Imaginary geometry III: reversibility of $\mathrm{SLE}_\kappa$ for $\kappa \in (4,8)$

Abstract

Suppose that $D \subseteq \mathbf{C}$ is a Jordan domain and $x,y \in \partial D$ are distinct. Fix $\kappa \in (4,8)$, and let $\eta$ be an $\mathrm{SLE}_\kappa$ process from $x$ to $y$ in $D$. We prove that the law of the time-reversal of $\eta$ is, up to reparametrization, an $\mathrm{SLE}_\kappa$ process from $y$ to $x$ in $D$. More generally, we prove that $\mathrm{SLE}_\kappa(\rho_1;\rho_2)$ processes are reversible if and only if both $\rho_i$ are at least $\kappa/2-4$, which is the critical threshold at or below which such curves are boundary filling.
Our result supplies the missing ingredient needed to show that for all $\kappa \in (4,8)$, the so-called conformal loop ensembles $\mathrm{CLE}_\kappa$ are canonically defined, with almost surely continuous loops. It also provides an interesting way to couple two Gaussian free fields (with different boundary conditions) so that their difference is piecewise constant and the boundaries between the constant regions are $\mathrm{SLE}_\kappa$ curves.

Note: To view the article, click on the URL link for the DOI number.

  • [BAD96] Go to document G. Ben Arous and J. -D. Deuschel, "The construction of the $(d+1)$-dimensional Gaussian droplet," Comm. Math. Phys., vol. 179, iss. 2, pp. 467-488, 1996.
    @article{BAD96, mrkey = {1400748},
      author = {Ben Arous, G. and Deuschel, J.-D.},
      title = {The construction of the {$(d+1)$}-dimensional {G}aussian droplet},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {179},
      year = {1996},
      number = {2},
      pages = {467--488},
      issn = {0010-3616},
      coden = {CMPHAY},
      mrclass = {60G60 (60F10 60G15 60K35 82B24)},
      mrnumber = {1400748},
      mrreviewer = {B. S. Nahapetian},
      doi = {10.1007/BF02102597},
      zblnumber = {0858.60096},
      }
  • [CN06] Go to document F. Camia and C. M. Newman, "Two-dimensional critical percolation: the full scaling limit," Comm. Math. Phys., vol. 268, iss. 1, pp. 1-38, 2006.
    @article{CN06, mrkey = {2249794},
      author = {Camia, Federico and Newman, Charles M.},
      title = {Two-dimensional critical percolation: the full scaling limit},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {268},
      year = {2006},
      number = {1},
      pages = {1--38},
      issn = {0010-3616},
      coden = {CMPHAY},
      mrclass = {82B43 (60K35)},
      mrnumber = {2249794},
      mrreviewer = {Christophe Garban},
      doi = {10.1007/s00220-006-0086-1},
      zblnumber = {1117.60086},
      }
  • [CS10U] Go to document D. Chelkak and S. Smirnov, "Universality in the 2D Ising model and conformal invariance of fermionic observables," Invent. Math., vol. 189, iss. 3, pp. 515-580, 2012.
    @article{CS10U, mrkey = {2957303},
      author = {Chelkak, Dmitry and Smirnov, Stanislav},
      title = {Universality in the 2{D} {I}sing model and conformal invariance of fermionic observables},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {189},
      year = {2012},
      number = {3},
      pages = {515--580},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {82B20 (30C20 30C35 60J67 60K35)},
      mrnumber = {2957303},
      mrreviewer = {Ben Dyhr},
      doi = {10.1007/s00222-011-0371-2},
      zblnumber = {1257.82020},
      }
  • [DUB_COMM] Go to document J. Dubédat, "Commutation relations for Schramm-Loewner evolutions," Comm. Pure Appl. Math., vol. 60, iss. 12, pp. 1792-1847, 2007.
    @article{DUB_COMM, mrkey = {2358649},
      author = {Dub{é}dat, Julien},
      title = {Commutation relations for {S}chramm-{L}oewner evolutions},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {60},
      year = {2007},
      number = {12},
      pages = {1792--1847},
      issn = {0010-3640},
      coden = {CPAMA},
      mrclass = {60G17 (60J65)},
      mrnumber = {2358649},
      mrreviewer = {Robert Otto Bauer},
      doi = {10.1002/cpa.20191},
      zblnumber = {1137.82009},
      }
  • [DUB_DUAL] J. Dubédat, "Duality of Schramm-Loewner evolutions," Ann. Sci. Éc. Norm. Supér., vol. 42, iss. 5, pp. 697-724, 2009.
    @article{DUB_DUAL, mrkey = {2571956},
      author = {Dub{é}dat, Julien},
      title = {Duality of {S}chramm-{L}oewner evolutions},
      journal = {Ann. Sci. Éc. Norm. Supér.},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      volume = {42},
      year = {2009},
      number = {5},
      pages = {697--724},
      issn = {0012-9593},
      mrclass = {60J67},
      mrnumber = {2571956},
      mrreviewer = {Dmitri B. Beliaev},
      zblnumber = {1205.60147},
      }
  • [DUB_PART] Go to document J. Dubédat, "SLE and the free field: partition functions and couplings," J. Amer. Math. Soc., vol. 22, iss. 4, pp. 995-1054, 2009.
    @article{DUB_PART, mrkey = {2525778},
      author = {Dub{é}dat, Julien},
      title = {S{LE} and the free field: partition functions and couplings},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {22},
      year = {2009},
      number = {4},
      pages = {995--1054},
      issn = {0894-0347},
      mrclass = {60J67 (60G17 60K35)},
      mrnumber = {2525778},
      mrreviewer = {Dmitri B. Beliaev},
      doi = {10.1090/S0894-0347-09-00636-5},
      zblnumber = {1204.60079},
      }
  • [HagendorfBauerBernard10] Go to document C. Hagendorf, D. Bernard, and M. Bauer, "The Gaussian free field and ${ SLE}_4$ on doubly connected domains," J. Stat. Phys., vol. 140, iss. 1, pp. 1-26, 2010.
    @article{HagendorfBauerBernard10, mrkey = {2651436},
      author = {Hagendorf, Christian and Bernard, Denis and Bauer, Michel},
      title = {The {G}aussian free field and {${\rm SLE}\sb 4$} on doubly connected domains},
      journal = {J. Stat. Phys.},
      fjournal = {Journal of Statistical Physics},
      volume = {140},
      year = {2010},
      number = {1},
      pages = {1--26},
      issn = {0022-4715},
      mrclass = {60J67 (81T40 82B41)},
      mrnumber = {2651436},
      doi = {10.1007/s10955-010-9980-1},
      zblnumber = {1193.82027},
      }
  • [IzyurovKytola10] Go to document K. Izyurov and K. Kytölä, "Hadamard’s formula and couplings of SLEs with free field," Probab. Theory Related Fields, vol. 155, iss. 1-2, pp. 35-69, 2013.
    @article{IzyurovKytola10, mrkey = {3010393},
      author = {Izyurov, Konstantin and Kyt{ö}l{ä},
      Kalle},
      title = {Hadamard's formula and couplings of {SLE}s with free field},
      journal = {Probab. Theory Related Fields},
      fjournal = {Probability Theory and Related Fields},
      volume = {155},
      year = {2013},
      number = {1-2},
      pages = {35--69},
      issn = {0178-8051},
      mrclass = {60J67 (35R60 60G60)},
      mrnumber = {3010393},
      mrreviewer = {Ben Dyhr},
      doi = {10.1007/s00440-011-0391-2},
      zblnumber = {1269.60067},
      }
  • [KEN01] Go to document R. Kenyon, "Dominos and the Gaussian free field," Ann. Probab., vol. 29, iss. 3, pp. 1128-1137, 2001.
    @article{KEN01, mrkey = {1872739},
      author = {Kenyon, Richard},
      title = {Dominos and the {G}aussian free field},
      journal = {Ann. Probab.},
      fjournal = {The Annals of Probability},
      volume = {29},
      year = {2001},
      number = {3},
      pages = {1128--1137},
      issn = {0091-1798},
      coden = {APBYAE},
      mrclass = {82B41 (60G60 82B20)},
      mrnumber = {1872739},
      mrreviewer = {Almut Burchard},
      doi = {10.1214/aop/1015345599},
      zblnumber = {1034.82021},
      }
  • [LAW05] G. F. Lawler, Conformally Invariant Processes in the Plane, Providence, RI: Amer. Math. Soc., 2005, vol. 114.
    @book{LAW05, mrkey = {2129588},
      author = {Lawler, Gregory F.},
      title = {Conformally Invariant Processes in the Plane},
      series = {Math. Surveys Monogr.},
      volume = {114},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2005},
      pages = {xii+242},
      isbn = {0-8218-3677-3},
      mrclass = {60-02 (30-02 30C35 31A15 60J65 81T40 82B27)},
      mrnumber = {2129588},
      mrreviewer = {Zhen-Qing Chen},
      zblnumber = {1074.60002},
      }
  • [LSW04] Go to document G. F. Lawler, O. Schramm, and W. Werner, "Conformal invariance of planar loop-erased random walks and uniform spanning trees," Ann. Probab., vol. 32, iss. 1B, pp. 939-995, 2004.
    @article{LSW04, mrkey = {2044671},
      author = {Lawler, Gregory F. and Schramm, Oded and Werner, Wendelin},
      title = {Conformal invariance of planar loop-erased random walks and uniform spanning trees},
      journal = {Ann. Probab.},
      fjournal = {The Annals of Probability},
      volume = {32},
      year = {2004},
      number = {1B},
      pages = {939--995},
      issn = {0091-1798},
      coden = {APBYAE},
      mrclass = {82B41 (60G50)},
      mrnumber = {2044671},
      mrreviewer = {Olivier Raimond},
      doi = {10.1214/aop/1079021469},
      zblnumber = {1126.82011},
      }
  • [MillerSLE] J. Miller, Universality for SLE(4), 2010.
    @misc{MillerSLE,
      author = {Miller, Jason},
      title = {Universality for {SLE(4)}},
      year = {2010},
      arxiv = {1010.1356},
      }
  • [MillerGLCLT] Go to document J. Miller, "Fluctuations for the Ginzburg-Landau $\nabla\phi$ interface model on a bounded domain," Comm. Math. Phys., vol. 308, iss. 3, pp. 591-639, 2011.
    @article{MillerGLCLT, mrkey = {2855536},
      author = {Miller, Jason},
      title = {Fluctuations for the {G}inzburg-{L}andau {$\nabla\phi$} interface model on a bounded domain},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {308},
      year = {2011},
      number = {3},
      pages = {591--639},
      issn = {0010-3616},
      coden = {CMPHAY},
      mrclass = {82B24 (60G60 60K35)},
      mrnumber = {2855536},
      mrreviewer = {Giambattista Giacomin},
      doi = {10.1007/s00220-011-1315-9},
      zblnumber = {1237.82030},
      }
  • [MakarovSmirnov09] Go to document N. Makarov and S. Smirnov, "Off-critical lattice models and massive SLEs," in XVIth International Congress on Mathematical Physics, Hackensack, NJ: World Sci. Publ., 2010, pp. 362-371.
    @incollection{MakarovSmirnov09, mrkey = {2730811},
      author = {Makarov, Nikolai and Smirnov, Stanislav},
      title = {Off-critical lattice models and massive {SLE}s},
      booktitle = {X{VI}th {I}nternational {C}ongress on {M}athematical {P}hysics},
      pages = {362--371},
      publisher = {World Sci. Publ.},
      address = {Hackensack, NJ},
      year = {2010},
      mrclass = {60J67 (30C35 60K35 82B27)},
      mrnumber = {2730811},
      mrreviewer = {B. L. Granovsky},
      doi = {10.1142/9789814304634_0024},
      zblnumber = {1205.82055},
     }
  • [MS_IMAG] J. Miller and S. Sheffield, Imaginary geometry I: Interacting SLEs, 2012.
    @misc{MS_IMAG,
      author = {Miller, Jason and Sheffield, Scott},
      title = {Imaginary geometry {I: I}nteracting {SLE}s},
      year = {2012},
      arxiv = {1201.1496},
      note = {to appear in \emph{Probab. Theory Related Fields}},
      }
  • [MS_IMAG2] J. Miller and S. Sheffield, Imaginary geometry II: Reversibility of SLE$_\kappa(\rho_1;\rho_2)$ for $\kappa \in (0,4)$, 2012.
    @misc{MS_IMAG2,
      author = {Miller, Jason and Sheffield, Scott},
      title = {Imaginary geometry {II: R}eversibility of {SLE}$_\kappa(\rho_1;\rho_2)$ for $\kappa \in (0,4)$},
      year = {2012},
      arxiv = {1201.1497},
      note = {to appear in \emph{Ann. Probab.}},
      }
  • [NS97] Go to document A. Naddaf and T. Spencer, "On homogenization and scaling limit of some gradient perturbations of a massless free field," Comm. Math. Phys., vol. 183, iss. 1, pp. 55-84, 1997.
    @article{NS97, mrkey = {1461951},
      author = {Naddaf, Ali and Spencer, Thomas},
      title = {On homogenization and scaling limit of some gradient perturbations of a massless free field},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {183},
      year = {1997},
      number = {1},
      pages = {55--84},
      issn = {0010-3616},
      coden = {CMPHAY},
      mrclass = {81T08 (81T27)},
      mrnumber = {1461951},
      mrreviewer = {A. L. Rebenko},
      doi = {10.1007/BF02509796},
      zblnumber = {0871.35010},
      }
  • [RS05] Go to document S. Rohde and O. Schramm, "Basic properties of SLE," Ann. of Math., vol. 161, iss. 2, pp. 883-924, 2005.
    @article{RS05, mrkey = {2153402},
      author = {Rohde, Steffen and Schramm, Oded},
      title = {Basic properties of {SLE}},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {161},
      year = {2005},
      number = {2},
      pages = {883--924},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {60K35 (28A80 60J55 60J65)},
      mrnumber = {2153402},
      mrreviewer = {Olivier Raimond},
      doi = {10.4007/annals.2005.161.883},
      zblnumber = {1081.60069},
      }
  • [RV08] Go to document B. Rider and B. Virág, "The noise in the circular law and the Gaussian free field," Int. Math. Res. Not., vol. 2007, iss. 2, p. I, 2007.
    @article{RV08, mrkey = {2361453},
      author = {Rider, Brian and Vir{á}g, B{á}lint},
      title = {The noise in the circular law and the {G}aussian free field},
      journal = {Int. Math. Res. Not.},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2007},
      number = {2},
      pages = {Art. ID rnm006, 33},
      issn = {1073-7928},
      mrclass = {60F05 (82B05)},
      mrnumber = {2361453},
      mrreviewer = {Peter Eichelsbacher},
      doi = {10.1093/imrn/rnm006},
      volume = {2007},
      zblnumber = {1130.60030},
      }
  • [S0] Go to document O. Schramm, "Scaling limits of loop-erased random walks and uniform spanning trees," Israel J. Math., vol. 118, pp. 221-288, 2000.
    @article{S0, mrkey = {1776084},
      author = {Schramm, Oded},
      title = {Scaling limits of loop-erased random walks and uniform spanning trees},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {118},
      year = {2000},
      pages = {221--288},
      issn = {0021-2172},
      coden = {ISJMAP},
      mrclass = {60K35 (30C85 60H15 82B27 82B44)},
      mrnumber = {1776084},
      mrreviewer = {Almut Burchard},
      doi = {10.1007/BF02803524},
      zblnumber = {0968.60093},
      }
  • [MR1871700] Go to document O. Schramm, "A percolation formula," Electron. Comm. Probab., vol. 6, pp. 115-120, 2001.
    @article{MR1871700, mrkey = {1871700},
      author = {Schramm, Oded},
      title = {A percolation formula},
      journal = {Electron. Comm. Probab.},
      fjournal = {Electronic Communications in Probability},
      volume = {6},
      year = {2001},
      pages = {115--120},
      issn = {1083-589X},
      mrclass = {60K35 (30C35)},
      mrnumber = {1871700},
      mrreviewer = {Sven Erick Alm},
      doi = {10.1214/ECP.v6-1041},
      zblnumber = {1008.60100},
      }
  • [She_SLE_lectures] S. Sheffield, Local sets of the Gaussian free field: slides and audio.
    @misc{She_SLE_lectures,
      author = {Sheffield, Scott},
      title = {Local sets of the {G}aussian free field: slides and audio},
      note = {available at \url{http://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield1/},
      \url{http://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield2/},
      \url{http://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield3/}},
      SORTYEAR={2015},
      }
  • [SHE_CLE] Go to document S. Sheffield, "Exploration trees and conformal loop ensembles," Duke Math. J., vol. 147, iss. 1, pp. 79-129, 2009.
    @article{SHE_CLE, mrkey = {2494457},
      author = {Sheffield, Scott},
      title = {Exploration trees and conformal loop ensembles},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {147},
      year = {2009},
      number = {1},
      pages = {79--129},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {60J67 (60D05)},
      mrnumber = {2494457},
      mrreviewer = {Robert Otto Bauer},
      doi = {10.1215/00127094-2009-007},
      zblnumber = {1170.60008},
      }
  • [2010arXiv1012.4797S] S. Sheffield, Conformal weldings of random surfaces: SLE and the quantum gravity zipper, 2010.
    @misc{2010arXiv1012.4797S,
      author = {Sheffield, Scott},
      title = {Conformal weldings of random surfaces: {SLE} and the quantum gravity zipper},
      year = {2010},
      arxiv = {1012.4797},
      note={to appear in {\em Ann. Probab.}},
      }
  • [S01] Go to document S. Smirnov, "Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits," C. R. Acad. Sci. Paris Sér. I Math., vol. 333, iss. 3, pp. 239-244, 2001.
    @article{S01, mrkey = {1851632},
      author = {Smirnov, Stanislav},
      title = {Critical percolation in the plane: conformal invariance, {C}ardy's formula, scaling limits},
      journal = {C. R. Acad. Sci. Paris Sér. I Math.},
      fjournal = {Comptes Rendus de l'Académie des Sciences. Série I. Mathématique},
      volume = {333},
      year = {2001},
      number = {3},
      pages = {239--244},
      issn = {0764-4442},
      coden = {CASMEI},
      mrclass = {60K35 (82B43)},
      mrnumber = {1851632},
      doi = {10.1016/S0764-4442(01)01991-7},
      zblnumber = {0985.60090},
      }
  • [S07] Go to document S. Smirnov, "Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model," Ann. of Math., vol. 172, iss. 2, pp. 1435-1467, 2010.
    @article{S07, mrkey = {2680496},
      author = {Smirnov, Stanislav},
      title = {Conformal invariance in random cluster models. {I}. {H}olomorphic fermions in the {I}sing model},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {172},
      year = {2010},
      number = {2},
      pages = {1435--1467},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {60K35 (30G25 60J67 81T40 82B20)},
      mrnumber = {2680496},
      mrreviewer = {Roland M. Friedrich},
      doi = {10.4007/annals.2010.172.1441},
      zblnumber = {1200.82011},
      }
  • [SS05] Go to document O. Schramm and S. Sheffield, "Harmonic explorer and its convergence to ${ SLE}_4$," Ann. Probab., vol. 33, iss. 6, pp. 2127-2148, 2005.
    @article{SS05, mrkey = {2184093},
      author = {Schramm, Oded and Sheffield, Scott},
      title = {Harmonic explorer and its convergence to {${\rm SLE}\sb 4$}},
      journal = {Ann. Probab.},
      fjournal = {The Annals of Probability},
      volume = {33},
      year = {2005},
      number = {6},
      pages = {2127--2148},
      issn = {0091-1798},
      coden = {APBYAE},
      mrclass = {60D05 (82B43)},
      mrnumber = {2184093},
      mrreviewer = {Dimitri Petritis},
      doi = {10.1214/009117905000000477},
      zblnumber = {1095.60007},
      }
  • [SS09] Go to document O. Schramm and S. Sheffield, "Contour lines of the two-dimensional discrete Gaussian free field," Acta Math., vol. 202, iss. 1, pp. 21-137, 2009.
    @article{SS09, mrkey = {2486487},
      author = {Schramm, Oded and Sheffield, Scott},
      title = {Contour lines of the two-dimensional discrete {G}aussian free field},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {202},
      year = {2009},
      number = {1},
      pages = {21--137},
      issn = {0001-5962},
      coden = {ACMAA8},
      mrclass = {60J67 (60D05 60G17 60K35)},
      mrnumber = {2486487},
      mrreviewer = {Julien Dub{é}dat},
      doi = {10.1007/s11511-009-0034-y},
      zblnumber = {1210.60051},
      }
  • [SchrammShe10] Go to document O. Schramm and S. Sheffield, "A contour line of the continuum Gaussian free field," Probab. Theory Related Fields, vol. 157, iss. 1-2, pp. 47-80, 2013.
    @article{SchrammShe10, mrkey = {3101840},
      author = {Schramm, Oded and Sheffield, Scott},
      title = {A contour line of the continuum {G}aussian free field},
      journal = {Probab. Theory Related Fields},
      fjournal = {Probability Theory and Related Fields},
      volume = {157},
      year = {2013},
      number = {1-2},
      pages = {47--80},
      issn = {0178-8051},
      mrclass = {60J67 (60G15)},
      mrnumber = {3101840},
      mrreviewer = {Fredrik Johansson Viklund},
      doi = {10.1007/s00440-012-0449-9},
      zblnumber = {06223076},
      }
  • [SHE_WER_CLE] Go to document S. Sheffield and W. Werner, "Conformal loop ensembles: the Markovian characterization and the loop-soup construction," Ann. of Math., vol. 176, iss. 3, pp. 1827-1917, 2012.
    @article{SHE_WER_CLE, mrkey = {2979861},
      author = {Sheffield, Scott and Werner, Wendelin},
      title = {Conformal loop ensembles: the {M}arkovian characterization and the loop-soup construction},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {176},
      year = {2012},
      number = {3},
      pages = {1827--1917},
      issn = {0003-486X},
      mrclass = {60J67},
      mrnumber = {2979861},
      mrreviewer = {Zhen-Qing Chen},
      doi = {10.4007/annals.2012.176.3.8},
      zblnumber = {1271.60090},
      }
  • [W03] Go to document W. Werner, "Random planar curves and Schramm-Loewner evolutions," in Lectures on Probability Theory and Statistics, New York: Springer-Verlag, 2004, vol. 1840, pp. 107-195.
    @incollection{W03, mrkey = {2079672},
      author = {Werner, Wendelin},
      title = {Random planar curves and {S}chramm-{L}oewner evolutions},
      booktitle = {Lectures on Probability Theory and Statistics},
      series = {Lecture Notes in Math.},
      volume = {1840},
      pages = {107--195},
      publisher = {Springer-Verlag},
      year = {2004},
      mrclass = {60D05 (28A80 60J65 60K35 82B20 82B27 82B41)},
      mrnumber = {2079672},
      mrreviewer = {Almut Burchard},
      doi = {10.1007/978-3-540-39982-7_2},
      address = {New York},
      zblnumber = {1057.60078},
      }
  • [Z_R_KAPPA] Go to document D. Zhan, "Reversibility of chordal SLE," Ann. Probab., vol. 36, iss. 4, pp. 1472-1494, 2008.
    @article{Z_R_KAPPA, mrkey = {2435856},
      author = {Zhan, Dapeng},
      title = {Reversibility of chordal {SLE}},
      journal = {Ann. Probab.},
      fjournal = {The Annals of Probability},
      volume = {36},
      year = {2008},
      number = {4},
      pages = {1472--1494},
      issn = {0091-1798},
      coden = {APBYAE},
      mrclass = {60J67},
      mrnumber = {2435856},
      mrreviewer = {Robert Otto Bauer},
      doi = {10.1214/07-AOP366},
      zblnumber = {1157.60051},
      }
  • [Z_R_KAPPA_RHO] Go to document D. Zhan, "Reversibility of some chordal ${ SLE}(\kappa;\rho)$ traces," J. Stat. Phys., vol. 139, iss. 6, pp. 1013-1032, 2010.
    @article{Z_R_KAPPA_RHO, mrkey = {2646499},
      author = {Zhan, Dapeng},
      title = {Reversibility of some chordal {${\rm SLE}(\kappa;\rho)$} traces},
      journal = {J. Stat. Phys.},
      fjournal = {Journal of Statistical Physics},
      volume = {139},
      year = {2010},
      number = {6},
      pages = {1013--1032},
      issn = {0022-4715},
      mrclass = {60J67},
      mrnumber = {2646499},
      mrreviewer = {Joan R. Lind},
      doi = {10.1007/s10955-010-9978-8},
      zblnumber = {1205.82063},
      }

Authors

Jason Miller

University of Cambridge, Cambridge, United Kingdom

Scott Sheffield

Massachusetts Institute of Technology, Cambridge, MA