBER = {0888880},
      MRREVIEWER = {J. L. Kazdan},
      DOI = {10.1090/S0273-0979-1987-15514-5},
      ZBLNUMBER = {0633.53062},
      }
  • [MILNOR62] Go to document J. Milnor, "A unique decomposition theorem for $3$-manifolds," Amer. J. Math., vol. 84, pp. 1-7, 1962.
    @article {MILNOR62, MRKEY = {0142125},
      AUTHOR = {Milnor, J.},
      TITLE = {A unique decomposition theorem for {$3$}-manifolds},
      JOURNAL = {Amer. J. Math.},
      FJOURNAL = {American Journal of Mathematics},
      VOLUME = {84},
      YEAR = {1962},
      PAGES = {1--7},
      ISSN = {0002-9327},
      MRCLASS = {55.60},
      MRNUMBER = {0142125},
      MRREVIEWER = {O. G. Harrold},
      ZBLNUMBER = {0108.36501},
      DOI = {10.2307/2372800},
     }
  • [MORGANTIAN07] J. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture, Providence, RI: Amer. Math. Soc., 2007, vol. 3.
    @book{MORGANTIAN07,
      author={Morgan, J. and Tian, G.},
      TITLE={Ricci Flow and the {P}oincaré Conjecture},
      SERIES={Clay Math. Monogr.},
      VOLUME={3},
      PUBLISHER={Amer. Math. Soc.},
      ADDRESS={Providence, RI},
      YEAR={2007},
      ZBLNUMBER = {1179.57045},
     }
  • [MORGANTIAN08] J. Morgan and G. Tian, Completion of the proof of the geometrization conjecture, 2008.
    @misc{MORGANTIAN08,
      author={Morgan, J. and Tian, G.},
      TITLE={Completion of the proof of the geometrization conjecture},
      ARXIV={0809.4040v1},
      YEAR={2008},
     }
  • [MUNKRES60] J. Munkres, "Differentiable isotopies on the $2$-sphere," Michigan Math. J., vol. 7, pp. 193-197, 1960.
    @article {MUNKRES60, MRKEY = {0144354},
      AUTHOR = {Munkres, James},
      TITLE = {Differentiable isotopies on the {$2$}-sphere},
      JOURNAL = {Michigan Math. J.},
      FJOURNAL = {The Michigan Mathematical Journal},
      VOLUME = {7},
      YEAR = {1960},
      PAGES = {193--197},
      ISSN = {0026-2285},
      MRCLASS = {57.10 (57.20)},
      MRNUMBER = {0144354},
      MRREVIEWER = {P. Dedecker},
      ZBLNUMBER = {0108.18003},
      }
  • [NIRENBERG53] L. Nirenberg, "The Weyl and Minkowski problems in differential geometry in the large," Comm. Pure Appl. Math., vol. 6, pp. 337-394, 1953.
    @article {NIRENBERG53, MRKEY = {0058265},
      AUTHOR = {Nirenberg, Louis},
      TITLE = {The {W}eyl and {M}inkowski problems in differential geometry in the large},
      JOURNAL = {Comm. Pure Appl. Math.},
      FJOURNAL = {Communications on Pure and Applied Mathematics},
      VOLUME = {6},
      YEAR = {1953},
      PAGES = {337--394},
      ISSN = {0010-3640},
      MRCLASS = {53.0X},
      MRNUMBER = {0058265},
      MRREVIEWER = {H. Busemann},
      ZBLNUMBER = {0051.12402},
      }
  • [PALAIS59] Go to document R. S. Palais, "Natural operations on differential forms," Trans. Amer. Math. Soc., vol. 92, pp. 125-141, 1959.
    @article {PALAIS59, MRKEY = {0116352},
      AUTHOR = {Palais, Richard S.},
      TITLE = {Natural operations on differential forms},
      JOURNAL = {Trans. Amer. Math. Soc.},
      FJOURNAL = {Transactions of the American Mathematical Society},
      VOLUME = {92},
      YEAR = {1959},
      PAGES = {125--141},
      ISSN = {0002-9947},
      MRCLASS = {57.00 (53.00)},
      MRNUMBER = {0116352},
      MRREVIEWER = {G. Papy},
      ZBLNUMBER = {0092.30802},
      DOI = {10.1090/S0002-9947-1959-0116352-7},
     }
  • [PERELMAN02] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.
    @misc{PERELMAN02,
      author={Perelman, G.},
      TITLE={The entropy formula for the {R}icci flow and its geometric applications},
      ARXIV={math.DG/0211159},
      YEAR={2002},
     }
  • [PERELMAN03A] G. Perelman, Ricci flow with surgery on three-manifolds, 2003.
    @misc{PERELMAN03A,
      author={Perelman, G.},
      TITLE={Ricci flow with surgery on three-manifolds},
      ARXIV={math.DG/0303109},
      YEAR={2003},
     }
  • [PERELMAN03B] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003.
    @misc{PERELMAN03B,
      author={Perelman, G.},
      TITLE={Finite extinction time for the solutions to the {R}icci flow on certain three-manifolds},
      ARXIV={math.DG/0307245},
      YEAR={2003},
     }
  • [ROSENBERG07] J. Rosenberg, "Manifolds of positive scalar curvature: a progress report," in Surveys in Differential Geometry. Vol. XI, Somerville, MA: International Press, 2007, vol. 11, pp. 259-294.
    @incollection {ROSENBERG07, MRKEY = {2408269},
      AUTHOR = {Rosenberg, Jonathan},
      TITLE = {Manifolds of positive scalar curvature: a progress report},
      BOOKTITLE = {Surveys in Differential Geometry. {V}ol. {XI}},
      SERIES = {Surv. Differ. Geom.},
      VOLUME = {11},
      PAGES = {259--294},
      PUBLISHER = {International Press},
      ADDRESS={Somerville, MA},
      YEAR = {2007},
      MRCLASS = {58J28 (53C21 57R57 58J20)},
      MRNUMBER = {2408269},
      MRREVIEWER = {Thomas Schick},
      ZBLNUMBER = {1171.53028},
      }
  • [ROSENBERGSTOLZ01] J. Rosenberg and S. Stolz, "Metrics of positive scalar curvature and connections with surgery," in Surveys on Surgery Theory, Vol. 2, Princeton, NJ: Princeton Univ. Press, 2001, vol. 149, pp. 353-386.
    @incollection {ROSENBERGSTOLZ01, MRKEY = {1818778},
      AUTHOR = {Rosenberg, Jonathan and Stolz, Stephan},
      TITLE = {Metrics of positive scalar curvature and connections with surgery},
      BOOKTITLE = {Surveys on Surgery Theory, {V}ol. 2},
      SERIES = {Ann. of Math. Stud.},
      VOLUME = {149},
      PAGES = {353--386},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {2001},
      MRCLASS = {53C21 (53C27 57R65)},
      MRNUMBER = {1818778},
      MRREVIEWER = {Thomas Schick},
      ZBLNUMBER = {0971.57003},
      }
  • [SCHOENYAU79] Go to document R. Schoen and S. -T. Yau, "On the structure of manifolds with positive scalar curvature," Manuscripta Math., vol. 28, iss. 1-3, pp. 159-183, 1979.
    @article {SCHOENYAU79, MRKEY = {0535700},
      AUTHOR = {Schoen, R. and Yau, S.-T.},
      TITLE = {On the structure of manifolds with positive scalar curvature},
      JOURNAL = {Manuscripta Math.},
      FJOURNAL = {Manuscripta Mathematica},
      VOLUME = {28},
      YEAR = {1979},
      NUMBER = {1-3},
      PAGES = {159--183},
      ISSN = {0025-2611},
      CODEN = {MSMHB2},
      MRCLASS = {53C20 (58E20 83C99)},
      MRNUMBER = {0535700},
      MRREVIEWER = {Paul E. Ehrlich},
      DOI = {10.1007/BF01647970},
      ZBLNUMBER = {0423.53032},
      }
  • [SCHOENYAU79A] Go to document R. Schoen and S. -T. Yau, "Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature," Ann. of Math., vol. 110, iss. 1, pp. 127-142, 1979.
    @article {SCHOENYAU79A, MRKEY = {0541332},
      AUTHOR = {Schoen, R. and Yau, S.-T.},
      TITLE = {Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {110},
      YEAR = {1979},
      NUMBER = {1},
      PAGES = {127--142},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {58E12 (49F10 53C42)},
      MRNUMBER = {0541332},
      MRREVIEWER = {Jonathan Sacks},
      DOI = {10.2307/1971247},
      ZBLNUMBER = {0431.53051},
     }
  • [SCHOENYAU88] Go to document R. Schoen and S. -T. Yau, "Conformally flat manifolds, Kleinian groups and scalar curvature," Invent. Math., vol. 92, iss. 1, pp. 47-71, 1988.
    @article {SCHOENYAU88, MRKEY = {0931204},
      AUTHOR = {Schoen, R. and Yau, S.-T.},
      TITLE = {Conformally flat manifolds, {K}leinian groups and scalar curvature},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {92},
      YEAR = {1988},
      NUMBER = {1},
      PAGES = {47--71},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {58G30 (30F40 53C25 57R19)},
      MRNUMBER = {0931204},
      MRREVIEWER = {J. Lafontaine},
      DOI = {10.1007/BF01393992},
      ZBLNUMBER = {0658.53038},
      }
  • [SCHOENYAU94] R. Schoen and S. -T. Yau, Lectures on Differential Geometry, Cambridge, MA: International Press, 1994, vol. I.
    @book {SCHOENYAU94, MRKEY = {1333601},
      AUTHOR = {Schoen, R. and Yau, S.-T.},
      TITLE = {Lectures on Differential Geometry},
      SERIES = {Conf. Proc. Lect. Notes in Geometry and Topology},
      VOLUME={I},
      PUBLISHER = {International Press},
      ADDRESS = {Cambridge, MA},
      YEAR = {1994},
      PAGES = {v+235},
      ISBN = {1-57146-012-8},
      MRCLASS = {53-01 (53-02 53C21 58G30)},
      MRNUMBER = {1333601},
      MRREVIEWER = {Man Chun Leung},
      ZBLNUMBER = {0830.53001},
      }
  • [SMALE59] Go to document S. Smale, "Diffeomorphisms of the $2$-sphere," Proc. Amer. Math. Soc., vol. 10, pp. 621-626, 1959.
    @article {SMALE59, MRKEY = {0112149},
      AUTHOR = {Smale, Stephen},
      TITLE = {Diffeomorphisms of the {$2$}-sphere},
      JOURNAL = {Proc. Amer. Math. Soc.},
      FJOURNAL = {Proceedings of the American Mathematical Society},
      VOLUME = {10},
      YEAR = {1959},
      PAGES = {621--626},
      ISSN = {0002-9939},
      MRCLASS = {57.00},
      MRNUMBER = {0112149},
      MRREVIEWER = {G. T. Whyburn},
      ZBLNUMBER = {0118.39103},
      DOI = {10.2307/2033664},
     }
  • [SMITHWEINSTEIN04] Go to document B. Smith and G. Weinstein, "Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature," Comm. Anal. Geom., vol. 12, iss. 3, pp. 511-551, 2004.
    @article {SMITHWEINSTEIN04, MRKEY = {2128602},
      AUTHOR = {Smith, Brian and Weinstein, Gilbert},
      TITLE = {Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature},
      JOURNAL = {Comm. Anal. Geom.},
      FJOURNAL = {Communications in Analysis and Geometry},
      VOLUME = {12},
      YEAR = {2004},
      NUMBER = {3},
      PAGES = {511--551},
      ISSN = {1019-8385},
      MRCLASS = {53C12 (53C21)},
      MRNUMBER = {2128602},
      MRREVIEWER = {Lars {\AA}ke Andersson},
      URL = {http://www.intlpress.com/CAG/2004/12-3/CAG_12_511_551.pdf},
      ZBLNUMBER = {1073.53039},
      }
  • [TANNO73] S. Tanno, "Compact conformally flat Riemannian manifolds," J. Differential Geometry, vol. 8, pp. 71-74, 1973.
    @article {TANNO73, MRKEY = {0358626},
      AUTHOR = {Tanno, Sh{û}kichi},
      TITLE = {Compact conformally flat {R}iemannian manifolds},
      JOURNAL = {J. Differential Geometry},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {8},
      YEAR = {1973},
      PAGES = {71--74},
      ISSN = {0022-040X},
      MRCLASS = {53C20},
      MRNUMBER = {0358626},
      MRREVIEWER = {Y. Katsurada},
      ZBLNUMBER = {0278.53033},
      }
  • [WEYL16] H. Weyl, "Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement," Vierteljahrsschr. Naturforsch. Ges. Zr, vol. 61, pp. 40-72, 1916.
    @article{WEYL16,
      author={Weyl, H.},
      TITLE={{Ü}ber die Bestimmung einer geschlossenen konvexen {F}l{ä}che durch ihr {L}inienelement},
      JOURNAL={Vierteljahrsschr. Naturforsch. Ges. Zür},
      VOLUME={61},
      PAGES={40--72},
      YEAR={1916},
      JFMNUMBER = {46.1115.03},
     }

Authors

Fernando C. Marques

Instituto de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina 110
22460-320 Rio de Janeiro
Brazil