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A proof of Onsager’s conjecture

By Philip Isett

Abstract

For any α < 1/3, we construct weak solutions to the 3D incompressible

Euler equations in the class CtC
α
x that have nonempty, compact support

in time on R × T3 and therefore fail to conserve the total kinetic energy.

This result, together with the proof of energy conservation for α > 1/3 due

to [Eyink] and [Constantin, E, Titi], solves Onsager’s conjecture that the

exponent α = 1/3 marks the threshold for conservation of energy for weak

solutions in the class L∞t C
α
x . The previous best results were solutions in the

class CtC
α
x for α < 1/5, due to [Isett], and in the class L1

tC
α
x for α < 1/3 due

to [Buckmaster, De Lellis, Székelyhidi], both based on the method of convex

integration developed for the incompressible Euler equations by [De Lellis,

Székelyhidi]. The present proof combines the method of convex integration

and a new “Gluing Approximation” technique. The convex integration part

of the proof relies on the “Mikado flows” introduced by [Daneri, Székelyhidi]

and the framework of estimates developed in the author’s previous work.
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Part 1. Introduction

In this work, we consider weak solutions to the 3D incompressible Euler

equations (posed on a periodic domain), which we write using the Einstein

summation convention and in divergence form as

(1) ∂tv
` +∇j(vjv`) +∇`p = 0, ∇jvj = 0.
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For continuous velocity and pressure fields v : R×T3→R3, p : R×T3→R, being

a weak solution to (1) is equivalent to (1) holding in the sense of distributions,

or to the equations

d

dt

∫
Ω
v(t, x) dx =

∫
∂Ω
v(t, x)(v · n) dS +

∫
∂Ω
p(t, x)ndS,(2) ∫

∂Ω
v(t, x) · n(x) dS = 0(3)

holding (as continuous functions of t ∈ R) for all smooth subregions Ω ⊆ T3,

where n = n(x) is the inward unit normal vector field on the boundary ∂Ω,

and dS = dS(x) is the surface measure on the boundary. Equations (2)–

(3) express the balance of momentum and balance of mass for the portion of

an incompressible fluid occupying the region Ω, and they are equivalent to

(1) holding pointwise for solutions that are continuously differentiable. More

detailed discussions of the concept of a weak solution and its physical meaning

can be found in [DLS13a].

For C1 solutions to (1) on a periodic domain, one can prove that any

solution on a time interval I is uniquely determined by its values v(t0, x) at a

single initial time t0 ∈ I, and that the total kinetic energy :=
∫
T3

1
2 |v|

2(t, x)dx

is a constant function of time (i.e., v conserves energy). However, the simple

proofs of these results do not apply to weak solutions and, in fact, it has

been known since the startling discovery of Sheffer [Sch93] and later works

of [Shn97], [Shn00] that general distributional solutions to (1) in the class

v ∈ L2
t,x(R× R2) may fail to be unique, may fail to conserve energy, and may

even have compact support or have strictly decreasing total kinetic energy.

A longstanding open question has been to determine what degree(s) of

regularity must be assumed to guarantee uniqueness or conservation of energy

for weak solutions to (1). A folklore conjecture is that uniqueness should

fail when v ∈ C1 is replaced by v ∈ CtC
α
x for some α < 1. Regarding the

conservation of energy, one has the following conjecture, which originates from

a 1949 paper by the physicist and chemist Lars Onsager [Ons49]:

Conjecture 1 (Onsager’s conjecture, positive direction). If α > 1/3,

then (on a periodic domain and a time interval I), every weak solution to (1)

that satisfies the Hölder condition

|v(t, x+ ∆x)− v(t, x)| ≤ C|∆x|α for all t ∈ I,∆x ∈ R3

for some C ≥ 0 must satisfy the conservation of energy (i.e.,
∫
T3

1
2 |v|

2(t, x) dx

is constant in time).

Conjecture 2 (Onsager’s conjecture, negative direction). For every α <

1/3, there exist (periodic) weak solutions to (1) that satisfy (1) (in other words,

v ∈ L∞t C
α
x ) such that the conservation of energy fails (i.e.,

∫
T3

1
2 |v|

2(t, x)dx

fails to be constant in time).
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Onsager’s interest in the possibility of Conjecture 2 came from an effort

to explain the primary mechanism driving “anomalous dissipation of energy”

in turbulence in terms of “energy cascades” that are modeled by the advective

term present in the incompressible Euler equations rather than the viscosity

that is present in the Navier-Stokes equations. He asserted that Conjecture 1

was true to emphasize that, if anomalous dissipation of energy were indeed

possible for solutions to the Euler equations, one would have to consider so-

lutions with low regularity. (Onsager’s notion of “weak solution” was based

on an equivalent definition in terms of Fourier series.) For further discussion

of Onsager’s conjecture and its significance in turbulence theory, we refer to

[DLS13a], [ES06], [BT13], [Shv10]. See also [CSF12] and the references therein

for work on model equations for the energy cascade in the Navier-Stokes equa-

tions.

Following the proof of a slightly weaker version of Conjecture 1 by [Eyi94],

the positive direction of Onsager’s conjecture was proven by [CET94] using a

very short argument. The sharpest result available, obtained in [CCFS08],

proves conservation of energy for solutions in the class L3
tB

1/3
3,c(N) ∩ CtL

2
x (on

either Tn or Rn) where B
1/3
3,c(N) denotes the closure of C∞c in the Besov space1

B
1/3
3,∞. This result allows for the possibility that the failure of energy con-

servation in Conjecture 2 may also hold in the endpoint case α = 1/3, and

[Eyi94], [CCFS08] provide examples that suggests that fluctuations in kinetic

energy should indeed be possible for α = 1/3. We refer also to [DR00], [Shv09],

[IO16a], [CLFNLS15], [RRS16] for extensions of these results and alternative

proofs.

The first results towards the negative direction of Onsager’s conjecture

came in a breakthrough series of papers by De Lellis and Székelyhidi [DLS13b],

[DLS14] wherein the authors proved that the failure of energy conservation in

Conjecture 2 is possible for solutions in L∞t C
α
x if α < 1/10. To achieve this

result, the authors adapted a method known as “convex integration” — which

has its origins in the work of Nash on constructing paradoxical C1 isometric

embeddings [Nas54] — to the (very different) setting of the incompressible

Euler equations (1). (See the survey [DLS15] for a thorough discussion.) Their

method involves explicitly constructing the velocity field v by adding a series of

increasingly high frequency, divergence free waves that are specially designed

as perturbations of a family of stationary solutions to 3D Euler known as

“Beltrami flows.” See [CDLS12], [Cho13] for extensions to dimension 2.

1Functions in B
1/3
3,∞ have, roughly speaking, 1/3 of a derivative in the spatial variables in

a sense measured by an L3 type norm, rather than the supremum type bound in (1). See

[CCFS08] for a precise definition.
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In [Ise13a], the author introduced improvements to the convex integration

scheme of [DLS13b], [DLS14] and established Conjecture 2 in the range α <

1/5. (See also [BDLS13], [BDLIS15] for a shorter proof that includes a result

on the existence of anomalous dissipation.) A central theme of the above

improvements concerns how to deal with the transport of high frequency waves

in the construction by a low frequency velocity field, and the importance of

improved estimates for the advective derivative ∂t + v · ∇ as part of improving

the regularity of the scheme. In [Ise13a], the author also presented a conjectural

“Ideal Case Scenario” that would imply Onsager’s conjecture, and investigated

the potential for convex integration to achieve this scenario if the method could

be sufficiently improved.

Another direction of research aimed at improvements towards Conjec-

ture 2 in weaker topologies was initiated by the work of Buckmaster [Buc15],

who constructed CtC
1/5−ε
x solutions that fail to conserve energy such that for

almost every t ∈ R, the velocity field has Onsager critical spatial regularity

v(t, ·) ∈ C
1/3−ε
x . Using a more involved construction, Buckmaster, De Lellis

and Székelyhidi [BDLS16] improved this result to obtain continuous solutions

in the class v ∈ L1
tC

1/3−ε
x (which means that (1) holds with α = 1/3 − ε

not for all t ∈ I, but with a constant C(t) depending on time such that∫
I |C(t)|dt < ∞). A possible target of this direction of research suggested in

[BDLS16] could be to obtain solutions in a class such as v ∈ L3
tC

1/3−ε
x , as this

class would be borderline with the L3 type spaces L3
tB

1/3
3,c0(N) in which one is able

to prove energy conservation as in [CET94], [CCFS08]. However, obtaining im-

provements in the uniform topologies L∞t C
α
x — with respect to which Conjec-

ture 2 is formulated above — appears to be far out of reach of these methods.

Our main theorem is the following, which implies a complete solution to

the negative direction of Onsager’s conjecture, Conjecture 2.

Theorem 1. For any α < 1/3, there is a nonzero weak solution to in-

compressible Euler in the class2

v ∈ Cαt,x(R× (R/Z)3), p ∈ C2α
t,x(R× (R/Z)3)

such that v is identically 0 outside a finite time interval. In particular, the

solution v above fails to conserve energy.

The strategy of proof for Theorem 1 will be to construct an iteration

scheme that establishes the key estimates of the Ideal Case Scenario conjec-

tured in [Ise13a, §§10, 13]. As in the previous works on Onsager’s conjecture

described above, a large part of this iteration scheme will be based on the

2We write f ∈ Cαt,x if there exists C ≥ 0 such that |f(t + ∆t, x + ∆x) − f(t, x)| ≤
C(|∆t|+ |∆x|)α uniformly in t, x,∆t,∆x.
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method of convex integration. We will rely, in particular, on the framework of

estimates developed in [Ise13a], which had been designed originally to poten-

tially achieve the Ideal Case Scenario.

One of the main difficulties in convex integration is how to control the

interference terms that arise when different high frequency waves in the con-

struction interact with each other through the nonlinear term in the equation.

Following a suggestion of P. Constantin, the idea in [DLS13b], [DLS14] that

turned out to be key for addressing this difficulty was to find a way to design

high frequency waves in the construction using “Beltrami flows” — a certain

family of stationary solutions to 3D incompressible Euler. A version of these

Beltrami flows (modified to be well adapted to the ambient velocity field of

the construction) also played a key role in the proof in [Ise13a], but in that

treatment they suffered a deficiency that controlling the high frequency inter-

ference terms between Beltrami flows required very sharp cutoffs in time that

ultimately limited the regularity of the construction to 1/5 rather than 1/3.

A key idea in the convex integration part of this work, which comes from

a recent paper of Daneri and Székelyhidi [DS16], is to use Mikado flows as an

alternative to Beltrami flows to build the waves in the construction. Mikado

flows (see Section 11 below) are stationary solutions to Euler built by adding

together “straight-pipe” flows supported in disjoint cylinders that point in

multiple directions. The key difference between Mikado flows and Beltrami

flows is that a Mikado flow on its own does not generate unacceptable error

terms over a sufficiently long time scale, even when it is made to be well adapted

to the ambient velocity field as was done in [DS16]. The main difficulty in using

Mikado flows to improve the regularity of solutions is that there seems to be

no way to control the interference terms that arise when distinct Mikado flow-

based waves interact with each other over the time scale one requires to improve

the regularity. For the h-principle application in [DS16], it was sufficient to use

only a single Mikado flow-based wave, and so no interaction terms were present;

however, to produce solutions using an iterative convex integration scheme,

one requires an unbounded number of waves, since the time scale during which

each high-frequency wave remains coherent shrinks to zero as the frequencies

become large. To improve on the regularity 1/5, one must be able to control

the interference between these waves over a sufficiently long time scale.

Our new method to address this difficulty of distinct wave interference is

the following. Applying convex integration directly would mean generating a

sequence of Euler-Reynolds flows (v, p,R)(k) (see Definition 2.1 below), where

the kth error in solving the Euler equation, called R(k), tends to 0 uniformly

and has compact support in time contained in an interval (say, [0, 1]). Given

(v, p,R)(k), we first find a new Euler-Reynolds flow (ṽ, p̃, R̃)(k) that is an ac-

ceptably small perturbation of the original (v, p,R)(k) obeying essentially the
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same estimates, such that the new error R̃ decomposes as a sum R̃ =
∑
I RI

such that the RI are supported in short time intervals that are well separated

from each other. After this procedure (which we call a “Gluing Approximation

technique”), we can apply convex integration to (ṽ, p̃, R̃)(k) by using a single

Mikado-flow based wave to eliminate each RI up to a small error that is con-

sistent with the Ideal Case Scenario. The distinct Mikado flow-based waves

will not interact at all in the convex integration due to their supports being

well separated in time.

The challenge of this technique is to construct the (ṽ, p̃, R̃)(k) such that

all of the desired estimates will hold over the desired time scale (which is fairly

long). Our method for proving the existence and necessary estimates for the

new (ṽ, p̃, R̃) exploits a special structure in the linearization of the Euler and

Euler-Reynolds equations to achieve this goal. This important structure is

highlighted in more detail towards the end of Section 7 below.

With the confirmation of Onsager’s conjecture in the standard formulation

of Conjecture 2 now completed by Theorem 1, we note that there are several

natural generalizations of Conjecture 2 that have been considered in previous

work and remain interesting open questions. Most immediately, Conjecture 2

should extend as well to dimensions d ≥ 2 and to general, nonperiodic domains

including the whole space. Our proof extends readily to dimensions d ≥ 3, but

leaves open the case3 d = 2 due to the lack of a suitable replacement for

Mikado flows. Our proof also does not produce finite energy solutions4 in R3

due mainly to analysis related to the Gluing Approximation technique. Further

open questions include the extension of Onsager’s conjecture to more general

fluid equations including active scalar equations and the Boussinesq equation

considered in [CFG11], [Shv11], [IV15], [TZ18], [TZ17] and a version of On-

sager’s conjecture for the steady state Euler equations considered in [LS15],

[CS14], [Shv18].
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recommendations for the final version of this paper. The work of the author is
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3The best result recorded for the two-dimensional case is the existence of (1/10−ε)-Hölder

solutions given in [CDLS12]. However, the main observations in [CDLS12] can be used to

extend all of the results and arguments based on Beltrami flows on C
1/5−ε
t,x and L1

tC
1/3−ε
x

solutions in dimension 3 (e.g., [Ise13a], [IO16b], [BDLS16]) to the two-dimensional setting.
4See [IO16b] for a construction of C

1/5−ε
t,x solutions on R3 with compact support and

exposition of the additional issues arising in constructing solutions in the nonperiodic setting.
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1. Organization of paper

The main lemma of the paper is stated as Lemma 2.1 below after some

preliminary general notation introduced in Section 2. In Section 3, we intro-

duce the three main sublemmas of the paper (The Regularization Lemma, the

Gluing Approximation Lemma, and the Convex Integration Lemma) and show

that they imply the main lemma. Section 4 contains the proof of the Regu-

larization Lemma. The proof of the Gluing Approximation Lemma occupies

Sections 5–10.5. The proof of the Convex Integration Lemma occupies Sec-

tions 11–17.6. The proof of Theorem 1 using the main lemma is then given

in Section 18. The appendix provides proofs or statements of analytical facts

that were used in the proofs of the main sublemmas of the paper.

2. Notation and preliminaries

If x ∈ R, we will write (x)+ = max{x, 0}. We will make use of the

following “counting inequality,” which is stated as Lemma 17.1 in [Ise17] and

can be shown by induction on m:

m∑
i=1

(xi − y)+ ≤
( m∑
i=1

xi − y
)

+
for all x1, x2, . . . , xm, y ≥ 0.(2.1)

We will use the Einstein summation convention to sum over indices that are

repeated; for example, ∇jvj =
∑3
j=1∇jvj is the divergence of a vector field v.

Indices are raised or lowered to distinguish covariant and contravariant indices

as in the conventions of invariant index notation. The summation convention

will be used only to pair a raised index and a lowered index. We will write S
to denote the subspace of R3 ⊗ R3 consisting of symmetric (2, 0) tensors.

For partial derivatives, we will distinguish between multi-indices and first

order indices by writing a multi-index in vector form. For instance, if ~a =

(a1, a2, a3) is a multi-index of order |~a| = 3, then ∇~a = ∇a1∇a2∇a3 is the

corresponding third-order partial derivative. In contrast, ∇a without a vector

symbol denotes the first order, ath partial derivative. The full derivative of a

tensor will be denoted using a superscript; for example, ∇kf refers to the full,

kth derivative of a function f , which takes values in the k-fold tensor product

of (R3)∗.

In what follows we will refer to functions f : R× T3 → R or f : T3 → R,

but the discussion in this section generalizes immediately to vector fields and

tensor fields taking values in Rn.

For functions f : R×T3 → R, we will use the following notation to describe

their time support

suppt f := {t ∈ R : supp f ∩ {t} × T3 6= ∅}.
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For simplicity, we refer to a function f : R × T3 → R of space and time as

smooth if all of its spatial derivatives are continuous on R×T3 (which implies

f ∈ ⋂k≥0CtC
k
x(R×T3)). We will write C∞ or C∞(R×T3) =

⋂
k≥0C

k(R×T3)

to refer to the usual class of infinitely differentiable functions. The distinction

between the two can be safely neglected in reading the argument since all the

functions involved that are required in the course of the proof to be “smooth”

will in fact be C∞; however, the higher differentiability in time will not be as

important.

If f : T3 → R, we will write u = ∆−1f to mean the unique function

u : T3 → R solving

∆u = (1−Π0)f,

∫
T3
u(x)dx = 0,

where Π0f = |T3|−1
∫
T3 f(x)dx is the average value of f .

Given a subset S ⊆ R and τ ≥ 0, we will denote its τ -neighborhood in R
by

N(S; τ) := {t+ t′ : t ∈ S, |t′| ≤ τ}.

If f : T3 → R is continuous and 0 < α < 1, we denote its homogeneous Hölder

seminorm by

[f ]α = ‖f‖Ċα := sup
x∈T3

sup
h∈R3\{0}

|f(x+ h)− f(x)|
|h|α

.(2.2)

For integers k ≥ 0, a function belongs to f ∈ Ck,α if f ∈ Ck(T3) and ‖∇kf‖Ċα
is finite. The mean value theorem leads to the following interpolation inequal-

ity:

Proposition 2.1. If f : T3 → R is C1 and 0 < α < 1, then

‖f‖Ċα .α ‖∇f‖
α
C0‖f‖(1−α)

C0 .(2.3)

Part 2. The main lemma and sublemmas

To state the main lemma, we first recall the concept of an Euler-Reynolds

flow from5 [DLS13b] and define the notion of frequency-energy levels that will

be used in our paper.

Definition 2.1. A vector field v` : R × T3 → R3, function p : R × T3 →
R and symmetric tensor field Rj` : R × T3 → S satisfy the Euler-Reynolds

5In [DLS13b] the definition is given in an equivalent form where Rj` is required to have 0

trace δj`R
j` = 0 pointwise.
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equations if

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`,

∇jvj = 0

on R×T3. Any solution to the Euler-Reynolds equations (v, p,R) is called an

Euler-Reynolds flow. The symmetric tensor field Rj` is called the stress tensor.

Our notion of frequency energy levels will be based on the one introduced

in [Ise17], but simpler in that we do not assume control over the pressure gradi-

ent or over the advective derivative of R. This simplification ultimately arises

due to a special feature of the Gluing Approximation technique summarized

in Lemma 3.2 below, which is that the stress tensor R̃ arising from the Gluing

Approximation technique turns out to exhibit a suitable estimate on its advec-

tive derivative even if the starting Euler-Reynolds flow does not satisfy such

a bound. This feature of the argument will also allow us to circumvent the

use of the mollification on the flow technique introduced in [Ise17, §18], which

would otherwise have been needed within the convex integration part of the

proof.

Definition 2.2. Let (v, p,R) be a solution of the Euler-Reynolds equation,

and let Ξ ≥ 3 and ev ≥ eR ≥ 0 be nonnegative numbers. We say that (v, p,R)

have frequency-energy levels bounded by (Ξ, ev, eR) to order L in C0 if their

spatial derivatives ∇kv and ∇kR of order k are continuous for all k ≤ L and

the following estimates hold

‖∇kv‖C0 ≤ Ξke1/2
v for all 1 ≤ k ≤ L,(2.4)

‖∇kR‖C0 ≤ ΞkeR for all 0 ≤ k ≤ L.(2.5)

The main lemma of our paper states the following

Lemma 2.1 (The main lemma). Let L = 3 and η > 0. There exists a

constant C depending only on η such that the following holds. Let (v, p,R)

be any solution of the Euler-Reynolds equation with frequency-energy levels

bounded by (Ξ, ev, eR) to order L in C0, and let J be an open subinterval of R
such that (recalling the notation of Section 2)

suppt v ∪ supptR ⊆ J.

Define the parameter Ξ̂ = Ξ(ev/eR)1/2. Let N be any positive number obeying

the conditions

N ≥ max{Ξη, (ev/eR)1/2 }.(2.6)
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Then there exists a solution (v1, p1, R1) of Euler-Reynolds with frequency-

energy levels bounded by

(Ξ′, e′v, e
′
R) =

(
CNΞ, log Ξ̂ eR, (log Ξ̂)5/2 e

1/2
v e

1/2
R

N

)
(2.7)

such that

suppt v1 ∪ supptR1 ⊆ N(J ; Ξ−1e−1/2
v )(2.8)

and such that the correction V = v1 − v obeys the bounds

‖V ‖C0 ≤ C(log Ξ̂)1/2e
1/2
R ,(2.9)

‖∇V ‖C0 ≤ CNΞ(log Ξ̂)1/2e
1/2
R .(2.10)

Lemma 2.1 will follow from a combination of three main sublemmas that

we will describe in Section 3. The proof of Lemma 2.1 assuming these sublem-

mas will be included at the end of Section 3.

3. The main sublemmas

Here we state the three sublemmas that together will imply our main

lemma, Lemma 2.1.

Lemma 3.1 (The Regularization Lemma). There is an absolute constant

C0 such that the following holds. Let (v0, p0, R0) be an Euler-Reynolds flow

with frequency-energy levels bounded by (Ξ, ev, eR) to order 3 in C0 such that

suppt v0 ∪ supptR0 ⊆ J . Define “N := (ev/eR)1/2. Then there exists an Euler-

Reynolds flow (v, p,R) such that suppt v∪supptR ⊆ J that obeys the estimates

‖∇kv‖C0 ≤ C0
“N (k−3)+Ξke1/2

v , k = 1, . . . , 5,(3.1)

‖∇kR‖C0 ≤ C0
“N (k−2)+ΞkeR, k = 0, . . . , 5,(3.2)

‖v − v0‖C0 ≤ C0e
1/2
R .(3.3)

Furthermore, one can arrange that v,R ∈ ⋂k≥0CtC
k
x are smooth.

Lemma 3.2 (The Gluing Approximation). For any C0 ≥ 1, there exist

positive constants C1 ≥ 1 and δ0 ∈ (0, 1/25) such that the following holds. Let

(v, p,R) be a smooth Euler-Reynolds flow that satisfies the estimates (3.1)–

(3.2) for C0 and suppt v∪ supptR ⊆ J . Define Ξ̂ := “NΞ = Ξ(ev/eR)1/2. Then

for any 0 < δ ≤ δ0, there exist

• a constant Cδ ≥ 1;

• a constant θ > 0;

• a sequence of times {t(I)}I∈Z ⊆ R; and

• an Euler-Reynolds flow (ṽ, p̃, R̃), ‹R =
∑
I∈ZRI
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that satisfy the following support restrictions :

suppt ṽ ∪ suppt
‹R ⊆ N ÅJ ;

1

3
Ξ−1e−1/2

v

ã
,(3.4)

2−1δ(log Ξ̂)−2Ξ−1e−1/2
v ≤ θ ≤ δ(log Ξ̂)−2Ξ−1e−1/2

v ,(3.5)

supptRI ⊆
ï
t(I)− θ

2
, t(I) +

θ

2

ò
,(3.6) ⋃

I

⋃
I′ 6=I

[t(I)− θ, t(I) + θ] ∩ [t(I ′)− θ, t(I ′) + θ] = ∅(3.7)

and the following estimates :

‖ṽ − v‖C0 ≤ C1e
1/2
R ,(3.8)

‖∇kṽ‖C0 ≤ C1Ξke1/2
v , k = 1, 2, 3,(3.9)

sup
I
‖∇kRI‖C0 ≤ Cδ “N (k−2)+Ξk log Ξ̂ eR, k = 0, 1, 2, 3,(3.10)

sup
I
‖∇k(∂t + ṽ · ∇)RI‖C0 ≤ Cδ(log Ξ̂)3Ξe1/2

v ΞkeR, k = 0, 1, 2.(3.11)

Lemma 3.3 (The Convex Integration Lemma). There exists an absolute

constant b0 such that for any C1, Cδ ≥ 1 and δ, η > 0, there is a constant

C̃ = C̃η,δ,C1,Cδ for which the following holds. Suppose J is a subinterval of R
and (v, p,R) is an Euler-Reynolds flow, R =

∑
I RI , that satisfy the conclusions

(3.4)–(3.7) and (3.9)–(3.10) of Lemma 3.2 (with (ṽ, ‹R) replaced by (v,R) ) for

some (Ξ, ev, eR), some θ > 0 and some sequence of times {t(I)}I∈Z ⊆ R.

Suppose also that

|θ|‖∇v‖C0 ≤ b0.(3.12)

Let N≥max{Ξη, (ev/eR)1/2}. Then there is an Euler-Reynolds flow (v1, p1, R1)

with frequency-energy levels in the sense of Definition 2.2 bounded by

(Ξ′, e′v, e
′
R) =

(
C̃NΞ, log Ξ̂ eR, (log Ξ̂)5/2 e

1/2
v e

1/2
R

N

)
(3.13)

such that

suppt v1 ∪ supptR1 ⊆ N(J ; Ξ−1e−1/2
v ),(3.14)

‖v1 − v‖C0 ≤ C̃(log Ξ̂)1/2e
1/2
R .(3.15)

Proof of Lemma 2.1. It is now straightforward to show that Lemmas 3.1,

3.2 and 3.3 together imply Lemma 2.1. Indeed, suppose that (v0, p0, R0) and J

are the Euler-Reynolds flow and time interval in the hypotheses of Lemma 2.1,

and let N and η be the parameters given in the lemma. Apply Lemma 3.1 to

this (v0, p0, R0) to obtain (v01, p01, R01) obeying the conclusions of that lemma

for the constant C0. Let C1, δ0 be the constants in Lemma 3.2 associated to C0.
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Choose δ > 0 such that δ ≤ δ0 and C1δ ≤ b0, where b0 is the absolute constant

in Lemma 3.3. Apply Lemma 3.2 with this value of δ to the (v01, p01, R01) above

to obtain an Euler-Reynolds flow (ṽ, p̃, R̃) together with parameters θ, Cδ and

{t(I)}I∈Z that satisfy the conclusions Lemma 3.2. Observe also that (3.5) and

(3.9) imply

|θ|‖∇ṽ‖C0 ≤ C1δ ≤ b0.

We may therefore apply the Convex Integration Lemma 3.3 to (ṽ, p̃, R̃) with the

parameter N to obtain an Euler-Reynolds flow (v1, p1, R1) and a constant C̃

satisfying the conclusions of that lemma. Note that this constant C̃ depends

only on η since C0 is an absolute constant and C1, and therefore δ and Cδ
depend only on C0. The correction V = v1 − v0 induced by this combination

of lemmas satisfies (using Definition 2.2 in the last line)

V = (v1 − v0) = (v1 − ṽ) + (ṽ − v01) + (v01 − v0),

‖V ‖C0 ≤ A0Cδ(log Ξ̂)1/2e
1/2
R + C1e

1/2
R + C0e

1/2
R ,

‖∇V ‖C0 ≤ ‖∇v1‖C0 + ‖∇v0‖C0 ≤ C̃NΞ(log Ξ̂)1/2e
1/2
R + Ξe1/2

v .(3.16)

The C0 term is bounded by Č0(log Ξ̂)1/2e
1/2
R with Č0 some constant, as stated

in Lemma 2.1. The lower bound (2.6) on N implies e
1/2
v ≤ Ne

1/2
R , so the

right-hand side of (3.16) is bounded by CNΞ(log Ξ̂)1/2e
1/2
R for some constant

C (depending on η) that we can take to be the one whose existence is asserted

in Lemma 2.1. Since the containment (2.8) follows from (3.14), we have proved

all the conclusions of Lemma 2.1 for the above (v1, p1, R1). �

Part 3. The gluing sublemmas

In this part of the paper, we prove the two lemmas, Lemmas 3.1 and 3.2,

related to the Gluing Approximation procedure.

4. The regularization step

Here we prove the Regularization Lemma 3.1. This lemma is important for

the Gluing Approximation procedure, as the Gluing Approximation Lemma 3.2

loses spatial regularity. We note that the loss of spatial regularity in the

Gluing Approximation Lemma 3.2 is inherent to the gluing argument and is

distinct from the separate loss of spatial regularity that occurs during the

Convex Integration Lemma 3.3, which is addressed by a different mollification

technique.

We start by recalling the following quadratic commutator estimate. Proofs

of this statement can be found in [CDLS12, Lemma 1] or [Ise13b, Prop. 5.3].



884 PHILIP ISETT

Proposition 4.1. Let η ∈C∞(Rn) satisfy
∫
Rn η(h)dh= 1, (1+|h|2)η(h) ∈

L1(Rn), and define ηε(h) :=ε−nη(h/ε). If f, g∈C1(Rn), then for all 0 ≤ k<∞,

we have

‖∇k(ηε ∗ (fg)− (ηε ∗ f)(ηε ∗ g))‖C0(Rn) .k ε
2−k‖∇f‖C0(Rn)‖∇g‖C0(Rn).(4.1)

With Proposition 4.1 in hand, the proof of Lemma 3.2 goes as follows.

Given (v0, p0, R0) as in Lemma 3.1, set v = ηε ∗ v0 and p = ηε ∗ p0, and

then ε = Ξ̂−1 = “N−1Ξ−1 = (ev/eR)−1/2Ξ−1. By writing the Euler-Reynolds

equations in divergence form

∂tv
`
0 +∇j(vj0v

`
0) +∇`p0 = ∇jRj`0 , ∇jvj0 = 0,

we see that (v, p,R) satisfies the Euler-Reynolds equations with a new stress

given by

Rj` = [ηε ∗ vj0ηε ∗ v
`
0 − ηε ∗ (vj0v

`
0)] + ηε ∗Rjl0 .(4.2)

The term ηε∗Rjl is easily seen to obey the desired estimate (3.2). For example,

‖∇k+2ηε ∗Rjl0 ‖C0 = ‖∇kηε ∗ ∇2Rjl0 ‖C0 .k Ξ̂kΞ2eR = “NkΞk+2eR, k ≥ 0,

while for k ≤ 2, we have ‖∇kηε ∗Rjl0 ‖C0 = ‖ηε ∗ ∇kRjl0 ‖C0 ≤ ‖∇kRjl0 ‖C0 .

Let Qj`ε denote the commutator term in (4.2). By (4.1), we have

‖Qε‖C0 . ε2‖∇v0‖2C0 ≤ Ξ̂−2Ξ2ev = eR.

Also, if ∇b1∇b2 is any second partial derivative operator, we have

∇b1∇b2Qjlε = ηε ∗ (∇b1∇b2v
j
0)ηε ∗ vl0 − ηε ∗ (∇b1∇b2v

j
0v
l
0)

+ ηε ∗ (∇b1v
j
0)ηε ∗ (∇b2vl0)− ηε ∗ (∇b1v

j
0∇b2v

l
0) + similar terms.

From this expression and (4.1), our control on ‖∇3v0‖C0 gives us the desired

bound (3.2)

‖∇k+2Qjlε ‖C0 .k ε
2−k(‖∇3v0‖C0‖∇v0‖C0 + ‖∇2v0‖2C0)

.k “NkΞk+2eR.

The desired estimate for ‖∇Qε‖C0 follows by interpolating

‖∇Qε‖C0 . ‖Qε‖1/2C0 ‖∇2Qε‖1/2C0 .

The proof of (3.1) follows similarly to the bounds for ηε ∗ Rj`0 above.

Finally, (3.3) follows from ‖v0 − ηε ∗ v0‖C0 . ε‖∇v0‖C0 ≤ e1/2
R .
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5. Proof of gluing approximation: Outline

Sections 6–10 below are devoted to the proof of the Gluing Approximation

Lemma 3.2. The construction of the new Euler-Reynolds flow (ṽ, p̃, R̃) is de-

scribed in Sections 6–8. Section 9 contains preliminary facts that will be used

in the estimates in the proof of Lemma 3.2. The main estimates of the gluing

construction are carried out over Sections 10.1–10.4. These estimates are then

applied in Section 10.5 to establish that the (ṽ, p̃, R̃) defined in Sections 6–8

does indeed satisfy the estimates claimed in Lemma 3.2.

6. The gluing construction

We now begin the proof of the Gluing Approximation Lemma 3.2. In

this construction, we will use the notation . for constants that are allowed to

depend on the C0 of Lemma 3.1, while we will write .δ if the constant depends

on the δ given in Lemma 3.2.

Let (v, p,R) be the given Euler-Reynolds flow. We desire a new Euler-

Reynolds flow (ṽ, p̃, R̃) such that the new stress R̃ can be decomposed as a

sum R̃ =
∑
I RI in which each piece is localized in time to a time interval that

is smaller than the natural time scale of the construction |supptRI | ≤ |θ| .
Ξ−1e

−1/2
v . It is also important that the gap between these supports is compa-

rable to the natural time scale of the construction: dist(supptRI , supptRI′) ≥
Ξ−1e

−1/2
v (although we will ultimately miss this goal by a small margin).

Since we need R̃ = 0 to vanish in the gaps between the intervals supporting

each RI , our new solution ṽ has to solve the Euler equations within those gaps.

Thus, we construct ṽ by solving the Euler equations on many time intervals

of length 8θ and gluing the solutions together with the following partition of

unity construction.

We introduce the velocity increment y` and the pressure increment p̄, so

that the new solution will be given by ṽ` = v` + y`, p̃ = p+ p̄. The pair (y`, p̄)

must satisfy the equation

∂ty
` + vj∇jy` + yj∇jv` +∇j(yjy`) +∇`p̄ = ∇jR̃j` −∇jRj`

∇jyj = 0.
(6.1)

For each I ∈ Z, set t0(I) = 8θ · I. Define (u`I , pI) to be the unique clas-

sical solution to the incompressible Euler that satisfies the initial condition

u`I(t0(I), x) = vl(t0(I), x), where vl is our given Euler-Reynolds flow. It is well

known (see Theorem 2 below) that, for any α > 0, if θ times the C1,α norm of

the initial data is sufficiently small, then u`I is well defined and remains smooth

on the interval [t0(I)−8θ, t0(I)+8θ]. (Our θ will be larger than the reciprocal

of the C1,α norm of the initial data, but we will nonetheless be able to prove

existence.)
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Define y`I and p̄I so that u`I = v`+y`I and pI = p+ p̄I . Then (y`I , p̄I) solve

∂ty
`
I + vj∇jy`I + yjI∇jv

` +∇j(yjIy
`
I) +∇`p̄I = −∇jRj`,

∇jyjI = 0,

y`I(t(I), x) = 0.

(6.2)

Now choose a partition of unity in time (ηI(t))I∈Z with the following proper-

ties:

suppt ηI(t) ⊆
ï
t0(I)− 9θ

2
, t0(I) +

9θ

2

ò
,

ηI(t) = 1 if t ∈
ï
t0(I)− 7θ

2
, t0(I) +

7θ

2

ò
,

suppt ηI ∩ suppt ηI′ = ∅ if |I − I ′| > 1,∑
I

ηI(t) = 1 for all t ∈ R

(6.3)

and

sup
I

sup
t

∣∣∣∣∣ dkdtk ηI(t)
∣∣∣∣∣ . |θ|−k, k = 0, 1, 2.(6.4)

An easy way to construct such a partition of unity is to start with the rough

partition of unity given by characteristic functions χI(t) = 1(t0(I)−4θ,t0(I)+4θ](t),

and then regularize it by mollification to obtain ηI = ψθ ∗ χI , with ψθ(t) a

smooth mollifier,
∫
R ψθ(t)dt = 1, with support in |t| < θ

2 . Now set

y` =
∑
I

ηIy
`
I , p̄ =

∑
I

ηI p̄I .

From (6.2) and (6.3), one sees that y` is divergence free and satisfies

∂ty
` + vj∇jy` + yj∇jv` +∇j(yjy`) +∇`p̄

=
∑
I

η′I(t)y
`
I +

∑
I

ηIηI+1∇j(yjIy
`
I+1 + yjI+1y

`
I)

+
∑
I

(η2
I − ηI)∇j(y

j
Iy
`
I)−∇jRj`.

(6.5)

For each I, we will choose a symmetric anti-divergence for y`I , by which we

mean a symmetric tensor rj`I verifying

∇jrj`I = y`I .(6.6)

Now set t(I) = t0(I) + 4θ = (8θ) · I + 4θ, and define

RI = 1[t(I)−θ,t(I)+θ]η
′
I(t)(r

jl
I − r

j`
I+1) + ηIηI+1(yjIy

`
I+1 + yjI+1y

`
I)

− ηIηI+1(yjIy
`
I + yjI+1y

`
I+1).

(6.7)
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Comparing with (6.5) and using the identities η′I(t) = 1[t(I)+θ,t(I)−θ]η
′
I(t) −

1[t(I−1)+θ,t(I−1)−θ]η
′
I−1(t) and ηI(1 − ηI) = ηIηI+1 + ηI−1ηI , we see that our

goal equation (6.1) holds for y` and R̃j` =
∑
I R

j`
I provided that (6.6) holds

for all I.

As for θ, we choose θ = δ(log Ξ̂)−2Ξ−1e
−1/2
v so that equality holds for the

upper bound in (3.5). However, the lower bound, which strengthens condi-

tion (3.7), will be important in the proof of Lemma 3.3.

It is now apparent that the containment (3.4) holds using the condition

δ < δ0 < 1/25, as yI = 0 for all I such that suppt ηI intersects the comple-

ment of N(J ; Ξ−1e
−1/2
v ). This fact follows from uniqueness of classical solu-

tions to incompressible Euler (see Theorem 2 below) and the assumption that

supptR ⊆ J , which implies that v` already solves the Euler equations outside

of J ×T3. Also, the conditions (3.5)–(3.7) are apparent from the construction

above once we show that the yI and rI are well defined on the supports of

the ηI .

Our construction is now complete except that we have not proven that

y`I exists on the required interval for the above formulas to be well defined,

and we have not defined or proven the existence of the tensors rj`I verifying

(6.6). We discuss the construction of rj`I in the following section. We will then

address the existence of y`I in Section 8.

7. Constructing a good anti-divergence

In this section, we discuss our construction of a symmetric anti-divergence

for the y`I of the gluing construction in Section 6. The construction will involve

an operator Rj` that we define as follows. Recall that any smooth vector field

on Tn has a “Helmholtz decomposition” such that

U ` = HU ` + Π0U
` +∇`∆−1[∇bU b],

Π0U
` :=

1

|Tn|

∫
Tn
U `dx,

∇`HU ` = 0,

∫
Tn
HU `dx = 0.

(7.1)

Given a smooth vector field U on Tn, Rj`[U ] is the smooth, symmetric (2, 0)

tensor on Tn defined by

Rj`[U ] = ∆−1(∇`HU j +∇jHU `) + δj`∆−1[∇bU b].(7.2)

Then Rj` is an operator (of order −1) that satisfies, for all U ∈ C∞(Tn),

∇jRj`[U ] = (1−Π0)U `,(7.3) ∫
Tn
Rj`[U ](x)dx = 0.
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In particular, Rj` inverts the divergence operator when restricted to integral 0

vector fields. (Other inverses for the divergence can be chosen that would be

equivalent for our purposes. This choice has the advantage of having a simple

formula.)

Using the operator R above, one can find a solution to (6.6) by taking

rj`I equal to Rj`[yI ]. Indeed, by the conservation of momentum for Euler and

Euler-Reynolds, yI has integral 0, so we have ∇jRj`[yI ] = yI . However, the

best estimate one has in general for this solution is ‖Rj`[yI ]‖C0 . ‖yI‖C0 ,

which leads to an estimate for the RI in (6.7) of the form

‖RI‖C0 = ‖η′I(t)r
jl
I + · · · ‖C0 . |θ|−1‖yI‖C0 + · · · .(7.4)

Let us assume now that we are able to prove a bound of the order ‖yI‖C0 . e1/2
R ,

which is essentially the best estimate we can hope for from (6.2) if we neglect

the pressure term. Making this assumption, the right-hand side of (7.4) is still

even larger than

‖RI‖C0 . Ξe1/2
v e

1/2
R + · · · .

However, our goal estimate for ‖RI‖C0 is that ‖RI‖C0 . eR should be the

same size as the original stress ‖Rj`‖C0 , so (7.4) is missing the mark by an

enormous factor.

One can do better if one uses the evolution equation for y`I . Indeed, writing

(6.2) in divergence form, one has

∂ty
`
I = −∇j [vjy`I + yjIv

` +Rj` + p̄Iδ
j`],

y`I(t, x) = ∇j
∫ t

t(I)
[yjI(τ)v`(τ) + y`I(τ)vj(τ) +Rj`(τ) + p̄I(τ)δj`]dτ.(7.5)

If we take the integral in (7.5) as a definition for rj`I and substitute into (7.4),

this construction of an anti-divergence leads to a much better estimate of the

form

‖RI‖C0 . ‖yI‖C0‖v‖C0 + · · · ,(7.6)

as the integration over time cancels with the large time cutoff factor in (7.4).

Unfortunately, this bound is still way off the mark ‖RI‖C0 . eR that we

desire, as the bounds we have are of the order ‖yI‖C0 . e
1/2
R and ‖v‖C0 . 1.

Another problem with the construction of (7.5) is that it does not lead to a

good estimate on the advective derivative ‖(∂t + ṽ · ∇)RI‖C0 .

A natural attempt to address the latter problem is to obtain rj`I by solving

a transport equation, for instance by solving

(∂t + vi∇i)∇jrj`I = (∂t + vi∇i)y`I ,

rj`I (t(I), x) = 0.
(7.7)
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In this way one effectively integrates in time over trajectories to obtain rj`I ,

as opposed to formula (7.5), which integrates in time at a fixed point x. Of

course, (7.7) is not a well-defined evolution equation for rj`I . However, as was

observed in [Ise17], in certain cases one can find solutions to (7.7) by solving

another evolution equation related to (7.7) by commuting the divergence and

using R above to invert. Here we will follow a similar approach while taking

advantage of the evolution equation for y`I .

Commuting v · ∇ in (7.7) with ∇j and using (6.2), the equation we want

to solve (7.7) becomes

∇j [(∂t + vi∇i)rj`I ] = ∇jvi∇irj`I − y
j
I∇jv

` −∇j(yjIy
`
I)−∇j(p̄Iδj`)−∇jRj`.

We therefore construct rj`I as a sum of two parts that solve the following system

of equations:

rj`I = ρj`I + zj`I ,

(∂t + vi∇i)zj`I = −yjIy
`
I − p̄Iδj` −Rj`,(7.8)

(∂t + vi∇i)ρj`I = Rj`[∇avi∇i(ρabI + zabI )− yiI∇ivb],(7.9)

ρjlI (t(I), x) = zj`I (t(I), x) = 0.(7.10)

Existence of a solution to (7.9) will follow as in the arguments of [Ise17] pro-

vided yI remains regular.

At this point, it is quite unclear that our method has any hope of obtaining

a solution rj`I that approaches our desired estimate. Indeed, one of the terms

in the estimate for ρI from (7.9) is

‖ρI‖C0 ≤ |θ|‖(∂t + v · ∇)ρj`I ‖C0 ≤ |θ|‖Rj`[yiI∇ivb]‖C0 + · · · .(7.11)

The trivial estimate for (7.11) is

‖Rj`[yiI∇ivb]‖C0 . ‖yI‖C0‖∇v‖C0 . Ξe1/2
v e

1/2
R ,

while a better estimate comes by writing ‖Rj`∇i[yiIvb]‖C0 . ‖yI‖C0‖v‖C0 +

· · · . e1/2
R + · · · (pretending for the moment that the 0th order operator Rj`∇i

is bounded on C0). Substituting this bound into (7.4), one obtains the same

estimate ‖RI‖C0 . e
1/2
R + · · · from (7.6) that we concluded was insufficient

when we considered the construction in (7.5).

The key idea for handling this difficulty is to exploit a special structure in

the term Rj`[yiI∇ivb] and the incompressible Euler and Euler-Reynolds equa-

tions that allows one to prove a much better estimate. Specifically, we observe

that the estimates available for yI and v, even taking into account the incom-

pressibility, cannot by themselves yield any estimate stronger than the bound

. e
1/2
R + · · · noted above. The key to obtaining an improved estimate will

be to bound this term through a dynamical approach that takes advantage
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of the structure of the evolution equation for yI derived from the incompress-

ible Euler and Euler-Reynolds equations. This structure leads ultimately to

an essentially ideal bound on the resulting RI , and holds also for the simi-

lar linearized Euler term ∆−1∇`[yiI∇iv`] that appears as part of the pressure

increment p̄I in (7.8). The calculations used to estimate these terms are pre-

sented in the proof of Proposition 10.2 in Section 10.1 (see the proof of (10.3),

k = 0) and in Section 10.4 (see the proof of (10.37)).

8. Existence considerations

We now address the existence and well-definedness of the solutions to

equations (6.2) and (7.8).

The classical local well-posedness theory for incompressible Euler yields

the following result:

Theorem 2. Let t0 ∈ R and u0 : Tn → Rn be a smooth divergence free

vector field. Then there exists a unique open interval J̃ ⊆ R containing t0
such that there exists a solution u : J̃ × Tn → Rn to the incompressible Euler

equations that is smooth u ∈ ⋂k≥0CtC
k
x and for all T ∗ ∈ ∂J̃ endpoints of J̃ ,

we have

lim sup
t→T ∗,t∈J̃

‖∇u(t)‖C0 =∞.(8.1)

Furthermore, the u` above is unique among solutions to incompressible Euler

with the regularity ∇u ∈ C0(J̃ × Tn).

See, for example, [BF76], which gives a lower bound for the time of existence

depending on the C1,α norm of the initial data.

Theorem 2 therefore provides, for each I, a unique interval of existence J̃I
and a unique smooth solution (u`I , pI) on J̃I × T3 to the incompressible Euler

equations that realizes the (smooth, divergence free) initial data u`I(t0(I), x) =

v`(t0(I), x).

It follows that y`I := u`I − v` and p̄I = pI − p are well defined and smooth

on J̃I × T3 (since v` and p are also smooth on that domain). From this,

one has from the theory of regular transport equations (Proposition A.1 in

the appendix) that there is a unique solution zj`I to (7.8), (7.10) that is also

smooth and well defined on J̃I × T3 (since the velocity v and all the terms on

the right-hand side of (7.8) are smooth and well defined on that domain). The

initial value problem (7.9)–(7.10) for ρI has of the form

(∂t + v · ∇)ρj`I = Rj`[∇avi∇i(ρabI ) + Zb],

ρj`I (t(I), x) = ρj`I,0(x),
(8.2)
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where ρj`I,0 = 0 and Zb are smooth on J̃I × T3. The well-posedness of equa-

tion (8.2), called a transport-elliptic equation due to the presence of R, has

been considered in [Ise17]. It follows from the analysis there (see Theorem 4 in

the appendix below) that there exists a solution ρI to (7.9)–(7.10) on J̃I × T3

that is smooth.

The well-definedness of our construction now follows from Propositions 8.1

and 8.2 below.

Proposition 8.1. If zI and ρI are smooth solutions to (7.8), (7.9), (7.10)

on J̃I×T3, then the tensor rj`I = ρj`I +zj`I is a symmetric anti-divergence for y`I .

That is, equation (6.6) is satisfied on J̃I × T3.

Proposition 8.2 (The gluing proposition). Let α = 1/17 and C0 be as in

the assumptions of Lemma 3.2. Then there exists δ0 ∈ (0, 1/25) depending on

C0 and there exist implicit constants depending on C0 such that for all I ∈ Z
and for θ0 = δ0(log Ξ̂)−2Ξ−1e

−1/2
v , we have

[t0(I)− 8θ0, t0(I) + 8θ0] ⊆ J̃I ,

‖∇kyI‖C0 . “N (k−2)+Ξke
1/2
R ,(8.3)

‖∇kyI‖Ċα . Ξ̂α “N (k−2)+Ξke
1/2
R ,

‖∇kρI‖C0 + ‖∇kzI‖C0 . “N (k−2)+Ξkε̂,

‖∇kρI‖Ċα + ‖∇kzI‖Ċα . Ξ̂α “N (k−2)+Ξkε̂,

ε̂ :=
1

log Ξ̂

eR

Ξe
1/2
v

,

where the above estimates hold uniformly in I for t ∈ [t0(I)− 8θ0, t0(I) + 8θ0]

and k = 0, 1, 2, 3.

Proposition 8.1 on the equality of ∇jrj`I = y`I is not immediate, but rather

relies crucially on the fact that both vector fields y`I and v` are divergence free.

We give the following proof:

Proof of Proposition 8.1. Taking the divergence of (7.8), (7.9), relabeling

indices and summing gives

∇j [(∂t + vi∇i)zj`I ] = −∇j(yjIy
`
I + p̄Iδ

j` +Rj`)

∇j [(∂t + vi∇i)ρj`I ] = ∇jRj`[∇avi∇irjbI − y
i
I∇ivb]

= ∇jRj`∇i[∇avirjbI − y
i
Iv
b]

(7.3)
= ∇i[∇avira`I − yiIv`] = (1−Π0)∇i[∇avira`I − yiIv`]

= ∇jvi∇irj`I − y
j
I∇jv

`,
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∇j [(∂t + vi∇i)rj`I ] = ∇jvi∇irj`I − y
j
I∇jv

` −∇j(yjIy
`
I + p̄Iδ

j` +Rj`)

(∂t + vi∇i)∇jrj`I = (∂t + vj∇j)y`I .

The vector field f `=∇jrj`I −y`I is thus a smooth solution to (∂t+v · ∇)f `=0

with initial data f `(t0(I), x) = 0. By uniqueness, f ` is identically 0 and Propo-

sition 8.1 follows. �

We now turn to the proof of Proposition 8.2.

9. Preliminaries for the gluing proposition

In this section we prepare for the proof of The gluing proposition 8.2 by

introducing some notation and preparatory lemmas. If T is an operator acting

on functions (or tensor fields) on T3 (or R3), then

‖T‖ := inf{A : ∀ f ∈ C∞(T3), ‖Tf‖C0(T3) ≤ A‖f‖C0(T3)}

will denote the operator norm of T , regarded as a bounded operator on C0(T3).

If Tf = K ∗ f is a convolution operator6 with kernel K

K ∗ f(x) =

∫
R3
f(x+ h)K(h)dh, x ∈ T3,

then we have a bound

‖K ∗ ‖ ≤ ‖K‖L1(R3).(9.1)

We will use this inequality only in cases where K is a Schwartz function on R3.

We will employ the Littlewood-Paley decomposition of continuous func-

tions (or tensor fields) with the following notation. Choose a radially symmet-

ric, Schwartz function χ : R3 → R whose Fourier transform χ̂(ξ) has compact

support in the ball of radius 2 in frequency space “R3, and such that χ̂(ξ) = 1

for all |ξ| ≤ 1. Then
∫
R3 χ(h)dh = 1. For q ∈ Z, set χ≤q(h) = 23qχ(2qh), so

that χ̂≤q ∈ C∞c (B2q(“R3) and
∫
R3 χ≤q(h)dh = 1.

Definition 9.1. For any continuous f : T3 → Rn, we define

P≤qf(x) =

∫
R3
f(x+ h)χ≤q(h)dh,

Pqf(x) = P≤qf(x)− P≤q−1f(x) = χq ∗ f(x),

χq = χ≤q − χ≤q−1.

We will also use the notation P[q1,q2]f := P≤q2f−P≤q1f and P≈qf = P[q−2,q+2]f .

With this definition, we have Pqf = P≈qPqf .

6The standard definition for convolution involves f(x− h) rather than f(x+ h), but this

minor difference will not be important.
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Observe that χq defined above is Schwartz and

supp χ̂q ⊆ {2q−1 ≤ |ξ| ≤ 2q+1},

χq(x) = 23qχ0(2qx).

Every continuous tensor field f on T3 has a decomposition that converges

weakly in D′:

f(x) = Π0f +
∞∑
q=0

Pqf(x).(9.2)

The sum here extends only over q ≥ 0 because the T3-periodicity causes Pqf

to vanish for q < 0.

We will employ the following (standard) Littlewood-Paley characterization

of the Ċα seminorm. (See the appendix for a proof.) This estimate implies

that (9.2) converges absolutely in C0 for f ∈ Cα.

Proposition 9.1. For all 0 < α < 1, there exist implicit constants de-

pending on α such that for all f ∈ C0(T3),

‖f‖Ċα(R3) .α sup
q∈Z

2αq‖Pqf‖C0 .α ‖f‖Ċα(R3).(9.3)

Moreover, the inequality supq∈Z 2q‖Pqf‖C0 . ‖∇f‖C0 holds in the case α = 1.

The proposition applies as well to tensor fields on T3. The above Little-

wood-Paley characterization of the Ċα seminorm will help us to control Ċα

seminorms of the solutions to our transport equations when combined with the

following well-known commutator estimate. (See the appendix for a proof.)

Proposition 9.2 (Littlewood-Paley commutator estimate). If 0<α ≤ 1,

then there is an implicit constant depending on α (and the dimension n) such

that for any smooth vector field u ∈ L∞(Rn) and for any smooth function

f ∈ L∞(Rn), we have

‖u · ∇Pqf − Pq(u · ∇f)‖C0(Rn) .α 2−αq‖∇u‖C0(Rn)‖f‖Ċα(Rn).(9.4)

In what follows, all implicit constants in the notation . are allowed to

depend on the parameter C0 in the bounds assumed in Lemma 3.2, but not

on δ. Propositions 9.1–9.2 will be employed only for the particular choice of

α = 1/17 of Proposition 8.2 or α = 1. (Any other choice of α ∈ (0, 1) would

also suffice.) If an implicit constant depends on the parameter δ, we will write

.δ.
With these preliminaries in hand, we are now ready to begin the proof of

Proposition 8.2.
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10. Proof of the gluing proposition

We now prove Proposition 8.2. The analysis draws some inspiration from

the methods in [Ise13b].

We start by defining a dimensionless norm for (yI , ρI , zI) that controls all

the quantities we wish to control in Proposition 8.2. We denote this norm by

h(t). The norm also depends on I, but we will suppress this dependence for

simplicity of notation.

Definition 10.1. For α = 1/17, we define the dimensionless norm h(t) :

J̃I → R by

h(t) :=
1

e
1/2
R

(
3∑

k=0

‖∇kyI(t)‖C0“N (k−2)+Ξk

)

+
1

ε̂

(
3∑

k=0

‖∇kρI(t)‖C0 + ‖∇kzI(t)‖C0“N (k−2)+Ξk

)

+
1

Ξ̂α “NΞ3

(
‖∇3yI(t)‖Ċα

e
1/2
R

+
‖∇3ρI(t)‖Ċα + ‖∇3zI(t)‖Ċα

ε̂

)
.

The definition of h(t) and the interpolation inequality (2.3) imply the

following bounds for t ∈ J̃I :

‖∇kyI(t)‖C0 + Ξ̂−α‖∇kyI(t)‖Ċα . “N (k−2)+Ξke
1/2
R h(t), k = 0, 1, 2, 3,

‖∇kρI‖C0 + ‖∇kzI‖C0 + Ξ̂−α(‖∇kρI‖Ċα + ‖∇kzI‖Ċα)

. “N (k−2)+Ξkε̂h(t), k = 0, 1, 2, 3.

(10.1)

The following proposition is our main estimate on the growth rate of h(t).

Proposition 10.1. There exists a constant B1 depending on C0 such that

for all t ∈ J̃I ,

h(t) ≤ B1(log Ξ̂)2Ξe1/2
v

∣∣∣∣∣
∫ t

t0(I)
(1 + h(τ))2dτ

∣∣∣∣∣ .(10.2)

Our main proposition for the Gluing Lemma, Proposition 8.2, follows

quickly from Proposition 10.1 by the following argument:

Proof of Proposition 8.2. For simplicity, consider the case I = 0 so that

t0(I) = 0, and restrict to t ≥ 0. Set H(t̂) = 1 + h([B1(log Ξ̂)2Ξe
1/2
v ]−1t̂). Then

H(t̂) is continuous on the appropriate rescaled interval Ĵ and, after changing

variable, (10.2) gives the estimate

H(t̂) ≤ 1 +

∫ t̂

0
H(τ̂)2dτ̂ .
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It follows by Bihari’s inequality (i.e., the nonlinear Gronwall inequality) that

H(t̂) ≤ (1− t̂)−1 for all t̂ ∈ Ĵ .

Returning to h(t), we obtain 1 + h(t) ≤ 2 for all t ∈ J̃I such that 0 ≤ t ≤
1

2B1
(log Ξ̂)−2Ξ−1e

−1/2
v . One analogously obtains the same estimate for −t in

the same range. Set δ0 in Proposition 8.2 to be δ0 = 1
16B1

and let θ0 :=

δ0(log Ξ̂)−2Ξ−1e
−1/2
v be as in that proposition. Then all of the estimates in

Proposition 8.2 follow directly from (10.1) for t ∈ J̃I ∩ [t0(I) − 8θ0, t0(I) +

8θ0]. In particular, sup{‖∇yI(t)‖C0 : t ∈ J̃I ∩ [t0(I) − 8θ0, t0(I) + 8θ0]} is

finite, so the maximal open interval of existence J̃I must therefore contain

[t0(I) − 8θ0, t0(I) + 8θ0]. (Otherwise one contradicts (8.1) of Proposition 2

using ‖∇uI(t)‖C0 ≤ ‖∇yI(t)‖C0 + ‖∇v(t)‖C0 .) The case of general I 6= 0 is

equivalent to the I = 0 case by a translation in the time variable, so we have

finished proving Proposition 8.2. �

We now continue to the proof of Proposition 10.1.

10.1. Estimates for the pressure increment. We start by estimating the

pressure increment p̄I , which appears in both equation (6.2) and equation (7.8).

The bounds we obtain are as follows, with implicit constants as usual depending

on C0:

Proposition 10.2 (Pressure Estimates). For t ∈ J̃I ,

‖∇kp̄I(t)‖C0 . “N (k−2)+Ξ|k| log Ξ̂ eR(1 + h(t))2, k = 0, 1, 2, 3,(10.3)

Ξ̂−α‖∇kp̄I(t)‖Ċα . “N (k−2)+Ξ|k| log Ξ̂ eR(1 + h(t))2, k = 0, 1, 2, 3,(10.4)

‖∇k+1p̄I(t)‖C0 . “N (k−2)+(Ξe1/2
v ) log Ξ̂ Ξke

1/2
R (1 + h(t))2, k = 2, 3,(10.5)

Ξ̂−α‖∇k+1p̄I(t)‖Ċα . “N (k−2)+(Ξe1/2
v ) log Ξ̂ Ξke

1/2
R (1 + h(t))2, k = 2, 3.

(10.6)

We start with the k = 0 case of (10.3), namely,

‖p̄I(t)‖C0 . log Ξ̂ eR(1 + h(t))2.

Proof of (10.3), k = 0. Taking the divergence of (6.2), and using the fact

that both v` and y`I are divergence free, we have

∇`[vj∇jy`I ] +∇`[yjI∇jv
`] +∇`∇j(yjIy

`
I) + ∆p̄I = −∇`∇jRj`,

p̄I = −2∆−1∇`[yjI∇jv
`]−∆−1∇`∇j [yjIy

`
I ]−∆−1∇`∇jRj`.

We can then decompose p̄I = −2p̄I,1 − p̄I,2 − p̄I,3 as

p̄I,1 = ∆−1∇`[yjI∇jv
`],(10.7)

p̄I,2 + p̄I,3 = ∆−1∇`∇j [yjIy
`
I ] + ∆−1∇`∇jRj`.(10.8)



896 PHILIP ISETT

We start by estimating (10.8) as follows. Choose q̂∈Z such that 2q̂−1< Ξ̂≤ 2q̂.

Then by (9.2), we have

p̄I,2 + p̄I,3 = p̄I,2L + p̄I,3L + p̄I,2H + p̄I,3H ,

p̄I,2L + p̄I,3L = ∆−1∇`∇jP≤q̂[yjIy
`
I +Rj`],(10.9)

p̄I,2H + p̄I,3H =
∑
q>q̂

∆−1∇`∇jPq[yjIy
`
I +Rj`].(10.10)

The operator acting on low frequencies is bounded on C0 by

‖∆−1∇`∇jP≤q̂‖ ≤
q̂∑
q=0

‖∆−1∇`∇jPq‖

.
q̂∑
q=0

1 = (1 + q̂) . log Ξ̂ ,(10.11)

where we used (9.1) and the fact that ∆−1∇`∇jPq = K̃q∗ are convolution op-

erators whose kernels K̃q(h) = 23qK0(2qh) are rescaled Schwartz functions sat-

isfying the same L1 bound. This scaling is due to the multiplier for ∆−1∇`∇j
being homogeneous of degree 0. From (10.11), we now obtain

‖p̄I,2L + p̄I,3L‖C0 . log Ξ̂ (eRh(t)2 + eR) ≤ log Ξ̂ eR(1 + h(t))2.

For the high-frequency term, we apply Pq = P[q−2,q+2]Pq = P≈qPq and use Ċα

control to obtain

‖p̄I,2H + p̄I,3H‖C0 ≤
∑
q>q̂

‖∆−1∇`∇jP≈q‖‖Pq[yjIy
`
I +Rj`]‖C0

(9.3)

.
∑
q>q̂

2−αq‖yjIy
`
I +Rj`‖Ċα

.
∑
q>q̂

2−αqΞ̂α(eRh(t)2 + eR)

. eR(1 + h(t))2.

The term p̄I,1 in (10.7) is similar to the problematic term that we encountered

in equation (7.9). For this term, we start with a similar decomposition

p̄I,1 = p̄I,1L + p̄I,1H ,(10.12)

p̄I,1L = ∆−1∇`P≤q̂[yjI∇jv
`],

p̄I,1H =
∑
q>q̂

∆−1∇`Pq[yjI∇jv
`].
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For the high frequency term, we can estimate

p̄I,1H ≤
∑
q>q̂

‖∆−1∇`P≈q‖ ‖Pq[yjI∇jv
`]‖C0

.
∑
q>q̂

2−q‖Pq[yjI∇jv
`]‖C0

.
∑
q>q̂

2−q2−q‖∇[yjI∇jv
`]‖C0

. Ξ̂−2(‖∇yI‖C0‖∇v‖C0 + ‖yI‖C0‖∇2v‖C0)

. Ξ̂−2Ξ2e1/2
v e

1/2
R h(t) ≤ eRh(t).

In the second line, we used an argument similar to the proof (10.11) to bound

the L1 norm of the kernel for the convolution operator, but in this case the

scaling gains an inverse of the frequency 2q since the multiplier for the operator

is −1-homogeneous rather than 0-homogeneous.

The low frequency term requires more delicate analysis, as we know al-

ready that the bound

‖p̄I,1L‖C0 ≤ ‖∆−1∇`P≤q̂∇j‖ ‖yjIv
`‖C0

is not sufficient.

First we decompose v into high and low frequencies

p̄I,1L = p̄I,1LL + p̄I,1LH ,

p̄I,1LL = ∆−1∇`P≤q̂[yjI∇jP≤q̂v
`],

p̄I,1LH =
∑
q>q̂

∆−1∇`P≤q̂[yjI∇jPqv
`].(10.13)

Using that yI is divergence free, we estimate the LH term by

‖p̄I,1LH‖C0 ≤
∑
q>q̂

‖∆−1∇`P≤q̂∇j‖ ‖yIPqv`‖C0

(10.11)

.
∑
q>q̂

(1 + q̂)(e
1/2
R h(t))(2−q‖∇v‖C0)

. (1 + q̂)Ξ̂−1e
1/2
R h(t)Ξe1/2

v

. log Ξ̂ eRh(t).

For the LL term, we use the following technique, closely related to the estimates

for pressure increments in [Ise13b]. Namely, we decompose this term into
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frequency increments of the form

p̄I,1LL =
q̂−1∑
q=−1

∆−1∇`Pq+1[yjI∇jP≤q+1v
`] + ∆−1∇`P≤q[yjI∇jPq+1v

`]

=
q̂−1∑
q=−1

p̄I,1LqA + p̄I,1LqB.

(10.14)

For the first type of term, we use that P≤q+1v
` is restricted to frequencies at

most 2q+2 to write

∆−1∇`Pq+1[yjI∇jP≤q+1v
`] = ∆−1∇`Pq+1[P≤q+4y

j
I∇jP≤q+1v

`].

That is, the higher frequencies of yI cannot contribute to the Pq+1 projections

of the product.

By Proposition 8.1, we have that yjI = ∇irijI . By substituting, we then

have

‖p̄I,1LqA‖C0 ≤ ‖∆−1∇`Pq+1‖‖P≤q+4∇irijI ‖C0‖∇jP≤q+1v
`‖C0

. 2−q‖P≤q+4∇i‖ ‖rI‖C0‖∇v‖C0

. 2−q · 2q · (ε̂h(t))Ξe1/2
v ,

‖p̄I,1LqA‖C0 . (log Ξ̂)−1eRh(t).(10.15)

For the second term in (10.14), we use that ∇jyjI = 0 and the same frequency

restrictions to write

p̄I,1LqB = ∆−1∇`P≤q[yjI∇jPq+1v
`] = ∆−1∇`P≤q∇j [yjIPq+1v

`]

= ∆−1∇`P≤q∇j [(P≤q+4∇irijI )Pq+1v
`].

From this identity, we conclude

‖p̄I,1LqB‖C0 ≤ ‖∆−1∇`P≤q∇j‖ ‖P≤q+4∇i‖ ‖rI‖C0‖Pq+1v
`‖C0

. (2 + q)2q ε̂h(t)2−q‖∇v‖C0

. (2 + q)ε̂h(t)Ξe1/2
v = (2 + q)(log Ξ̂)−1eRh(t).(10.16)

Substituting these estimates into (10.14) gives

‖p̄I,1LL‖C0 .
q̂−1∑
q=−1

(2 + q)(log Ξ̂)−1eRh(t)

. (1 + q̂)2(log Ξ̂)−1eRh(t) . log Ξ̂ eRh(t).(10.17)

We remark that the above estimates can also be derived without the use of

frequency localization of Fourier transforms of products by starting with the
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terms in a different form such as

∆−1∇`Pq+1[yjI∇jP≤q+1v
`] = ∆−1∇`Pq+1∇i[rijI ∇jP≤q+1v

`]

−∆−1∇`Pq+1[rijI ∇i∇jP≤q+1v
`].

With inequality (10.17) we have concluded the proof of (10.3) for k = 0. �

We now move on to derivatives of order 1 ≤ k ≤ 3.

Proof of (10.3). Note that (10.3) for k = 1 follows from the k = 0, 2 cases

by the interpolation inequality ‖∇f‖C0 . ‖f‖1/2C0 ‖∇2f‖1/2C0 . Also, the k = 3

case of (10.3) is the same as the k = 2 case of (10.5), which will be proven

shortly. Thus we consider only the case of k = 2 derivatives at this point.

Let ∇2
a1,a2 = ∇a1∇a2 be a partial derivative operator of order 2. We use

the same decompositions and the same calculations as in the k = 0 case. For

example,

∇2
a1,a2 p̄I = −2∇2

a1,a2 p̄I,1 −∇
2
a1,a2 p̄I,2 −∇

2
a1,a2 p̄I,3.

Taking two derivatives of (10.9), we have

‖∇2
a1,a2 p̄I,2L‖C0 . (1 + q̂)(‖∇2(yjIy

`
I)‖C0 + ‖∇2R‖C0

. log Ξ̂ (Ξ2eRh(t)2 + Ξ2eR)

. log Ξ̂ Ξ2eR(1 + h(t))2.

Similarly, for (10.10) one has

‖∇2
a1,a2 p̄I,2H‖C0 .

∑
q>q̂

2−αq‖∇2(yjIy
`
I) +∇2Rj`‖Ċα

. Ξ̂−α
Ä
‖∇2yI‖Ċα‖yI‖C0 + ‖∇yI‖Ċα‖∇yI‖C0

+ ‖yI‖Ċα‖∇
2yI‖C0 + ‖∇2Rj`‖Ċα

ä
. Ξ̂−α(Ξ̂αΞ2eRh(t)2 + Ξ̂αΞ2eR)

. Ξ2eR(1 + h(t))2.

The point in the above inequality is that the estimates for yI and R do not

start to see factors of Ξ̂ or “NΞ until going beyond the second derivative. Above

we interpolate between the |a| = 2, 3 cases of (3.2) to bound ‖∇2Rj`‖Ċα .
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Applying ∇2
a1,a2 = ∇a1∇a2 to (10.13) and commuting the partial deriva-

tive through gives

‖∇2p̄I,1LH‖C0 ≤
∑
q>q̂

‖∆−1∇`P≤q̂∇j‖ ‖∇2(yIPqv
`)‖C0

. (1 + q̂)
∑
q>q̂

Ñ ∑
a+b=2

‖∇ayI‖C0‖∇bPqv‖C0

é
. (1 + q̂)

∑
q>q̂

2−q

Ñ ∑
a+b=2

‖∇ayI‖C0‖∇b+1v‖C0

é
. (1 + q̂)

Ñ∑
q>q̂

2−q

é ∑
a+b=2

Ξae
1/2
R h(t)Ξ(b+1)e1/2

v

. (1 + q̂)Ξ̂−1Ξ3e
1/2
R h(t)e1/2

v

‖∇2p̄I,1LH‖C0 . log Ξ̂ Ξ2eRh(t).

Here we use that no powers of “N appear in the estimates (3.1) for v until after

the third derivative. Similarly, we obtain

‖∇2p̄I,1LqA‖C0 . (log Ξ̂)−1Ξ2eRh(t),

‖∇2p̄I,1LqB‖C0 . (2 + q)(log Ξ̂)−1Ξ2eRh(t),

‖∇2p̄I,1LL‖C0 . log Ξ̂ Ξ2eRh(t)

by applying∇a1∇a2 to the formulas that led to the proof of the bounds (10.15),

(10.16), (10.17), and noting that each derivative costs a factor |∇| . Ξ,

|∇|2 . Ξ2 in the estimates, since we do not consider derivatives beyond

‖∇2rI‖C0 , ‖∇2yI‖C0 , ‖∇3v‖C0 . (See also Section 10.4 below, where an analo-

gous term is treated in detail.) �

Proof of (10.4). This inequality follows by interpolating (10.3) and (10.5).

�

Proof of (10.5). Let ∇~a be a partial derivative operator of order k + 1;

i.e., ∇~a = ∇a1∇a2∇a3 if k = 2 or ∇~a = ∇a1∇a2∇a3∇a4 if k = 3. Recall the

decomposition p̄I = −2p̄I,1 − p̄I,2 − p̄I,3 in (10.7)–(10.8). Using the divergence

free condition on yI and v, we have

p̄I,1 = ∆−1(∇`yjI∇jv
`).

Write ∇~a = ∇a1∇a2∇ǎ, where ∇ǎ is a lower order partial derivative operator

of order |ǎ| = k − 1 ≥ 1.
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Using the decomposition of (10.12), the low frequency part can be bounded by

‖∇~ap̄I,1L‖C0 ≤ ‖∇a1∇a2∆−1P≤q̂‖ ‖∇ǎ[∇`yjI∇jv
`]‖C0

. (1 + q̂)
∑

β+γ=k−1

‖∇1+βyI‖C0‖∇1+γv‖C0

. (1 + q̂)
∑

β+γ=k−1

(“N (β−1)+Ξ1+βe
1/2
R h(t))(“N (γ−2)+Ξ1+γe1/2

v )

. log Ξ̂ “N (k−2)+Ξe1/2
v Ξke

1/2
R h(t)

(10.18)

(which is enough for (10.5)). Meanwhile, the high frequency part can be

bounded by

∇~ap̄I,1H =
∑
q>q̄

∇a1∇a2∆−1∇ǎPq(∇`yjI∇jv
`)

=
∑
q>q̂

∇a1∇a2∆−1P≈qPq∇ǎ(∇`yjI∇jv
`),

‖∇~ap̄I,1H‖C0 ≤
∑
q>q̂

‖∇a1∇a2∆−1P≈q‖ ‖Pq∇ǎ(∇`yjI∇jv
`)‖C0

.
∑
q>q̂

2−αq‖∇ǎ[∇`yjI∇jv
`]‖Ċα

. Ξ̂−α
∑

|~a1|+|~a2|=k−1

‖∇~a1∇`y
j
I∇~a2∇jv

`‖Ċα

. Ξ̂−α
∑

|~a1|+|~a2|=k−1

(‖∇~a1∇`y
j
I‖Ċα‖∇~a2∇jv

`‖C0

+ ‖∇~a1∇`y
j
I‖C0‖∇~a2∇jv

`‖Ċα)

. Ξ̂−α

Ñ ∑
|~a1|+|~a2|=k−1

Ξ̂α[“N (|~a1|−1)+Ξ1+|~a1|e
1/2
R h(t)][“N (|~a2|−2)+Ξ1+|~a2|e1/2

v ]

é
. “N (k−2)+Ξe1/2

v Ξke
1/2
R h(t).

(10.19)

Performing the analogous computations for p̄I,2 = ∆−1(∇`yjI∇jy`I) = p̄I,2L +

p̄I,2H gives

‖∇~ap̄I,2L‖C0 . (1 + q̂)
∑

β+γ=k−1

‖∇1+βyI‖C0‖∇1+γyI‖C0

. (1 + q̂)
∑

β+γ=k−1

(“N (β−1)+Ξ1+βe
1/2
R h(t))(“N (γ−1)+Ξ1+γe

1/2
R h(t))

(2.1)

. log Ξ̂ “N (k−2)+Ξe
1/2
R Ξke

1/2
R h(t)2,
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‖∇~ap̄I,2H‖C0 .
∑
q>q̂

2−αq‖∇ǎ[∇`yjI∇jy
`
I ]‖Ċα

. Ξ̂−α

Ñ ∑
γ+β=k−1

Ξ̂α[“N (γ−1)+Ξ1+γe
1/2
R h(t)][“N (β−1)+Ξ1+βe

1/2
R h(t)]

é
(2.1)

. “N (k−2)+Ξe
1/2
R Ξke

1/2
R h(t)2.

As for p̄I,3 = ∆−1∇j∇`Rj` = p̄I,3L + p̄I,3H , we have the bounds (recalling that“N = (ev/eR)1/2)

‖∇~ap̄I,3L‖C0 ≤ ‖∇a1∇a2∆−1P≤q̂‖‖∇ǎ∇j∇`Rj`‖C0

. (1 + q̂)‖∇(k+1)R‖C0

. (1 + q̂)“N (k−1)+Ξk+1eR . log Ξ̂ Ξe1/2
v
“N (k−2)+Ξke

1/2
R ,

‖∇~ap̄I,3H‖C0 ≤
∑
q>q̂

‖∇a1∇a2∆−1P≈q‖‖Pq∇ǎ∇j∇`Rj`‖C0

.
∑
q>q̂

2−αq‖∇ǎ∇j∇`Rj`‖Ċα

. Ξ̂−αΞ̂α “N (k−1)+Ξk+1eR ≤ Ξe1/2
v
“N (k−2)+Ξke

1/2
R .

These bounds complete the proof of (10.5). �

Proof of (10.6). The k = 2 case follows by interpolation from (10.5), so we

need only consider the case k = 3. By the Littlewood-Paley characterization of

Ċα (Proposition 9.1), it suffices to show that for all partial derivative operators

∇~a of order |~a| = 4 and all q ∈ Z, we have

‖Pq∇~ap̄I‖C0 . 2−αqΞ̂α “N(Ξe1/2
v ) log Ξ̂ Ξ3e

1/2
R (1 + h(t))2.(10.20)

We use the same decomposition (10.7)–(10.8) as in the proof of (10.5) above.

Again writing ∇~a = ∇a1∇a2∇ǎ,

Pq∇~ap̄I,1 = ∆−1Pq∇~a(∇`yjI∇jv
`)

= ∆−1∇a1∇a2P≈qPq∇ǎ[∇`y
j
I∇jv

`],

‖Pq∇~ap̄I,1‖C0 . ‖∆−1∇a1∇a2P≈q‖ ‖Pq∇ǎ[∇`y
j
I∇jv

`]‖C0

. 2−αq‖∇ǎ[∇`yjI∇jv
`]‖Ċα

. 2−αq
∑

|~b|+|~c|=2

‖∇~b∇`y
j
I∇~c∇jv

`‖Ċα ,
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‖Pq∇~ap̄I,1‖C0

. 2−αq
∑

|~b|+|~c|=2

(‖∇~b∇`y
j
I‖Ċα‖∇~c∇jv

`‖C0 + ‖∇~b∇`y
j
I‖C0‖∇~c∇jv`‖Ċα)

. 2−αq
∑

|~b|+|~c|=2

Ξ̂α[“N (|~b|−1)+Ξ(1+|~b|)e
1/2
R h(t)][“N (|~c|−2)+Ξ(1+|~c|)e1/2

v ]

. 2−αqΞ̂α “NΞe1/2
v Ξ3e

1/2
R h(t).

Performing the same computation for Pq∇~ap̄I,2 = ∆−1Pq∇~a(∇`yjI∇jy`I) gives

‖Pq∇~ap̄I,2‖C0

. 2−αq
∑

|~b|+|~c|=2

(‖∇~b∇`y
j
I‖Ċα‖∇~c∇jy

`
I‖C0 + ‖∇~b∇`y

j
I‖C0‖∇~c∇jy`I‖Ċα

. 2−αq
∑

γ+β=2

Ξ̂α[“N (γ−1)+Ξ(1+γ)e
1/2
R h(t)][“N (β−1)+Ξ(1+β)e

1/2
R h(t)]

. 2−αqΞ̂α “NΞe
1/2
R Ξ3e

1/2
R h(t)2.

Similarly, we have

Pq∇~ap̄I,3 = ∆−1∇a1∇a2P≈qPq∇ǎ∂j∂`Rj`,

‖Pq∇~ap̄I,3‖C0 . ‖Pq∇ǎ∂j∂`Rj`‖C0 ,

. 2−αq‖∇4R‖Ċα

. 2−αqΞ̂α(“N2Ξ4eR) = 2−αqΞ̂α “NΞe1/2
v Ξ3e

1/2
R .

Combining these three estimates gives (10.20) and hence (10.6). �

We have now proven Proposition 10.2. With estimates for the pressure

in hand, we turn to the evolution equations (6.2), (7.8), and (7.9) for yI , zI
and ρI .

10.2. Estimates for the velocity increment. The main result of this section

is the following array of estimates for the velocity increment y`I :

Proposition 10.3 (velocity estimates). For all t ∈ J̃I and for all multi-

indices ~a with 0 ≤ |~a| ≤ 3 and for all q ∈ Z, the following estimates hold :

‖∇~ayI(t)‖C0 . “N (|~a|−2)+Ξ|~a|e
1/2
R log Ξ̂ Ξe1/2

v

∣∣∣∣∣
∫ t

t0(I)
(1 + h(τ))2dτ

∣∣∣∣∣ ,(10.21)

Ξ̂−α‖∇3yI(t)‖Ċα . “NΞ3e
1/2
R log Ξ̂ Ξe1/2

v

∣∣∣∣∣
∫ t

t0(I)
(1 + h(τ))2dτ

∣∣∣∣∣ ,(10.22)

(10.23)

‖(∂t + vj∇j + yjI∇j)∇~ayI(t)‖C0 . “N (|~a|−2)+Ξ|~a|e
1/2
R log Ξ̂ Ξe1/2

v (1 + h(t))2,
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‖(∂t + vj∇j + yjI∇j)Pq∇~ayI(t)‖C0

. 2−αqΞ̂α “NΞ3e
1/2
R log Ξ̂ Ξe1/2

v (1 + h(t))2 if |~a| = 3.
(10.24)

Observe that (10.23) implies (10.21) by the standard estimates for trans-

port equations (Proposition A.1). Similarly, (10.22) follows from (10.24) and

Proposition A.1 using Proposition 9.1.

We write the evolution equation (6.2) (using ∇jyjI = 0) for y`I in the form

(∂t + ujI∇j)y
`
I = −yjI∇jv

` −∇`p̄I −∇jRj`.(10.25)

The vector field u`I = v` + y`I appearing above satisfies the estimates

‖∇~auI‖C0 + Ξ̂−α‖∇~auI‖Ċα . “N (|~a|−3)+Ξ|~a|e1/2
v (1 + h(t)), 1 ≤ |~a| ≤ 3.

(10.26)

We now prove the estimate (10.23).

Proof of (10.23). Applying ∇~a to (10.25) and commuting gives an equa-

tion

(∂t + ujI∇j)∇~ay
`
I =

∑
|~b|+|~c|=|~a|

c
~a,~b,~c
∇~bu

j
I∇~c∇jy

`
I · 1|~b|≥1

(10.27)

−∇~a[yjI∇jv
`]−∇~a∇`p̄I −∇~a∇jRj`.(10.28)

The commutator term in line (10.27) is bounded by (using |~c| = |~a| − |~b| ≤
|~a| − 1)

‖(10.27)‖C0

(10.26)

.(10.29)

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−3)+Ξ|
~b|e1/2

v (1 + h(t))][“N (|~c|−1)+Ξ(|~c|+1)e
1/2
R h(t)]1|~b|≥1

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−1−2)+ “N (|~c|+1−2)+1|~b|≥1

]
Ξe1/2

v Ξ|~a|e
1/2
R (1 + h(t))2

(2.1)

. “N (|~a|−2)+Ξe1/2
v Ξ|~a|e

1/2
R (1 + h(t))2(10.30)

The first term in line (10.28) is bounded by

‖∇~a[yjI∇jv
`]‖C0 .

∑
|~b|+|~c|=|~a|

‖∇~by
j
I‖C0‖∇~c∇jv`‖C0

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|e

1/2
R h(t)

] î “N (|~c|+1−3)+Ξ|~c|+1e1/2
v

ó
. “N (|~a|−2)+Ξe1/2

v Ξ|~a|e
1/2
R h(t).

(10.31)
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The other terms in (10.28) are bounded by

‖∇~a∇`p̄I‖C0

(10.3),(10.5)

. log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|e

1/2
R (1 + h(t))2

‖∇~a∇jRj`‖C0 . “N (|~a|+1−2)+Ξ|~a|+1eR ≤ “N (|~a|−2)+Ξe1/2
v Ξ|~a|e

1/2
R . �

Proof of (10.24). For |~a| = 3, we apply Pq to (10.27)–(10.28) to obtain

(∂t + ujI∇j)Pq∇~ay
`
I = ujI∇jPq∇~ay

`
I − Pq[u

j
I∇j∇~ay

`
I ](10.32)

+
∑

|~b|+|~c|=|~a|

c
~a,~b,~c

Pq[∇~bu
j
I∇~c∇jy

`
I ] · 1|~b|≥1

(10.33)

− Pq∇~a[yjI∇jv
`]− Pq∇~a∇`p̄I − Pq∇~a∇jRj`.(10.34)

By Proposition 9.2, the commutator term in line (10.32) obeys the bound

‖(10.32)‖C0 . 2−αq‖∇uI‖C0‖∇~ay`I‖Ċα
(10.26)

. 2−αq[Ξe1/2
v (1 + h(t))][Ξ̂α “NΞ|~a|e

1/2
R h(t)]

. 2−αqΞ̂α “NΞe1/2
v Ξ3e

1/2
R (1 + h(t))2.

Following the proof of (10.30), the term (10.33) obeys (for |~a| = 3)

‖(10.33)‖C0 .
∑

|~b|+|~c|=|~a|

2−αq‖∇~bu
j
I∇~c∇jy

`
I‖Ċα1|~b|≥1

. 2−αq
∑

|~b|+|~c|=|~a|

(‖∇~bu
j
I‖Ċα‖∇~c∇jy

`
I‖C0 + ‖∇~bu

j
I‖C0‖∇~c∇jy`I‖Ċα)1|~b|≥1

. 2−αq
∑

|~b|+|~c|=|~a|

Ξ̂α[“N (|~b|−3)+Ξ|
~b|e1/2

v (1 + h(t))][“N (|~c|−1)+Ξ(|~c|+1)e
1/2
R h(t)]1|~b|≥1

. 2−αqΞ̂α “NΞe1/2
v Ξ3e

1/2
R (1 + h(t))2.

Modifying the proof of (10.31) as in the previous computation gives the bound

‖Pq∇~a[yjI∇jv
`]‖C0 . 2−αqΞ̂α(“N (3−2)+Ξe1/2

v Ξ|~a|e
1/2
R h(t)).

The other two terms in (10.34) are bounded by

‖Pq∇~a∇`p̄I‖C0

(10.6)

. 2−αqΞ̂α log Ξ̂ “NΞe1/2
v Ξ3e

1/2
R (1 + h(t))2,

‖Pq∇~a∇jRj`‖C0 . 2−αq‖∇4R‖Ċα . 2−αqΞ̂α “N (4−2)+Ξ4eR,

. 2−αqΞ̂α “NΞe1/2
v Ξ3eR.

This estimate concludes the proof of (10.24). �

We now proceed to estimate the components of the anti-divergence rj`I =

ρj`I + zj`I .
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10.3. Estimates for the anti-divergence I: zI . The main result of this sec-

tion and the following one is the following array of estimates for the components

zj`I and ρj`I of the anti-divergence rj`I = ρj`I + zj`I . We use the notation q̂ to

denote the integer q̂ ∈ Z such that 2q̂−1 < Ξ̂ ≤ 2q̂.

Proposition 10.4 (Anti-Divergence Estimates). For all t ∈ J̃I , and for

all multi-indices ~a with 0 ≤ |~a| ≤ 3 and for all q ∈ Z with q > q̂, the following

estimates hold :

‖∇~azI(t)‖C0 + ‖∇~aρI(t)‖C0 . “N (|~a|−2)+Ξ|~a|ε̂(log Ξ̂)2Ξe1/2
v

∣∣∣∣∣
∫ t

t0(I)
(1 + h(τ))2dτ

∣∣∣∣∣ ,
(10.35)

Ξ̂−α(‖∇3zI(t)‖Ċα + ‖∇3ρI(t)‖Ċα) . “NΞ3ε̂(log Ξ̂)2Ξe1/2
v

∣∣∣∣∣
∫ t

t0(I)
(1 + h(τ))2dτ

∣∣∣∣∣ ,
(10.36)

‖Dt∇~azI(t)‖C0 + ‖Dt∇~aρI(t)‖C0 . “N (|~a|−2)+Ξ|~a|ε̂(log Ξ̂)2Ξe1/2
v (1 + h(t))2,

(10.37)

‖DtPq∇~azI(t)‖C0 + ‖DtPq∇~aρI(t)‖C0

(10.38)

. 2−αqΞ̂α “NΞ3ε̂(log Ξ̂)2Ξe1/2
v (1 + h(t))2 if |~a| = 3,

where Dt is the operator Dt := (∂t + v · ∇) and ε̂ = eR/(log Ξ̂ Ξe
1/2
v ).

As in the discussion following Proposition 10.3, note that (10.37) implies

(10.35). The bounds (10.35) and (10.38) imply (10.36) as follows. From (10.38)

and Proposition A.1, we have

Ξ̂−α sup
q>q̂

2αq(‖Pq∇~azI(t)‖C0 + ‖Pq∇~aρI(t)‖C0)

. “NΞ3ε̂(log Ξ̂)2Ξe1/2
v

∣∣∣∣∣
∫ t

t0(I)
(1 + h(τ))2dτ

∣∣∣∣∣ , |~a| = 3.

On the other hand, in the range q ≤ q̂, we have 2q ≤ 2q̂ ≤ 2Ξ̂, and

Ξ̂−α sup
q≤q̂

2αq(‖Pq∇~azI(t)‖C0 + ‖Pq∇~aρI(t)‖C0)

. ‖∇~azI(t)‖C0 + ‖∇~aρI(t)‖C0 , |~a| = 3.

Thus (10.38) together with (10.35) imply (10.36) by the characterization of Ċα

in Proposition 9.1.

In this section, we address the estimates (10.37) and (10.38) for zI . The

proof of (10.37) and (10.38) for ρI will be given in Section 10.4 below.
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Proof of (10.37) for zI . Applying ∇~a to (7.8) gives

(∂t + vi∇i)∇~azj`I =
∑

|~b|+|~c|=|~a|

c
~a,~b,~c
∇~bv

i∇~c∇izj`I · 1|~b|≥1
(10.39)

−∇~a[yjIy
`
I ]−∇~ap̄Iδj` −∇~aRj`.(10.40)

The commutator term of line (10.39) is bounded by (using |~c| = |~a| − |~b| ≤
|~a| − 1)

‖(10.39)‖C0 .
∑

|~b|+|~c|=|~a|

‖∇~bv
i‖C0‖∇~c∇izj`I ‖C0 · 1|~b|≥1

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−3)+Ξ|
~b|e1/2

v

] î “N (|~c|−1)+Ξ|~c|+1ε̂h(t)
ó
· 1|~b|≥1

.
∑

|~b|+|~c|=|~a|

“N (|~b|−1−2)+ “N (|~c|+1−2)+1|~b|≥1
[Ξe1/2

v Ξ|~a|ε̂h(t)]

(2.1)

. “N (|~a|−2)+Ξe1/2
v Ξ|~a|ε̂h(t).(10.41)

Using eR = log Ξ̂ Ξe
1/2
v ε̂, the first term in (10.40) is bounded by

‖∇~a[yjIy
`
I ]‖C0 .

∑
|~b|+|~c|=|~a|

‖∇~byI‖C0‖∇~cyI‖C0

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|e

1/2
R h(t)

] [“N (|~c|−2)+Ξ|~c|e
1/2
R h(t)

]
. “N (|~a|−2)+Ξ|~a|eRh(t)2

. “N (|~a|−2)+Ξ|~a| log Ξ̂ Ξe1/2
v ε̂h(t)2.

The other two terms are bounded by

‖∇~ap̄Iδj`‖C0

(10.3)

. “N (|~a|−2)+Ξ|~a| log Ξ̂ eR(1 + h(t))2

. “N (|~a|−2)+Ξ|~a|(log Ξ̂)2Ξe1/2
v ε̂(1 + h(t))2

‖∇~aRj`‖C0 . “N (|~a|−2)+Ξ|~a|eR

. “N (|~a|−2)+Ξ|~a| log Ξ̂ Ξe1/2
v ε̂.

Combining these estimates gives (10.37) for zI . �
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Proof of (10.38) for zI . Take |~a| = 3 and apply Pq to equation (10.39)–

(10.40) to obtain

(∂t + vi∇i)Pq∇~azj`I = vi∇iPq∇~azI − Pq[vi∇i∇~azI ](10.42)

+
∑

|~b|+|~c|=|~a|

c
~a,~b,~c

Pq[∇~bv
i∇~c∇izj`I ] · 1|~b|≥1

(10.43)

− Pq∇~a[yjIy
`
I ]− Pq∇~ap̄Iδj` − Pq∇~aRj`.(10.44)

We estimate (10.42) using Proposition 9.2 by

‖(10.42)‖C0 . 2−αq‖∇v‖C0‖∇~azI‖Ċα ,

‖(10.42)‖C0 . 2−αqΞe1/2
v Ξ̂α “N (|~a|−2)+Ξ|~a|ε̂h(t).(10.45)

We estimate (10.43) by

‖(10.43)‖C0 .
∑

|~b|+|~c|=|~a|

2−αq‖∇~bv
i∇~c∇izj`I ‖Ċα · 1|~b|≥1

. 2−αq
∑

|~b|+|~c|=|~a|

(‖∇~bv
i‖Ċα‖∇~c∇iz

j`
I ‖C0 + ‖∇~bv

i‖C0‖∇~c∇izj`I ‖Ċα) · 1|~b|≥1

. 2−αq
∑

|~b|+|~c|=|~a|

Ξ̂α
[“N (|~b|−1−2)+Ξ|

~b|e1/2
v

] î “N (|~c|+1−2)+Ξ|~c|+1ε̂h(t)
ó
· 1|~b|≥1

,

‖(10.43)‖C0 . 2−αqΞ̂α “N (|~a|−2)+Ξe1/2
v Ξ|~a|ε̂h(t).

(10.46)

Similarly, the first term of (10.44) is bounded by

‖Pq∇~a[yjIy
`
I ]‖C0 . 2−αq

∑
|~b|+|~c|=|~a|

‖∇~by
j
I∇~cy

j`
I ‖Ċα

. 2−αq
∑

|~b|+|~c|=|~a|

Ξ̂α
[“N (|~b|−2)+Ξ|

~b|e
1/2
R h(t)

] [“N (|~c|−2)+Ξ|~c|e
1/2
R h(t)

]
. 2−αqΞ̂α “N (|~a|−2)+Ξ|~a|eRh(t)2

. 2−αqΞ̂α “N (|~a|−2)+ log Ξ̂ Ξe1/2
v Ξ|~a|ε̂h(t)2.



A PROOF OF ONSAGER’S CONJECTURE 909

Finally, the latter two terms of (10.44) are bounded by

‖Pq∇~ap̄Iδj`‖C0 . 2−αq‖∇~ap̄I‖Ċα
(10.4)

. 2−αqΞ̂α log Ξ̂ “N (|~a|−2)+Ξ|~a|eR(1 + h(t))2

. 2−αqΞ̂α(log Ξ̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂(1 + h(t))2,

‖Pq∇~aRj`‖C0 . 2−αq‖∇~aRj`‖Ċα
. 2−αqΞ̂α “N (|~a|−2)+Ξ|~a|eR

. 2−αqΞ̂α log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂.

This estimate concludes the proof of (10.38) for zI . �

10.4. Estimates for the anti-divergence II: ρI . In this section, we establish

the estimates (10.37)–(10.38) for ρj`I .

Proof of (10.37) for ρI . Let ∇~a be a partial derivative operator of order

0 ≤ |~a| ≤ 3. Applying ∇~a to (7.9), we obtain

(∂t + vi∇i)∇~aρj`I =
∑

|~b|+|~c|=|~a|

c
~a,~b,~c
∇~bv

i∇~c∇iρj`I · 1|~b|≥1
(10.47)

+∇~aRj`[∇avi∇irabI ] +∇~aRj`[yiI∇ivb].(10.48)

Repeating the proof of the estimate (10.41), the commutator term in (10.47)

is bounded by

‖(10.47)‖C0 . “N (|~a|−2)+Ξe1/2
v Ξ|~a|ε̂h(t).

Let f j` := ∇~aRj`[∇avi∇irabI ] denote the first term in (10.48). Using ∇ivi = 0,

we have

f j` = Rj`∇i[∇~a[∇avirabI ]].

Letting q̂ ∈ Z be as in the pressure estimates of Section 10.1 (2q̂−1 < Ξ̂ ≤ 2q̂),

we decompose f j` = f j`L + f j`H , where

f j`L = Rj`∇iP≤q̂[∇~a[∇avirabI ]],

f j`H =
∑
q>q̂

Rj`∇iPq[∇~a[∇avirabI ]].(10.49)

In frequency space, the 0th order operator Rj`∇i is represented by a Fourier

multiplier mib,
j` ÷Rj`∇i[U ](ξ) = mj`

ib (ξ)
“U b(ξ), ξ ∈ “R3,

such that mj`
ib (ξ) is homogeneous of degree 0 and smooth away from the origin.

This fact follows from the formulas (7.1) and (7.2), from which we observe

that the corresponding Fourier-multiplier for Rj` is smooth away from the
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origin and homogeneous of degree −1. Repeating the proof of (10.11), this

observation allows us to bound

‖Rj`∇iP≤q̂‖ . (1 + q̂) . log Ξ̂ ,

‖f j`L ‖C0 . log Ξ̂
∑

|~b|+|~c|=|~a|

‖∇~b∇av
i‖C0‖∇~crI‖C0

. log Ξ̂
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|+1e1/2

v ][“N (|~c|−2)+Ξ|~c|ε̂h(t)],

‖f j`L ‖C0 . log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

Meanwhile, the high-frequency term in (10.49) can be estimated by

f j`H =
∑
q>q̂

Rj`∇iP≈qPq[∇~a[∇avirabI ]

‖f j`H ‖C0 .
∑
q>q̂

‖Rj`∇iP≈q‖ ‖Pq[∇~a[∇avirabI ]‖C0

.
∑
q>q̂

2−αq‖∇~a[∇avirabI ]‖Ċα

. Ξ̂−α
∑

|~b|+|~c|=|~a|

(‖∇~b∇av
i‖Ċα‖∇~crI‖C0 + ‖∇~b∇av

i‖C0‖∇~crI‖Ċα)

. Ξ̂−α
∑

|~b|+|~c|=|~a|

Ξ̂α[“N (|~b|−2)+Ξ|
~b|+1e1/2

v ][“N (|~c|−2)+Ξ|~c|ε̂h(t)],

‖f j`H ‖C0 . Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

We now turn to the second term in (10.48), which we call gj` := ∇~aRj`[yiI∇ivb],
which is the dangerous term discussed in Section 7. In proving the pressure es-

timate (10.3), we have already encountered a term p̄I,1 with a similar structure.

The term gj` will be estimated by similar techniques. We start by decomposing

gj` = gj`L + gj`H , where

gj`L = ∇~aRj`P≤q̂[yiI∇ivb],(10.50)

gj`H =
∑
q>q̂

∇~aRj`Pq[yiI∇ivb].

We treat gj`H as follows using Pq = P≈qPq:

gj`H =
∑
q>q̂

Rj`P≈q[∇~aPq[yiI∇ivb],

‖gH‖C0 .
∑
q>q̂

‖Rj`P≈q‖‖Pq∇~a[yiI∇ivb]‖C0

.
∑
q>q̂

2−q2−αq‖∇~a[yiI∇ivb]‖Ċα
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. Ξ̂−1Ξ̂−α
∑

|~b|+|~c|=|~a|

(‖∇~byI‖Ċα‖∇~c∇iv
b‖C0 + ‖∇~byI‖C0‖∇~c∇ivb‖Ċα)

. Ξ̂−1Ξ̂−α
∑

|~b|+|~c|=|~a|

Ξ̂α[“N (|~b|−2)+Ξ|
~b|e

1/2
R h(t)][“N (|~c|−2)+Ξ|~c|+1e1/2

v ]

. Ξ̂−1 “N (|~a|−2)+Ξ|~a|+1e
1/2
R e1/2

v h(t)

. “N (|~a|−2)+Ξ|~a|eRh(t)

‖gH‖C0 . log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

For the low frequency part in (10.50), we further decompose into gj`L = gj`LL +

gj`LH , where

gj`LL = ∇~aRj`P≤q̂[yiI∇iP≤q̂vb],(10.51)

gj`LH =
∑
q>q̂

∇~aRj`P≤q̂[yiI∇iPqvb].(10.52)

We estimate the latter term gj`LH using ∇iyiI = 0 to obtain

gj`H = Rj`P≤q̂∇i[∇~a[yiIPqvb]],

‖gj`LH‖C0 .
∑
q>q̂

‖Rj`P≤q̂∇i‖ ‖∇~a[yiIPqvb]‖C0

. log Ξ̂
∑
q>q̂

∑
|~b|+|~c|=|~a|

‖∇~byI‖C0‖Pq∇~cvb‖C0

. log Ξ̂
∑
q>q̂

∑
|~b|+|~c|=|~a|

‖∇~byI‖C0 [2−q‖∇∇~cvb‖C0 ]

. log Ξ̂ Ξ̂−1
∑

|~b|+|~c|=|~a|

‖∇~byI‖C0‖∇∇~cvb‖C0

. log Ξ̂ Ξ̂−1
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|e

1/2
R h(t)][“N (|~c|+1−3)+Ξ|~c|+1e1/2

v ]

. log Ξ̂ Ξ̂−1 “N (|~a|−2)+Ξ|~a|+1e
1/2
R e1/2

v h(t)

. log Ξ̂ “N (|~a|−2)+Ξ|~a|eRh(t)

‖gj`H‖C0 . (log Ξ̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

Our technique to estimate the term gj`LL in (10.51) is to first decompose into

frequency increments:

gj`LL =
q̂−1∑
q=−1

gj`LLqA + gj`LLqB,(10.53)

gj`LLqA = ∇~aRj`Pq+1[yiI∇iP≤qvb],
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gj`LLqB = ∇~aRj`P≤q[yiI∇iPq+1v
b].

As in the estimates for (10.14), observe that P≤qv
b and Pq+1v are restricted

to frequencies |ξ| ≤ 2q+2. The Littlewood-Paley components of yI supported

in |ξ| > 2q+5 thus cannot contribute to the Pq+1 projection of the products

above, and we have

gj`LLqA = ∇~aRj`Pq+1[P≤q+3y
i
I∇iP≤qvb],(10.54)

gj`LLqB = ∇~aRj`P≤q[P≤q+3y
i
I∇iPq+1v

b].(10.55)

From Proposition 8.1, we have that yiI = ∇araiI . Substituting, we obtain the

bound

‖gj`LLqA‖C0 . ‖Rj`Pq+1‖ ‖∇~a[P≤q+3y
i
I∇iP≤qvb]‖C0

. 2−q
∑

|~b|+|~c|=|~a|

‖∇~bP≤q+3y
i
I‖C0‖∇~c∇iv‖C0

. 2−q
∑

|~b|+|~c|=|~a|

‖P≤q+3∇a∇~br
ai
I ‖C0‖∇~c∇iv‖C0

. 2−q
∑

|~b|+|~c|=|~a|

‖P≤q+3∇a‖ ‖∇~br
ai
I ‖C0‖∇~c∇iv‖C0

. 2−q
∑

|~b|+|~c|=|~a|

2q[“N (|~b|−2)+Ξ|
~b|ε̂h(t)][“N (|~c|+1−3)+Ξ|~c|+1e1/2

v ],

‖gj`LLqA‖C0 . Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

(10.56)

Using that ∇iyiI = 0 and again applying Proposition 8.1, we estimate (10.55)

by

gj`LLqB = Rj`P≤q∇i∇~a[P≤q+3∇araiI Pq+1v
b]

‖gj`LLqB‖C0 . ‖Rj`P≤q∇i‖
∑

|~b|+|~c|=|~a|

‖P≤q+3∇a‖ ‖∇~brI‖C0‖Pq+1∇~cv‖C0 ,

. (2 + q)
∑

|~b|+|~c|=|~a|

2q‖∇~brI‖C0 [2−q‖∇∇~cv‖C0 ]

. (2 + q)
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|ε̂h(t)][“N (|~c|+1−3)+Ξ|~c|+1e1/2

v ],

‖gj`LLqB‖C0 . (2 + q)Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

(10.57)
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Summing the bounds (10.56) and (10.57) in (10.53) gives

‖gj`LL‖C0 .
q̂−1∑
q=−1

(2 + q)Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t)

. (1 + q̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t)

. (log Ξ̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

This estimate concludes the proof of (10.37) for ρj`I . �

We now prove the estimate (10.38) for ρI

Proof of (10.38) for ρI . Let ∇~a be a partial derivative operator of order

|~a| = 3, and let Pq, q ∈ Z be a Littlewood-Paley projection with q > q̂.

Applying Pq to (10.47)–(10.48), we have

(∂t + vi∇i)Pq∇~aρj`I = vi∇iPq∇~aρj`I − Pq[v
i∇i∇~aρj`I ](10.58)

+
∑

|~b|+|~c|=|~a|

c
~a,~b,~c

Pq[∇~bv
i∇~c∇iρj`I ] · 1|~b|≥1

(10.59)

+∇~aRj`Pq[∇avi∇irabI ] +∇~aRj`Pq[yiI∇ivb].(10.60)

Repeating the arguments leading to (10.45) and (10.46) but with ρI in place

of zI , we obtain

‖(10.58)‖C0 . 2−αqΞ̂αΞe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t),

‖(10.59)‖C0 . 2−αqΞ̂αΞe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

To bound the first term in (10.60), we use that ∇ivi = 0 and Pq = P≈qPq to

write

∇~aRj`Pq[∇avi∇irabI ] = Rj`∇iP≈qPq∇~a[∇avirabI ],

‖∇~aRj`Pq[∇avi∇irabI ]‖C0

. ‖Rj`∇iP≈q‖ ‖Pq∇~a[∇avirabI ]‖C0

.
∑

|~b|+|~c|=|~a|

‖Pq∇~br
ab
I ∇~c∇avi]‖C0

. 2−αq
∑

|~b|+|~c|=|~a|

‖∇~br
ab
I ∇~c∇avi‖Ċα

. 2−αq
∑

|~b|+|~c|=|~a|

(‖∇~br
ab
I ‖Ċα‖∇~c∇av

i‖C0 + ‖∇~br
ab
I ‖C0‖∇~c∇avi‖Ċα)

. 2−αq
∑

|~b|+|~c|=|~a|

Ξ̂α[“N (|~b|−2)+Ξ|
~b|ε̂h(t)][“N (|~c|−2)+Ξ|~c|+1e1/2

v ],

‖∇~aRj`Pq[∇avi∇irabI ]‖C0 . 2−αqΞ̂αΞe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).
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To bound the second term in (10.60), we use that Ξ̂ ≤ 2q̂ < 2q to obtain

∇~aRj`Pq[yiI∇ivb] = Rj`P≈qPq∇~a[yiI∇ivb],

‖∇~aRj`Pq[yiI∇ivb]‖C0 ≤ ‖Rj`P≈q‖‖Pq∇~a[yiI∇ivb]‖C0

. 2−q2−αq‖∇~a[yiI∇ivb]‖Ċα

. Ξ̂−12−αq
∑

|~b|+|~c|=|~a|

(‖∇~by
i
I‖Ċα‖∇~c∇iv

b‖C0 + ‖∇~by
i
I‖C0‖∇~c∇ivb‖Ċα)

. Ξ̂−12−αq
∑

|~b|+|~c|=|~a|

Ξ̂α[“N (|~b|−2)+Ξ|
~b|e

1/2
R h(t)][“N (|~c|+1−3)+Ξ|~c|+1e1/2

v ]

. Ξ̂−12−αqΞ̂α “N (|~a|−2)+Ξe1/2
v Ξ|~a|e

1/2
R h(t)

. 2−αqΞ̂α “N (|~a|−2)+Ξ|~a|eRh(t),

‖∇~aRj`Pq[yiI∇ivb]‖C0 . 2−αqΞ̂α log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂h(t).

This bound concludes our proof of (10.38) for ρI . �

Having now proven Propositions 10.3 and 10.4, we are ready to complete

the proof of the Gluing Approximation Lemma 3.2.

10.5. Proof of the Gluing Approximation Lemma. In this section, we prove

the Gluing Approximation Lemma 3.2 using the results of Sections 8–10.4.

Observe that Proposition 10.1 follows immediately from Propositions 10.3

and 10.4 and the definition 10.1 of h(t). Proposition 8.2 has also been proven,

as it follows from Proposition 10.1 by the argument following the statement of

Proposition 10.1. Thus, the time interval [t0(I)− 8θ0, t0(I) + 8θ0] is contained

in the time interval of existence J̃I , and the gluing construction is well defined.

Furthermore, recall from the proof of Proposition 8.2 from Proposition 10.1

that the dimensionless norm h(t) associated with each index I satisfies h(t) ≤ 1

for t ∈ [t0(I)− 8θ0, t0(I) + 8θ0].

In what follows, set JI = [t0(I)− 8θ0, t0(I) + 8θ0]. We claim the following

estimates:

Proposition 10.5. Let y`, ṽ` = v` + y` and rj`I = ρj`I + zj`I be as defined

in Sections 6–8. Then

sup
t∈R
‖∇ky‖C0 . “N (k−2)+Ξke

1/2
R , k = 0, 1, 2, 3,(10.61)

sup
I

sup
t∈JI
‖∇k(∂t + ṽ · ∇)yI‖C0 . log Ξ̂ Ξe1/2

v
“N (k−2)+Ξke

1/2
R , k = 0, 1, 2,

(10.62)

sup
I

sup
t∈JI
‖∇k(∂t + ṽ · ∇)rI‖C0 . (log Ξ̂)2Ξe1/2

v
“N (k−2)+Ξkε̂, k = 0, 1, 2.

(10.63)
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Proof. The bound (10.61) follows from the definition y` =
∑
I ηIy

`
I of

y` and the estimate (8.3). To obtain (10.62), let ∇~a be a partial derivative

operator of order |~a| = k ≤ 2. Then

(∂t + ṽi∇i)y`I = (∂t + vi + yiI)∇iy`I + yi∇iy`I − yiI∇iy`I ,

∇~a[(∂t + ṽi∇i)y`I ] = ∇~a[(∂t + vi∇i + yiI∇i)y`I ] +∇~a[(yi − yiI)∇iy`I ].(10.64)

The first term on the right-hand side of (10.64) is equal to the sum of the

terms in line (10.28). For these terms, we established a bound

‖∇~a[(∂t + vi∇i + yiI∇i)y`I ]‖C0 . log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|e

1/2
R (1 + h(t))2

. log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|e

1/2
R .

The other term in (10.64) is bounded by

‖∇~a[(yi − yiI)∇iy`I ]‖C0 .
∑

|~b|+|~c|=|~a|

(‖∇~by
i‖C0 + ‖∇~by

i
I‖C0)‖∇~c∇iyI‖C0

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|e

1/2
R ][“N (|~c|−1)+Ξ|~c|+1e

1/2
R ]

. Ξe
1/2
R
“N (|~a|−1)+Ξ|~a|e

1/2
R ≤ Ξe1/2

v
“N (|~a|−2)+Ξ|~a|e

1/2
R .

To obtain (10.63), we compute

(∂t + ṽ · ∇)rI = (∂t + vi∇i)[ρj`I + zj`I ] + yi∇irj`I ,

∇~a[(∂t + ṽ · ∇)rI ] = ∇~a[(∂t + vi∇i)rj`I ] +∇~a[yi∇irj`I ].(10.65)

The first term on the right-hand side of (10.65) is equal to the sum of the

terms in lines (10.40) and (10.48). For these terms, we proved a bound

‖∇~a[(∂t + vi∇i)rj`I ]‖C0 . (log Ξ̂)2 “N (|~a|−2)+Ξe1/2
v Ξ|~a|ε̂(1 + h(t))2

. (log Ξ̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂.

The other term in line (10.65) can be estimated by

‖∇~a[yi∇irj`I ]‖C0 .
∑

|~b|+|~c|=|~a|

‖∇~by
i‖C0‖∇~c∇irI‖C0

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|e

1/2
R ][“N (|~c|−1)+Ξ|~c|ε̂]

. Ξe
1/2
R
“N (|~a|−1)+Ξ|~a|ε̂ ≤ Ξe1/2

v
“N (|~a|−2)+Ξ|~a|ε̂.

The proof of Proposition 10.5 is now complete. �
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Using the formulas

ṽ` = v` + y`,

RI = 1[t(I)−θ,t(I)+θ]η
′
I(t)(r

jl
I − r

j`
I+1) + ηIηI+1(yjIy

`
I+1 + yjI+1y

`
I)

− ηIηI+1(yjIy
`
I + yjI+1y

`
I+1),‹DtRI = 1[t(I)−θ,t(I)+θ][η

′′
I (t)(rjlI − r

j`
I+1) + η′I(t)

‹Dt(r
j`
I − r

j`
I+1)](10.66)

+ (η′IηI+1 + ηIη
′
I+1)(yjIy

`
I+1 + yjI+1y

`
I)(10.67)

+ ηIηI+1(‹Dty
j
Iy
`
I+1 + yjI

‹Dty
`
I+1 + ‹Dty

j
I+1y

`
I + yjI+1

‹Dty
`
I)(10.68)

− (η′IηI+1 + ηIη
′
I+1)(yjIy

`
I + yjI+1y

`
I+1)(10.69)

− ηIηI+1(‹Dty
j
Iy
`
I + yjI

‹Dty
`
I + ‹Dty

j
I+1y

`
I+1 + yjI+1

‹Dty
`
I+1),(10.70) ‹Dt := (∂t + ṽ · ∇)(10.71)

from (6.7) in Section 6 and applying the bounds of Proposition 10.5, we obtain

the following estimates:

Proposition 10.6. Uniformly in t ∈ R, for ‹Dt as in (10.71), we have

‖∇kṽ‖C0 . Ξke1/2
v , k = 1, 2, 3,(10.72)

sup
I
‖∇kRI‖C0 .δ “N (k−2)+Ξk log Ξ̂ eR, k = 0, 1, 2, 3,(10.73)

sup
I
‖∇k‹DtRI‖C0 .δ (log Ξ̂)2Ξe1/2

v
“N (k−2)+Ξk log Ξ̂ eR, k = 0, 1, 2.(10.74)

Proof. To obtain (10.72), we use

‖∇kv`‖C0 + ‖∇ky`‖C0 . Ξke1/2
v + “N (k−2)+Ξke

1/2
R . Ξke1/2

v , k = 1, 2, 3.

For (10.73), let ∇~a be a partial derivative operator of order |~a| = k ≤ 3. Then

‖∇~aRI‖C0 . ‖η′I‖C0 sup
I
‖∇~arI‖C0 +

∑
|~b|+|~c|=|~a|

sup
I
‖∇~byI‖C0 sup

I
‖∇~cyI‖C0

.δ (log Ξ̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|ε̂+ “N (|~a|−2)+Ξ|~a|eR

.δ log Ξ̂ “N (|~a|−2)+Ξ|~a|eR.

For (10.74), let ∇~a be a partial derivative operator of order |~a| = k ≤ 2. We

estimate ∇~a‹DtRI by

‖∇~a(10.66)‖C0 ≤ sup
I

[‖η′′I ‖C0‖∇~arI‖C0 + ‖η′I‖C0‖∇~a‹DtrI‖C0 ]

.δ [(log Ξ̂)2Ξe1/2
v ]2 “N (|~a|−2)+Ξ|~a|ε̂

.δ (log Ξ̂)3Ξe1/2
v
“N (|~a|−2)+Ξ|~a|eR,
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‖∇~a(10.67)‖C0 + ‖∇~a(10.69)‖C0

.δ (log Ξ̂)2Ξe1/2
v

∑
|~b|+|~c|=|~a|

sup
I
‖∇~byI‖C0 sup

I
‖∇~cyI‖C0

.δ (log Ξ̂)2Ξe1/2
v
“N (|~a|−2)+Ξ|~a|eR,

‖∇~a(10.68)‖C0 + ‖∇~a(10.70)‖C0

.
∑

|~b|+|~c|=|~a|

sup
I
‖∇~byI‖C0 sup

I
‖∇~c‹DtyI‖C0

.
∑

|~b|+|~c|=|~a|

[“N (|~b|−2)+Ξ|
~b|e

1/2
R ][log Ξ̂ Ξe1/2

v
“N (|~c|−2)+Ξ|~c|e

1/2
R ]

. log Ξ̂ Ξe1/2
v
“N (|~a|−2)+Ξ|~a|eR.

Combining these bounds proves (10.74) and finishes the proof of Proposi-

tion 10.6. �

From Proposition 10.6, we have established the estimates claimed in the

Gluing Approximation Lemma 3.2 (noting that “N (|~a|−2)+ = 1 in (10.74) for

|~a| ≤ 2). As we have already discussed the proof of the support properties

in Sections 6–8 (see, in particular, the discussion at the end of Section 6), we

have finished the proof of Lemma 3.2.

Part 4. The Convex Integration Sublemma

In Sections 11–17.6 below, we prove the Convex Integration Lemma 3.3.

The proof of the lemma is a combination of the framework of estimates in

[Ise17] with the construction of Mikado flows in [DS16]. We start by introduc-

ing some notation that will be used in this section.

For this proof, the notation X . Y will mean that there exists a constant

C such thatX ≤ CY , and this constant C is allowed to depend on the constants

C1 and Cδ and δ provided in the assumptions of Lemma 3.3 (which are the

conclusions of Lemma 3.2). If a constant depends on the parameter η > 0, we

will write .η. We will write X ≤ C0Y for an inequality involving a constant

C0 that is an absolute constant that is not allowed to depend on C1, Cδ or η.

The value of C0 may change from line to line.

As opposed to the proof of Lemma 3.2, in this proof the notation ‖f‖C0

will refer to the C0 = C0
t,x norm in both the time and space variables.

If A = Aji ∈ R3×3 is a 3 × 3 matrix, we will let |A| denote the Frobenius

norm of A, namely, |A| = (
∑3
i,j=1(Aji )

2)1/2. In general, for any tensor field,

it is implied that the Frobenius norm is taken pointwise whenever we write a

norm such as the C0 norm.
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11. Mikado flows

We recall the construction of Mikado flows from [DS16].

Let F ⊆ Z3 be a finite set of integer lattice vectors. Then there exists

a collection of points (pf )f∈F in T3 and a number r0 > 0 such that if `f =

{pf + tf : t ∈ R} ⊆ T3 denotes the periodization of the line passing through

pf in the f direction, and if Nδ(`f ) = {X + h : X ∈ T3, h ∈ R3, |h| ≤ δ}
denotes the closed δ-neighborhood of `f , then

(11.1) N3r0(`f ) ∩N3r0(`f̃ ) = ∅ for all f, f̃ ∈ F, f 6= f̃ .

For each f ∈ F, choose a function ψf (X) : T3 → R of the form ψf (X) =

gf (dist(X, `f )) such that gf = gf (d) is a smooth function with compact sup-

ported in supp gf ⊆ {r0 ≤ d ≤ 2r0} and∫
T3
ψf (X)dX = 0,(11.2)

1

|T3|

∫
T3
ψ2
f (X)dx = 1.(11.3)

Then ψf (X) is a smooth function on T3 whose level surfaces are concentric

periodic cylinders with central axis `f . From the orthogonality between ∇ψ
and f and (11.1), one has that the vector fields u`f = ψf (X)f ` are divergence

free and have disjoint support

∇`ψf (X)f ` = 0,(11.4)

suppψf ∩ suppψf̃ = ∅ for all f, f̃ ∈ F, f 6= f̃ .(11.5)

Combining (11.4) and (11.5), one has that any linear combination

u` =
∑
f∈F

γfψf (X)f `

is a stationary solution to incompressible Euler with 0 pressure (i.e., ∇`u` = 0

and ∇j(uju`) = 0). Solutions constructed as above are termed Mikado flows

in [DS16].

Letting ei denote the ith standard basis vector in Z3, we will fix our finite

set F to be

(11.6) F := {ei ± ej : 1 ≤ i < j ≤ 3}
and use ψf to denote the above chosen ψf . Note that the cardinality of F is

|F| = 6.

12. The coarse scale flow and back-to-labels map

Let (v, p,R) be the Euler-Reynolds flow given in Lemma 3.3. Let vε =

ηε ∗ v be a mollification of v in the spatial variables, where ηε : R3 → R is

a standard smooth mollifier ηε(h) = ε−3η(h/ε) with compact supported in
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supp ηε(h) ⊆ {|h| ≤ ε}. The positive number ε ≤ 1 will be chosen later in the

proof in Section 16 below. Regardless of the choice of ε > 0, one has that

‖∇vε‖C0 ≤ A0‖∇v‖C0 ,

with A0 = ‖η1‖L1(R3) an absolute constant, which will later be set to A0 = 1

by taking η ≥ 0.

Associated to vε we define the coarse scale flow as the map Φs(t, x) :

R× R× T3 → R× T3 by

Φs(t, x) = (t+ s,Φi
s(t, x)),

d

ds
Φi
s(t, x) = viε(Φs(t, x)), i = 1, 2, 3,

Φ0(t, x) = (t, x).

(12.1)

Then Φs is the flow map of the four-vector field ∂t + vε · ∇ on R× T3, and it

satisfies Φs ◦ Φs′ = Φs+s′ for all s, s′ ∈ R. In particular, for all s ∈ R, Φs is a

bijection on R× T3 with inverse map Φ−s.

Let (t(I))I∈Z be as in the assumptions of Lemma 3.3. For each each

t(I) ∈ R, we define the back-to-labels map ΓI starting at t(I) as the (unique,

smooth) solution to

(∂t + viε∇i)ΓI(t, x) = 0,

ΓI(t(I), x) = x.

One can regard ΓI as a map ΓI : R×R3 → R3 with the symmetry ΓI(t, x+`) =

ΓI(t, x) + ` for all ` ∈ Z3, which holds due to the integer periodicity of vε and

uniqueness of solutions to the transport equation. From this symmetry, we can

also think of ΓI : R× T3 → T3 as a map on the torus.

Recall that Lemma 3.3 assumes that

θ‖∇v‖C0 ≤ b0,

where b0 is an absolute constant that remains to be chosen. We will later

choose some b0 ≤ 1, so that the estimates of the following proposition hold:

Proposition 12.1. There exists an absolute constant C0 such that if

θ‖∇v‖C0 ≤ 1, then for all t ∈ [t(I)− θ, t(I) + θ] and 0 < ε ≤ 1,

‖∇ΓI‖C0 ≤ C0,(12.2)

‖(∂t + vε · ∇)∇ΓI‖C0 ≤ C0‖∇v‖C0 ,(12.3)

‖∇ΓI − Id ‖C0 ≤ C0θ‖∇v‖C0 .(12.4)

Moreover, ∇ΓI(t, x) is invertible at every point, and the inverse matrix ∇Γ−1
I

satisfies the same estimates (12.2)–(12.4) when restricted to t∈ [t(I)−θ,t(I)+θ].
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Proof. The equation for ∇ΓI is

(∂t + viε∇i)∇aΓkI = −∇aviε∇iΓkI ,

∇aΓkI (t(I), x) = Idka = δka .
(12.5)

For |s| ≤ θ, let Φs be as in (12.1) and ‖ · ‖2 denote the Frobenius norm. Using

(12.5), we have

d

ds
‖∇ΓI‖2(Φs(t(I), x)) =

3∑
a,k=1

(∇ΓI)
k
a(Φs)[(∂t + vε · ∇)(∇ΓI)

k
a](Φs),∣∣∣∣ dds‖∇ΓI‖2(Φs(t(I), x))

∣∣∣∣ ≤ C0‖∇vε‖C0‖∇ΓI‖2(Φs),

Gronwall ⇒ ‖∇ΓI‖2(Φs(t(I), x)) ≤ ‖ Id ‖eC0‖∇vε‖C0 |s| ≤ ‖ Id ‖eC0‖∇v‖C0 |s|,

|s|‖∇v‖C0 ≤ 1⇒ ‖∇ΓI‖2(Φs(t(I), x)) ≤ C2
0 .

Since Φs(t(I), ·) maps {t(I)} × T3 onto {t(I) + s} × T3, (12.2) follows. Then

(12.3) follows from (12.5) and (12.2). To obtain (12.4), write

∇ΓI(Φs(t(I), x))− Id = ∇ΓI(Φs(t(I), x))−∇ΓI(Φ0(t(I), x))

=

∫ s

0

d

dσ
∇ΓI(Φσ(t(I), x))

=

∫ s

0
[(∂t + vε · ∇)∇ΓI ](Φσ(t(I), x)),

and then apply (12.2), (12.3) and |s| ≤ θ.
To see the invertibility of∇ΓI , let Y a

b be the unique matrix-valued solution

to the initial value problem

(∂t + viε∇i)Y a
b = ∇ivaε Y i

b ,

Y a
b (t(I), x) = Idab .

(12.6)

Then Y a
b = (∇Γ−1

I )ab is also the unique inverse to ∇ΓI , as we have

(∂t + viε∇i)[(∇ΓI)
k
aY

a
b ] = −∇iΓkI∇aviεY a

b +∇aΓkI∇ivaε Y i
b = 0,

(∇ΓI)
k
aY

a
b (t(I), x) = Idkb .

The proof of the estimates (12.2)–(12.4) for (∇Γ−1
I )ab proceed exactly as for

∇ΓI , but using (12.6). �

13. Ansatz for the correction

We now explain the ansatz for the correction. The ansatz used here is

equivalent to the one in [DS16] with the only significant differences being the

presence of time cutoffs and the use of multiple waves.

The new Euler-Reynolds flow (v1, p1, R1) in the conclusion of Lemma 3.3

will have a velocity field of the form v1 = v+ V . The correction V is a sum of
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divergence free vector fields VJ indexed by J = (I, f) ∈ Z×F. The integer part

I ∈ Z will specify the t(I) ∈ R around which VJ is supported in time, while

the index f ∈ F will correspond to the direction in which VJ takes values.

V ` =
∑

J∈Z×F
V `
J , ∇`V `

J = 0 for all J ∈ Z× F.

The leading order term in each VJ , J = (I, f) ∈ Z× F, has the structure of a

Mikado flow (as described in Section 11), but rescaled to have a large frequency

λ ∈ Z and made to move along the coarse scale flow by composition with the

back-to-labels map

V `
J = V̊ `

J + δV `
J ,

V̊ `
J (t, x) = v`J(t, x)ψf (λΓI(t, x)), J = (I, f).(13.1)

The leading order term V̊J is divergence free to leading order in the large

parameter λ, as we will have

v`J∇`[ψf (λΓI(t, x))] = 0.(13.2)

The lower order term δV `
J will be chosen such that V `

J is exactly divergence

free.

More precisely, the amplitude v`J in (13.1) will have the form

v`J = e
1/2
I (t)γJ(t, x)(∇Γ−1

I )`af
a(13.3)

for functions e
1/2
I (t) and γJ(t, x) to be described shortly. The identity (13.2)

follows from this ansatz thanks to the presence of (∇Γ−1
I ) and (11.4). The

function e
1/2
I (t) is required to satisfy

suppt e
1/2
I (t) ⊆ [t(I)− θ, t(I) + θ].(13.4)

To correct the ansatz (13.1) and ensure the divergence free condition, for

each f ∈ F, choose a smooth (2, 0) tensor field Ωαβ
f : T3 → R3 ⊗ R3 such that

Ωαβ
f is anti-symmetric in α, β, and

∇αΩαβ
f (X) = ψf (X)fβ,(13.5) ∫

T3
Ωαβ
f (X)dX = 0.(13.6)

One can take for instance Ωαβ
f = ∇α∆−1[ψff

β]−∇β∆−1[ψff
α]. The existence

of this choice relies on the fact that ψf (X)f ` is divergence free and has integral

0 on T3.

We now define

V `
J = λ−1∇a[(∇Γ−1

I )aα(∇Γ−1
I )`βe

1/2
I (t)γJΩαβ

f (λΓI)], J = (I, f) ∈ Z× F.
(13.7)
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The V `
J above is divergence free because it is the divergence of an antisymmetric

tensor. (The tensor within the brackets is antisymmetric in a, ` because Ωαβ
f =

−Ωβα
f is antisymmetric in α, β.) Expanding the divergence in (13.7) and using

(13.5), one sees that V `
J has the form (13.1) for

δV `
J = δv`J,αβΩαβ

f (λΓI),(13.8)

δv`J,αβ = λ−1∇a[(∇Γ−1
I )aα(∇Γ−1

I )`βe
1/2
I (t)γJ(t, x)].(13.9)

14. The error terms

Let (v, p,R) be the given Euler-Reynolds flow obeying the assumptions

of Lemma 3.3. The new Euler-Reynolds flow (v1, p1, R1) will have the form

v1 = v + V , p1 = p+ P , and Rj`1 that satisfies

∇jRj`1 = ∂tV
` +∇j [vjV ` + V jv` + V jV ` + Pδj` +Rj`].

We will define mollifications vε and Rε to approximate v and R. Recall also

the decomposition V ` =
∑
J V̊

`
J + δV `

J . In terms of these, the new error Rj`1
will be composed of terms that solve

Rj`1 = Rj`M +Rj`T +Rj`S +Rj`H ,(14.1)

Rj`M = (vj − vjε )V ` + V j(v` − v`ε) + (Rj` −Rj`ε ),(14.2)

∇jRj`T = ∂tV
` + vjε∇jV ` + V j∇jv`ε ,(14.3)

Rj`S =
∑

J,K∈Z×F
δV j

J V̊
`
K + V̊ j

J δV
`
K + δV j

J δV
`
K ,(14.4)

∇jRj`H = ∇j

 ∑
J∈Z×F

V̊ j
J V̊

`
J + Pδj` +Rj`ε

 .(14.5)

Note that we used ∇jV j
J = 0 to obtain (14.3). Note also that (14.4) is sym-

metric in j, ` due to the double sum over Z × F. In order to obtain (14.5),

a key cancellation comes from the fact that supp V̊J ∩ supp V̊K = ∅ for all

J,K ∈ Z×F, J 6= K, which eliminates all the cross terms in the product. This

disjointness of support follows from (11.5), (13.4) and (3.7).

The amplitudes v`J in (13.1)–(13.3) and the correction P to the pressure

will be chosen such that ∑
J∈Z×F

vjJv
`
J + Pδj` +Rj`ε = 0.(14.6)

In this way, the “low-frequency” part of (14.5) will cancel out, and (14.5)

becomes (using (13.1),(13.3))

∇jRj`H =
∑

J∈Z×F
∇j [vjJv

`
J(ψ2

f (λΓI)− 1)], J = (I, f).(14.7)
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15. The algebraic equation

In this section, we specify how the e
1/2
I (t), γJ(t, x) and P above are chosen

so that (14.6) is satisfied.

From Lemma 3.3, there is a decomposition R =
∑
I RI with supptRI ⊆

[t(I)− θ
2 , t(I)+ θ

2 ]. We will define Rj`ε = ηε∗Rj` by mollifying only in the spatial

variables, and hence we obtain an analogous decomposition Rj`ε =
∑
I R

j`
I,ε,

with Rj`I,ε = ηε ∗Rj`I supported in the same time intervals supptR
j`
I,ε ⊆ [t(I)−

θ
2 , t(I) + θ

2 ].

Writing P =
∑
I PI , equation (14.6) now reduces to choosing vJ and PI

such that for all I ∈ Z, ∑
J∈I×F

vjJv
`
J + PIδ

j` +Rj`I,ε = 0.(15.1)

We take PI = −eI(t), and (15.1) reduces to∑
J∈I×F

vjJv
`
J = eI(t)

∑
J∈I×F

γ2
J(∇Γ−1

I )ja(∇Γ−1
I )`bf

af b = e(t)δj` −Rj`I,ε.

Assuming that we can divide by eI(t), this equation will hold if for all I ∈ Z ,

we have ∑
J∈I×F

γ2
J(∇Γ−1

I )ja(∇Γ−1
I )`bf

af b = δj` + εj`I ,(15.2)

εj`I = −eI(t)−1Rj`I,ε.

To ensure that the above division is well behaved, we choose e
1/2
I (t) to have

the form

e
1/2
I (t) = [KCδ log Ξ̂ eR]1/2ηθ/8 ∗t 1[t(I)−3θ/4,t(I)+3θ/4](t).(15.3)

In the above formula, Cδ is the constant in the upper bound (3.10), ηθ/8(τ)

is a standard mollifying kernel in the time variable supported in |τ | ≤ θ
8 ,

1[t(I)−3θ/4,t(I)+3θ/4] is the characteristic function of [t(I) − 3θ/4, t(I) + 3θ/4],

and K is a large constant to be determined shortly. Note that the support

restriction (13.4) is satisfied by the above formula.

From the support property of RI,ε and (3.10) (which holds also for RI,ε),

we have

‖εI‖C0 ≤ K−1.(15.4)

Applying (∇ΓI) to (15.2), it suffices to have that for all I ∈ Z and all (t, x) ∈
[t(I)− θ, t(I) + θ]× T3,∑

J∈{I}×F
γ2
Jf

jf ` = (∇ΓI)
j
a(∇ΓI)

`
b(δ

ab + εab), J = (I, f) ∈ Z× F.(15.5)
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At each point (t, x), the right-hand side belongs to the space S ⊆ R3 ⊗ R3 of

symmetric (2, 0) tensors. From our choice of F in (11.6), the following claims

hold:

The tensors (f jf `)f∈F form a basis for S,(15.6) ∑
f∈F

1

4
f jf ` = δj`.(15.7)

Viewing the right-hand side of (15.5) as a perturbation of δj`, we assume γ2
(I,f)

will have the form

γ2
(I,f)(t, x) =

1

4
+ a(I,f)(t, x) + b(I,f)(t, x),(15.8) ∑

f∈F
a(I,f)f

jf ` = [(∇ΓI)
j
a(∇ΓI)

`
b − IdjaId

`
b]δ

ab,(15.9)

∑
f∈F

b(I,f)f
jf ` = (∇ΓI)

j
a(∇ΓI)

`
bε
ab
I .(15.10)

Inverting to solve for b(I,f) and a(I,f) (which is possible by claim (15.6)), we

have the following bounds:

‖a(I,f)‖C0 ≤ C0(1 + ‖∇ΓI‖C0)‖(∇ΓI)− Id‖C0(15.11)

(12.4)

≤ C0θ‖∇v‖C0 ,(15.12)

‖b(I,f)‖C0 ≤ C0‖∇ΓI‖2C0‖εI‖C0(15.13)

(15.4)

≤ C0K
−1.(15.14)

We choose K to be an absolute constant such that the last term is bounded

by 20−1. The right-hand side of (15.12) is bounded by C0b0 where b0 appears

in the bound (3.12). We now choose b0 to be an absolute constant such that

(15.12) is at most 20−1. With these choices, we can take the positive square

root in (15.8) to define γJ , which then solves (15.5) thanks to (15.7).

Note that we have now represented the coefficients γJ(t, x) = γ(I,f)(t, x)

in the form

γ(I,f)(t, x) = γf (∇ΓI , εI),(15.15)

where γf : K → R is one of six smooth functions (γf )f∈F that are defined on an

appropriate, compact subset K ⊆ R3×3 × S containing the range of (∇ΓI , εI)

and that are bounded by supK |γf (·)| ≤ 1.

The construction is now entirely specified except for the definitions of vε
and Rε and the choice of the large parameter λ ∈ Z. The choices of these terms

will be governed by the estimates we need to prove. We start by defining vε
and Rε.
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16. The coarse scale velocity field and stress tensor

Following [Ise17], the regularization of Rj` will have a double mollifica-

tion structure Rj`ε := ηε ∗ ηε ∗ Rj`. The double-mollification structure will

play a role in the advective derivative bounds of Proposition 16.1 below. The

mollifying kernel ηε has support in |h| ≤ ε and satisfies the vanishing mo-

ment condition
∫
R3 haηε(h)dh = 0 for each co-ordinate a = 1, 2, 3, so that

‖R− ηε ∗R‖C0 ≤ C0ε
2‖∇2R‖C0 holds.7 We may also take η even and nonneg-

ative for convenience.

The choice of ε here is dictated by the bound on R−Rε, which is given by

‖R−Rε‖C0 ≤ ‖R− ηε ∗R‖C0 + ‖ηε ∗ [R− ηε ∗R]‖C0

≤ C0ε
2‖∇2R‖C0 ,

‖R−Rε‖C0

(3.10)

. ε2 log Ξ̂ Ξ2eR.

(Recall that constants in the . notation can depend on the C1 and Cδ in the

hypotheses of Lemma 3.3.)

Take ε = εR to have the form εR = cRN
−1/2Ξ−1, where cR is a small

constant chosen to imply

‖R−Rε‖C0 ≤ log Ξ̂
eR

500N
.(16.1)

This choice leads to the estimates

‖∇kRε‖C0 .k log Ξ̂N (k−2)+/2ΞkeR(16.2)

(which are the same as those in [Ise17] except for the appearance of log Ξ̂ ). To

prove (16.2), use (3.10) for 0 ≤ k ≤ 2 and write∇kηε∗ηε∗R = [∇k−2ηε∗ηε]∗∇2R

for k > 2.

To define vε, consider the error term

Rj`M,v1 =
∑
J

(vj − vjε )V̊ `
J + V̊ j

J (v` − v`ε)

=
∑
J

[(vj − vjε )v`J + vjJ(v` − v`ε)]ψf (λΓI(t, x)), J = (I, f),

which is part of Rj`M in the mollification term (14.2). Note that v`J is not well

defined until ∇ΓI is chosen; however, the term γJ = γf (∇ΓI , εI) in v`J that

involves ∇ΓI is a priori bounded by a constant ‖γJ‖C0 ≤ sup γf ≤ 1. From

7A proof of this statement, which is well known, can be found in [Ise17, §14].
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(15.3) and (13.3), we obtain an a priori bound

sup
J
‖v`J‖C0 . (log Ξ̂)1/2e

1/2
R ,

‖Rj`M,v1‖C0 . ‖v − vε‖C0(log Ξ̂)1/2e
1/2
R

. ε2Ξ2e1/2
v (log Ξ̂)1/2e

1/2
R ,

assuming our mollifier satisfies the same vanishing moment condition as in the

Rε case.

Take ε = εv to have the form εv = cvN
−1/2Ξ−1, with cv is a small constant

such that

‖Rj`M,v1‖C0 ≤ (log Ξ̂)1/2 e
1/2
v e

1/2
R

500N
.(16.3)

This choice of ε and inequality (3.9) lead to the bounds

‖∇kvε‖C0 .k N
(k−2)+/2Ξke1/2

v .(16.4)

These are the same bounds as those satisfied by the vε in [Ise17, §15] in the

case of frequency energy levels of order L = 2 of the main lemma in that paper.

This coincidence is due to how we have chosen the same values of εv and εR as

in that paper.

With the above choices, we obtain the following estimates for the advective

derivative of Rε:

Proposition 16.1. Let Dt = ∂t+ vε ·∇ denote the coarse scale advective

derivative operator. Then

‖∇kDtRε‖C0 .k (log Ξ̂)3N (k−1)+/2Ξk+1e1/2
v eR.(16.5)

We deduce this proposition from [Ise17, Prop. 18.6]. The proof of that

proposition is where the double mollification structure of Rε is used to control

higher order derivatives.

Proof. Define ‹Rj` = (log Ξ̂)−3Rj`. Then ‹Rj` satisfies the bounds

‖∇k‹R‖C0 . ΞkeR, k = 0, 1, 2,

‖∇k(∂t + v · ∇)‹R‖C0 ≤ Ξk+1e1/2
v eR, k = 0, 1.

These are the same estimates as those assumed on Rj` in [Ise17, Def. 10.1] in

the case of frequency energy levels to order L = 2. Moreover, we have chosen

the mollification parameters εv and εR to be the same as in [Ise17, §§15, 18.3]

for the case L = 2. Thus the estimates of the L = 2 case of [Ise17, Prop. 18.6]

(which are the same as (16.5) without the logarithmic factor) apply to ‹R. We

note that [Ise17, Prop. 18.6] involves only the spatial mollification of R (not

the mollification in time along the flow) and that the proof does not involve

estimates for ∇p. �
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Having specified the mollification parameters and proven bounds on vε
and Rε, we now turn to estimating the terms in the construction.

17. Estimates for the construction

In Sections 17.1–17.6, we prove all the required estimates for Lemma 3.3.

The concluding Section 17.6 reviews where each conclusion of Lemma 3.3 has

been proven.

17.1. Estimates for low-frequency terms in the construction. In this sec-

tion we prove estimates for the low frequency terms in the construction, namely,

(∇ΓI), (∇Γ−1
I ), γJ , εI , and the amplitudes vJ and δvJ,αβ.

Proposition 17.1. The following estimates hold for the back-to-labels

map:

‖∇k(∇ΓI)‖C0 + ‖∇k(∇Γ−1
I )‖C0 .k N

(k−1)+/2Ξk for all k ≥ 0,(17.1)

‖∇kDt(∇ΓI)‖C0 +‖∇kDt(∇Γ−1
I )‖C0 .k N

(k−1)+/2Ξk+1e1/2
v for all k ≥ 0.

(17.2)

Proof. The estimates (17.1) and (17.2) for ∇ΓI follow from Propositions

17.3 and 17.5 of [Ise17]. There the estimates are performed for a solution ξI to

(∂t + vε · ∇)ξI = 0,(17.3)

ξI(t(I), x) = ξ̂I(x),(17.4)

where the initial data ξ̂I is linear with |∇ξ̂I | ≤ C0. Each component ΓkI of ΓI
therefore falls into the framework of those estimates. Alternatively, one can

adapt the proof of those estimates for the system (12.5) while modifying the

dimensionless energy for ∇ξI [Ise17, Def. 17.1] to involve Frobenius norms of

the matrix ∇ΓI and its derivatives. We note that the proof of these estimates

does not require control over ∇p, which had been assumed in [Ise17] for the

purpose of controlling second order advective derivatives.

The estimates (17.1) and (17.2) for (∇Γ−1
I ) can be deduced from those for

∇ΓI by taking spatial derivatives of the equations

(∇ΓI)(∇Γ−1
I ) = Id,

Dt(∇Γ−1
I ) = −(∇Γ−1

I )[Dt(∇ΓI)](∇Γ−1
I )

and using the bound ‖∇Γ−1
I ‖C0 ≤ C0 of Proposition 12.1. (The second equa-

tion comes from applying Dt to the first.) Alternatively, since the evolution

equation (12.6) for ∇Γ−1
I has the same form as equation (12.5) for ∇ΓI (ex-

cept for the minus sign and order of matrix multiplication), one obtains (17.1)

and (17.2) for (∇Γ−1
I ) by applying the proof of [Ise17, Props. 17.3, 17.5] to

equation (12.6). �
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The remaining low frequency building blocks of the construction can be

estimated as follows:

Proposition 17.2. The following estimates hold for all k ≥ 0:

sup
I
‖∇kεI‖C0 .k N

(k−2)+/2Ξk,(17.5)

sup
I
‖∇kDtεI‖C0 .k (log Ξ̂)2N (k−1)+/2Ξk+1e1/2

v ,(17.6)

sup
J
‖∇kγJ‖C0 .k N

(k−1)+/2Ξk,(17.7)

sup
J
‖∇kDtγJ‖C0 .k (log Ξ̂)2N (k−1)+/2Ξk+1e1/2

v ,(17.8)

sup
J
‖∇kvJ‖C0 .k (log Ξ̂)1/2N (k−1)+/2Ξke

1/2
R ,(17.9)

sup
J
‖∇kDtvJ‖C0 .k (log Ξ̂)5/2N (k−1)+/2Ξk+1e1/2

v e
1/2
R ,(17.10)

sup
J,αβ
‖∇kδvJ,αβ‖C0 .k λ

−1(log Ξ̂)1/2Nk/2Ξk+1e
1/2
R ,(17.11)

sup
J,αβ
‖∇kDtδvJ,αβ‖C0 .k λ

−1(log Ξ̂)5/2Nk/2Ξk+2e1/2
v e

1/2
R .(17.12)

In the proof of Proposition 17.2, the implicit constants in the . notation

will in general depend on k, but we will omit this dependence.

Proof of (17.5)–(17.6). Recall that εj`I =−e−1
I (t)Rj`I,ε. From formula (15.3),

we have that e−1
I (t) is a constant in time on the support of RI,ε, which is

contained in [t(I) − θ/2, t(I) + θ/2], and on that domain satisfies a lower

bound supt∈[t(I)−θ/2,t(I)+θ/2] |e−1
I (t)| . (log Ξ̂)−1e−1

R . The bound (17.5) now

follows from (16.2), and similarly (17.6) follows from (16.5) and Dtε
j`
I =

−e−1
I (t)DtR

j`
ε . �

Proof of (17.7)–(17.8). Recall from Section 15 (in particular, (15.15))

that γJ = γ(I,f) takes the form γJ(t, x) = γf (∇ΓI , εI), where γf belongs

to a set of six smooth functions whose domains are a compact subset K of

R3×3 × S. We have already shown in Section 15 that ‖γJ‖C0 ≤ supK γf ≤ 1.

Now let ∇~a be a partial derivative operator of order |~a| = k ≥ 1. We will use

∂Γγf to denote a derivative of γf in the R3×3 argument, and ∂εγf to denote

a derivative of γf in the S argument. Set p = (∇ΓI , ε). Using the chain rule

and product rule, we can expand ∇~aγJ = ∇~a[γf (∇ΓI , ε)] in the form

∇~a[γf (∇ΓI , εI)] =
∑

m+m′≤k

∑
~b,~c

∂mΓ ∂
m′
ε γf (p)

m∏
i=1

∇~bi(∇ΓI)
m′∏
j=1

∇~cjε.



A PROOF OF ONSAGER’S CONJECTURE 929

The innermost sum is restricted to certain multi-indices indices such that∑m
i=1 |~bi|+

∑m′
j=1 |~cj | = k. We now estimate this term by

‖∇~aγJ‖C0 .
∑

m+m′≤k

(
m∏
i=1

N (|~bi|−1)+/2Ξ|
~bi|
)Ñ

m′∏
j=1

N (|~cj |−1)+/2Ξ|~cj |

é
(2.1)

. N (k−1)+/2Ξk.

Similarly, for DtγJ = ∂ΓγfDt(∇ΓI) + ∂εγfDtε, we can express

∇~aDtγJ =
∑

m+m′≤k

∑
~b,~c,~e

∂m+1
Γ ∂m

′
ε γf (p)

Ñ
m∏
i=1

∇~bi(∇ΓI)
m′∏
j=1

∇~cjε

é
∇~eDt(∇ΓI)

(17.13)

+
∑

m+m′≤k

∑
~b,~c,~e

∂mΓ ∂
m′+1
ε γf (p)

Ñ
m∏
i=1

∇~bi(∇ΓI)
m′∏
j=1

∇~cjε

é
∇~eDtε,(17.14)

where the summation runs over certain multi-indices with
∑m
i=1 |~bi|+

∑m′
j=1 |~cj |+

|~e| = k and empty products are equal to 1. These terms can be bounded using

(17.1)–(17.2) and (17.5)–(17.6) by

‖(17.13)‖C0 .

∑
m+m′≤k

∑
~b,~c,~e

Ñ
m∏
i=1

[N (|~bi|−1)+/2Ξ|
~bi|]

m′∏
j=1

[N (|~cj |−1)+/2Ξ|~cj |]

é
N (|~e|−1)+/2Ξ|~e|+1e1/2

v

(2.1)

. N (k−1)+Ξk+1e1/2
v ,

‖(17.14)‖C0 . (log Ξ̂)2·

∑
m+m′≤k

∑
~b,~c,~e

Ñ
m∏
i=1

[N (|~bi|−1)+/2Ξ|
~bi|]

m′∏
j=1

[N (|~cj |−1)+/2Ξ|~cj |]

é
N (|~e|−1)+/2Ξ|~e|+1e1/2

v

(2.1)

. (log Ξ̂)2N (k−1)+/2Ξk+1e1/2
v .

This estimate concludes the proof of (17.7)–(17.8). �

Proof of (17.9)–(17.10). Recall from (13.3) that

v`J = e
1/2
I (t)γJ(t, x)(∇Γ−1

I )`af
a.
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Let ∇~a be a partial derivative of order k. Then

∇~av`J =
∑

|~b|+|~c|=k

e
1/2
I (t)c

~a,~b,~c
∇~bγJ∇~c(∇Γ−1

I )`af
a,

∇~aDtv
`
J =

∑
|~b|+|~c|=k

∂te
1/2
I (t)c

~a,~b,~c
∇~bγJ∇~c(∇Γ−1

I )`af
a(17.15)

+
∑

|~b|+|~c|=k

e
1/2
I (t)c

~a,~b,~c
∇~bDtγJ∇~c(∇Γ−1

I )`af
a(17.16)

+
∑

|~b|+|~c|=k

e
1/2
I (t)c

~a,~b,~c
∇~bγJ∇~cDt(∇Γ−1

I )`af
a.(17.17)

From formula (15.3) and (3.5), we have the following bounds on e
1/2
I (t):

‖e1/2
I (t)‖C0 . (log Ξ̂)1/2e

1/2
R ,

‖∂te1/2
I (t)‖C0 . θ−1(log Ξ̂)1/2e

1/2
R . (log Ξ̂)5/2Ξe1/2

v e
1/2
R .

(17.18)

Applying these bounds and those of (17.5)–(17.8) gives

‖∇~av`J‖C0 . ‖e1/2
I ‖C0

∑
|~b|+|~c|=k

‖∇~bγJ‖C0‖∇~c(∇Γ−1
I )`a‖C0

. ‖e1/2
I ‖C0

∑
|~b|+|~c|=k

[N (|~b|−1)+/2Ξ|
~b|][N (|~c|−1)+/2Ξ|~c|]

. (log Ξ̂)1/2e
1/2
R N (k−1)+/2Ξk.

Similarly, we obtain the advective derivative estimates using (17.1)–(17.2),

(17.7)–(17.8) and (17.18):

‖∇~a(17.15)‖C0 .
∑

|~b|+|~c|=k

‖∂te1/2
I ‖C0‖∇~bγJ‖C0‖∇~c(∇Γ−1

I )`a‖C0

. (log Ξ̂)5/2N (k−1)+/2Ξke
1/2
R , ‖∇~a

(17.16)‖C0 .
∑

|~b|+|~c|=k

‖e1/2
I ‖C0‖∇~bDtγJ‖C0‖∇~c(∇Γ−1

I )‖C0 ,

‖∇~a(17.17)‖C0 .
∑

|~b|+|~c|=k

‖e1/2
I ‖C0‖∇~bDt(∇Γ−1

I )‖C0‖∇~cγJ‖C0 ,

‖∇~a(17.16)‖C0 + ‖∇~a(17.17)‖C0

. (log Ξ̂)1/2e
1/2
R

∑
|~b|+|~c|=k

(log Ξ̂)2[N (|~b|−1)+/2Ξ|
~b|][N (|~c|−1)+/2Ξ|~c|]

. (log Ξ̂)5/2N (k−1)+/2Ξke
1/2
R . �
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Proof of (17.11)–(17.12). Recalling formula (13.9) and commuting in the

advective derivative, we have

δv`J,αβ = λ−1∇a[(∇Γ−1
I )aα(∇Γ−1

I )`βe
1/2
I (t)γJ(t, x)],

Dtδv
`
J,αβ = λ−1∇a[Dt[(∇Γ−1

I )aα(∇Γ−1
I )`βγJ(t, x)], e

1/2
I (t)](17.19)

+ λ−1∇a[(∇Γ−1
I )aα(∇Γ−1

I )`βγJ(t, x)∂te
1/2
I (t)](17.20)

− λ−1∇aviε∇i[(∇Γ−1
I )aα(∇Γ−1

I )`βe
1/2
I (t)γJ(t, x)].(17.21)

Let ∇~a be a partial derivative of order |~a| = k. Then from the product rule,

‖∇~aδv`J,αβ‖C0

. λ−1‖e1/2
I ‖C0

∑
|~a1|+|~a2|+|~a3|=k+1

‖∇~a1(∇Γ−1
I )‖C0‖∇~a2(∇Γ−1

I )‖C0‖∇~a3γJ‖C0

. λ−1‖e1/2
I ‖C0

∑
|~a1|+|~a2|+|~a3|=k+1

3∏
i=1

[N (|~ai|−1)+/2Ξ|~ai|]

(2.1)

. λ−1‖e1/2
I ‖C0N (k+1−1)+/2Ξk+1

. λ−1(log Ξ̂)1/2Nk/2Ξk+1e
1/2
R .

Similarly, we estimate the terms (17.19)–(17.21) by applying Proposition 17.1

and the bounds (17.7)–(17.8):

‖∇~a(17.20)‖C0

. λ−1‖∂te1/2
I ‖C0

∑
|~a1|+|~a2|+|~a3|=k+1

‖∇~a1(∇Γ−1
I )‖C0‖∇~a2(∇Γ−1

I )‖C0‖∇~a3γJ‖C0

(17.18)

. λ−1(log Ξ̂)5/2Ξe1/2
v e

1/2
R Nk/2Ξk,

‖∇~a(17.19)‖C0

. λ−1‖e1/2
I ‖C0

∑
|~a1|+|~a2|+|~a3|=k+1

‖∇~a1Dt(∇Γ−1
I )‖C0‖∇~a2(∇Γ−1

I )‖C0‖∇~a3γJ‖C0

+λ−1‖e1/2
I ‖C0

∑
|~a1|+|~a2|+|~a3|=k+1

‖∇~a1(∇Γ−1
I )‖C0‖∇~a2(∇Γ−1

I )‖C0‖∇~a3DtγJ‖C0

. λ−1‖e1/2
I ‖C0(log Ξ̂)2Ξe1/2

v

3∏
i=1

N (|~ai|−1)+/2Ξ|~ai|

. λ−1(log Ξ̂)1/2+2e
1/2
R Ξe1/2

v N (k+1−1)+/2Ξk+1

. λ−1(log Ξ̂)5/2Nk/2Ξk+2e1/2
v e

1/2
R .
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For the commutator term, we sum over multi-indices with |~a0|+· · ·+|~a3| = k+1

and |~a0| ≤ k:

‖∇~a(17.21)‖C0 . λ−1‖e1/2
I ‖C0

·
∑

~a0,...,~a3

‖∇~a0∇avε‖C0‖∇~a1(∇Γ−1
I )‖C0‖∇~a2(∇Γ−1

I )‖C0‖∇~a3γJ‖C0 ,

‖∇~a(17.21)‖C0 . λ−1‖e1/2
I ‖C0Ξe1/2

v

∑
~a0,...,~a3

3∏
i=0

N (|~ai|−1)+/2Ξ|~ai|

. λ−1(log Ξ̂)1/2e
1/2
R Ξe1/2

v Nk/2Ξk+1.

This bound completes the proof of (17.11)–(17.12). �

Our next task will be to estimate high frequency terms, including the

correction VJ .

17.2. Bounds on the correction. We now proceed to estimate the compo-

nents of the high frequency correction V ` =
∑
J V̊

`
J +δV `

J defined in Section 13.

In the process, we prove the estimate (3.15) and verify the estimates implied

by (3.13) and (2.4) for the new velocity field.

The bounds for high frequency term involve the choice of the parameter λ,

which we now describe. Consistent with the frequency level in (3.13), we

assume that λ will take the form

λ = BλNΞ.

The parameter Bλ is the last parameter that remains to be chosen. Unlike

all of the constants chosen previously, the choice of Bλ will depend on the

parameter η in the assumptions of Lemma 3.3.

To be more precise, there will be a large constant Bλ that remains to be

chosen depending on (C0, C1, δ, η), and Bλ will be chosen from the interval

Bλ ∈ [Bλ, 2Bλ] in order to ensure that λ ∈ Z is an integer. Since Bλ and Bλ

are equal to within a factor of 2, we can ignore the distinction between them

and think of Bλ as the last constant parameter that remains to be chosen.

The bounds we obtain for the correction are as follows:

Proposition 17.3 (Correction Estimates). The following bounds hold for

0 ≤ k ≤ 3:

sup
J
‖∇kV̊J‖C0 . (BλNΞ)k(log Ξ̂)1/2e

1/2
R ,(17.22)

sup
J
‖∇kδVJ‖C0 . (BλNΞ)k−1Ξ(log Ξ̂)1/2e

1/2
R ,(17.23)
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‖∇kV `‖C0 . (BλNΞ)k(log Ξ̂)1/2e
1/2
R ,(17.24)

suppt V ⊆
⋃
I

[t(I)− θ, t(I) + θ].(17.25)

Furthermore, the bound (3.15) holds, and the estimates implied by (3.13) and

(2.4) hold for v1 = v + V .

Proof. Let ∇~a be a partial derivative of order 0 ≤ |~a| ≤ 3. Recall from

(13.1) that V̊ `
J = v`Jψf (λΓI). First observe that

∇~aV̊J =
∑

0≤m≤|~a|

∑
~b,~c

∇~bvJ∂
mψf (λΓI)λ

m
m∏
i=1

∇~ci(∇ΓI),

where the sum ranges over a set of multi-indices such that |~b|+m+
∑m
i=1 |~ci|

= |~a|, and the empty product equals 1 in the case m = 0. Using (17.1) and

(17.9), we obtain

‖∇~aV̊J‖C0 . (log Ξ̂)1/2e
1/2
R

∑
0≤m≤|~a|

∑
~b,~c

N (|~b|−1)+/2Ξ|
~b|λm

m∏
i=1

[N (|~ci|−1)+/2Ξ|~ci|]

. (log Ξ̂)1/2e
1/2
R

∑
0≤m≤|~a|

∑
~b,~c

N (|~a|−m−1)+/2Ξ|~a|−mλm

. (log Ξ̂)1/2e
1/2
R

∑
0≤m≤|~a|

∑
~b,~c

N (|~a|−m−1)+/2Ξ|~a|−m(BλNΞ)m

. (log Ξ̂)1/2e
1/2
R (BλNΞ)|~a|.

Note that the worst terms occur when all of the derivatives in ∇~a[v`Jψf (λΓI)]

fall on the high frequency function ψf (λΓI), in which case each derivative

costs a factor of BλNΞ. This case corresponds to m = |~a| and |~ci| = 0 for all

i = 1, . . . ,m in the above estimate.

Recalling formula (13.8), we treat δV `
J = δv`J,αβΩαβ

f (λΓI) similarly:

∇~aδVJ =
∑

0≤m≤|~a|

∑
~b,~c

∇~bδvJ,αβ∂
mΩαβ

f (λΓI)λ
m

m∏
i=1

∇~ci(∇ΓI),

‖∇~aδVJ‖C0 . λ−1Ξe
1/2
R

∑
0≤m≤|~a|

∑
~b,~c

[N |
~b|/2Ξ|

~b|]λm
m∏
i=1

[N (|~ci|−1)+/2Ξ|~ci|]

. λ−1Ξe
1/2
R

∑
0≤m≤|~a|

(BλNΞ)mN (|~a|−m)/2Ξ(|~a|−m)

. λ−1Ξe
1/2
R (BλNΞ)|~a|

. (BλNΞ)|~a|−1Ξe
1/2
R .
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As before, the worst terms in ∇~a[δv`J,αβΩαβ
f (λΓI)] occur when every derivative

hits the high-frequency function Ωαβ
f (λΓI), each time costing a factor of λ.

The bound (17.24) follows by adding (17.22)–(17.23), summing over V =∑
J V̊J + δVJ , and noting that at most |F| = 6 of the V̊J and δVJ are nonzero

at any given time, and that the V̊J contribute the dominant term.

The support property (17.25) is clear from the formula (13.7) using (15.3),

which implies (13.4).

To check that the new bounds (2.4) are satisfied for (3.13), observe that

for all 1 ≤ |~a| ≤ 3,

∇~av1 = ∇~av +∇~aV,

‖∇~av1‖C0 . Ξ|~a|e1/2
v + (log Ξ̂)1/2(BλNΞ)|~a|e

1/2
R

. (BλNΞ)|~a|(log Ξ̂ eR)1/2,(17.26)

where we used that N ≥ (ev/eR)1/2. Note that (17.26) coincides with the

bounds required in (17.22)–(17.23).

To check that (3.15) holds, note that (3.15) is equivalent to the k = 0 case

of (17.24). The bound here is independent of Bλ (and independent of η). �

We now begin estimating the error terms, beginning with the terms that

do not involve solving the divergence equation.

17.3. Stress terms not involving the divergence equation. In this section,

we begin estimating the terms in the new stress R1 determined by (14.1).

We start with the terms (14.2) and (14.4), which do not require solving the

divergence equation.

Proposition 17.4. There exists a constant Bλ such that for all Bλ ≥ Bλ,

the following bounds hold :

‖RM‖C0 + ‖RS‖C0 ≤ log Ξ̂
e

1/2
v e

1/2
R

10N
,(17.27)

‖∇~aRM‖C0 + ‖∇~aRS‖C0 . (BλNΞ)|~a| log Ξ̂
e

1/2
v e

1/2
R

N
, 1 ≤ |~a| ≤ 3,(17.28)

supptRM ∪ supptRS ⊆
⋃
I

[t(I)− θ, t(I) + θ].(17.29)

Proof of (17.27)–(17.29) for RS . From the formula (14.4) and Proposi-

tion 17.3, we have

Rj`S =
∑

J,K∈Z×F
δV j

J V̊
`
K + V̊ j

J δV
`
K + δV j

J δV
`
K ,
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‖RS‖C0 . [(BλNΞ)−1(log Ξ̂)1/2Ξe
1/2
R ][(log Ξ̂)1/2e

1/2
R ]

+ [(BλNΞ)−1(log Ξ̂)1/2Ξe
1/2
R ]2

. (BλNΞ)−1Ξ log Ξ̂ eR.

Here we used that the number of nonzero terms is bounded by |F|2 = 36 at

any given time. For Bλ a sufficiently large constant, this term is bounded by

log Ξ̂ eR
1000N . The term Rj`M will obey a similar bound, from which (17.27) will

follow. As for the derivatives of RS , again the term involving V̊J dominates

the term quadratic in δVJ , and we have

‖∇~aRj`S ‖C0 .
∑

|~b|+|~c|=|~a|

sup
J
‖∇~bδVJ‖C0 sup

J
(‖∇~cV̊J‖C0 + ‖∇~cδVJ‖C0)

.
∑

|~b|+|~c|=|~a|

[(BλNΞ)|
~b|−1Ξ(log Ξ̂)1/2e

1/2
R ][(BλNΞ)|~c|(log Ξ̂)1/2e

1/2
R ]

. log Ξ̂ (BλNΞ)|~a|−1ΞeR.

This bound suffices for (17.28). The support property (17.29) follows from

(13.8)–(13.9) and (13.4). �

Proof of (17.27)–(17.29) for RM . Recall the following formula from (14.2):

Rj`M = (vj − vjε )V ` + V j(v` − v`ε) + (Rj` −Rj`ε ).(17.30)

In lines (16.1) and (16.3), the parameters εR and εv for Rε and vε were chosen

such that

‖R−Rε‖C0 ≤ log Ξ̂
eR

500N
,

∑
J

‖(vj − vjε )V̊ `
J + V̊ j

J (v` − v`ε)‖C0 ≤ (log Ξ̂)1/2 e
1/2
v e

1/2
R

500N
,(17.31)

‖v` − v`ε‖C0 .
e

1/2
v

N
.(17.32)

To complete the proof of (17.27), we use (17.23) to bound the remaining lower

order term by

Rj`M,v2 =
∑

J∈Z×F
(vj − vjε )δV `

J + δV j
J (v` − v`ε),

‖Rj`M,v2‖C0 .
e

1/2
v

N
[(BλNΞ)−1Ξ(log Ξ̂)1/2e

1/2
R ].

For Bλ sufficiently large, this term also satisfies the estimate (17.31). Thus the

C0 estimate (17.27) holds using also our previous bound ‖RS‖C0 ≤ log Ξ̂ eR
1000N .

We now move on to proving (17.28).
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Let ∇~a be a partial derivative operator of order 1 ≤ |~a| ≤ 3. We start by

estimating

‖∇~a(Rj` −Rj`ε )‖C0 ≤ ‖∇~aRj`‖C0 + ‖∇~aRj`ε ‖C0

(3.2)

. log Ξ̂ (ev/eR)(|~a|−2)+/2Ξ|~a|eR

+ log Ξ̂ N (|~a|−2)+/2Ξ|~a|eR,

N ≥ (ev/eR)1/2 ⇒ . log Ξ̂ N (|~a|−2)+Ξ|~a|eR

|~a| ≥ 1⇒ . log Ξ̂N |~a|Ξ|~a|
eR
N
.

Let Rj`M,v = Rj`M,v1 + Rj`M,v2 denote the term in (17.30) involving (v − vε). By

(17.32) and (17.24), we obtain

‖∇~aRj`M,v‖C0 ≤ ‖v − vε‖C0‖∇~aV ‖C0

(17.33)

+
∑

|~b|+|~c|=|~a|

(‖∇~bv‖C0 + ‖∇~bvε‖C0)‖∇~cV ‖C01
1≤|~b|≤3

.
e

1/2
v

N
(log Ξ̂)1/2(BλNΞ)|~a|e

1/2
R(17.34)

+
∑

|~b|+|~c|=|~a|

(Ξ|
~b|e1/2

v

+N (|~b|−2)+/2Ξ|
~b|e1/2

v )[(BλNΞ)|~c|(log Ξ̂)1/2e
1/2
R ]1|~b|≥1

,

(17.35)

(17.35) ≤ B|~a|λ Ξ|~a|(log Ξ̂)1/2e1/2
v e

1/2
R

∑
|~b|+|~c|=|~a|

N (|~b|−2)+/2+|~c|1|~b|≥1
,(17.36)

(17.35) . (BλNΞ)|~a|(log Ξ̂)1/2 e
1/2
v e

1/2
R

N
.(17.37)

In the last line, we note that the largest term in (17.36) occurs when |~b| = 1

and |~c| = |~a| − 1 ≥ 0. Combining (17.34) and (17.37), we obtain (17.28) for

RM,v, which finishes the proof of (17.28) for RM . �

17.4. Stress terms involving the divergence equation. In this section, we

bound the terms (14.3) and (14.5), which compose the remaining part of the

new stress R1 defined in (14.1). The bound we obtain is the following:
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Proposition 17.5. There exists a constant Bλ (depending on C0, C1, δ, η)

such that for all Bλ ≥ Bλ, there exist symmetric tensors Rj`T and Rj`H that solve

∇jRj`T = ∂tV
` + vjε∇jV ` + V j∇jv`ε ,(17.38)

∇jRj`H = ∇j

 ∑
J∈Z×F

V̊ j
J V̊

`
J + Pδj` +Rj`ε

(17.39)

and satisfy the following bounds :

‖RT ‖C0 + ‖RH‖C0 ≤ (log Ξ̂)5/2 e
1/2
v e

1/2
R

20N
,(17.40)

‖∇kRT ‖C0 + ‖∇kRH‖C0 . (BλNΞ)k(log Ξ̂)5/2 e
1/2
v e

1/2
R

N
, 1 ≤ k ≤ 3,(17.41)

supptRT ∪ supptRH ⊆
⋃
I

[t(I)− θ, t(I) + θ].

The key to the estimates will be a set of crucial cancellations that arise

thanks to the ansatz of Section 13 combined with Proposition 17.6 below (which

is inspired by calculations in [DS16]), which gains cancellation while inverting

the divergence equation for high frequency right-hand sides.

Proof. From Section 13, we can expand the correction V ` in the form

V ` =
∑
J

Ä
v`Jψf (λΓI) + δv`J,αβΩαβ

f (λΓI)
ä
.

Substituting into the transport term (17.38) and using

(∂t + vjε∇j)[ψf (λΓI)] = 0,

(∂t + vjε∇j)[Ω
αβ
f (λΓI)] = 0,

we can write the transport term in the form

(17.38) =
∑
J

Ä
u`T,Jψf (λΓI) + u`T,JαβΩαβ

f (λΓI)
ä
,(17.42)

u`T,J = (Dtv
`
J + vjJ∇jv

`
ε),(17.43)

u`T,Jαβ = (Dtδv
`
J,αβ + δvjJ,αβ∇jv

`
ε).(17.44)

For the term (17.39), we recall (14.7) and use the orthogonality condition

vjI∇j [ψf (λΓI)] = 0 from (13.2) to obtain

(17.39) =
∑

J∈Z×F
∇j [vjJv

`
J(ψ2

f (λΓI)− 1)]

=
∑
J

∇j [vjJv
`
J ](ψ2

f (λΓI)− 1).(17.45)

Observe that the terms (17.42) and (17.45) all have the form u`ω(λΓI) for some

smooth u` and some smooth ω : T3 → R that has integral 0 ((11.2), (11.3) and
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(13.6)). Applying Proposition 17.6 below, we have that for any D ∈ Z+, there

exist tensors Rj`T,J , Rj`T,Jαβ and Rj`H,J that solve

∇jRj`T,J = (1−Π0)[u`T,Jψf (λΓI)],

∇jRj`T,Jαβ = (1−Π0)[u`T,JαβΩαβ
f (λΓI)],

∇jRj`H,J = (1−Π0)[u`H,J(ψ2
f (λΓI)− 1)],

u`H,J := ∇j [vjJv
`
J ]

and that obey the estimates

sup
0≤k≤3

λ−k‖∇kRj`T,J‖C0 .D (λ−1 +B−1
λ N−D/2) sup

0≤|~a|≤D+5

‖∇~auT,J‖C0

N |~a|/2Ξ|~a|
,

(17.46)

sup
0≤k≤3

λ−k‖∇kRj`T,Jαβ‖C0 .D (λ−1 +B−1
λ N−D/2) sup

0≤|~a|≤D+5

‖∇~auT,Jαβ‖C0

N |~a|/2Ξ|~a|
,

sup
0≤k≤3

λ−k‖∇kRj`H,J‖C0 .D (λ−1 +B−1
λ N−D/2) sup

0≤|~a|≤D+5

‖∇~auH,J‖C0

N |~a|/2Ξ|~a|
,

(17.47)

supptRT,J ∪α,β supptRT,Jαβ ∪ supptRH,J

⊆ [t(I)− θ, t(I) + θ], J ∈ {I} × F.

Our goal for these estimates is to gain a factor of λ−1 in the bound for each

stress term. We choose D ∈ Z+ such that N−D/2 ≤ N−1Ξ−1. By the assump-

tion N ≥ Ξη in Lemma 3.3, it suffices to take D > 2(1 + η−1). With this

choice, the B−1
λ N−D/2 term above can be absorbed into the λ−1 term.

We now set Rj`T =
∑
J R

j`
T,J +

∑
J,αβ R

j`
T,Jαβ and Rj`H =

∑
J R

j`
H,J . Then RT

and RH solve (17.38) and (17.39) respectively, since (using that V ` in (13.7)

is the divergence of an antisymmetric tensor)

∇jRj`T
(17.42)

= (1−Π0)[∂tV
` + vjε∇jV ` + V j∇jv`ε ]

= (1−Π0)[∂tV
` +∇j(vjεV ` + V jv`ε)]]

(13.7)
= ∂tV

` +∇j(vjεV ` + V jv`ε) = (17.38),

∇jRj`H
(17.45)

= (1−Π0)
∑

J∈Z×F
∇j [vjJv

`
J(ψ2

f (λΓI)− 1)]

=
∑

J∈Z×F
∇j [vjJv

`
J(ψ2

f (λΓI)− 1)]
(14.7)

= (17.39).
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To prepare to bound RT and RH , we first bound uT,J , uT,Jαβ and uH,J using

(17.9)–(17.12):

‖∇~auT,J‖C0 .|~a| ‖∇~aDtv
`
J‖C0 +

∑
|~b|+|~c|=|~a|

‖∇~bv
j
J‖C0‖∇~c∇jv`ε‖C0

.|~a| (log Ξ̂)5/2N (|~a|−1)+/2Ξ|~a|+1e1/2
v e

1/2
R

+
∑

|~b|+|~c|=|~a|

[(log Ξ̂)1/2N (|~b|−1)+/2Ξ
~b][(log Ξ̂)1/2N (|~c|−1)+/2Ξ|~c|],

‖∇~auT,Jαβ‖C0 .|~a| ‖∇~aDtδv
`
J,αβ‖C0 +

∑
|~b|+|~c|=|~a|

‖∇~bδv
j
J,αβ‖C0‖∇~c∇jv`ε‖C0

.|~a| λ
−1(log Ξ̂)5/2N |~a|/2Ξ|~a|+2e1/2

v e
1/2
R

+ λ−2
∑

|~b|+|~c|=|~a|

[(log Ξ̂)1/2N |
~b|/2Ξ|

~b|+1][(log Ξ̂)1/2N |~c|/2Ξ|~c|+1],

⇒ ‖∇~auT,J‖C0 + ‖∇~auT,Jαβ‖C0 .|~a| N
|~a|/2Ξ|~a|[(log Ξ̂)5/2Ξe1/2

v e
1/2
R ](17.48)

‖∇~auH,J‖C0 .
∑

|~b|+|~c|=|~a|+1

‖∇~bvJ‖C0‖∇~cvJ‖C0

.|~a| log Ξ̂
∑

|~b|+|~c|=|~a|+1

[N (|~b|−1)+/2Ξ|
~b|e

1/2
R ][N (|~c|−1)+/2Ξ|~c|e

1/2
R ]

.|~a| log Ξ̂ N |~a|/2Ξ|~a|+1eR.(17.49)

From (17.48) and (17.49) we obtain

sup
0≤|~a|≤D+5

‖∇~auT,J‖C0

N |~a|/2Ξ|~a|
+ sup

0≤|~a|≤D+5

‖∇~auT,Jαβ‖C0

N |~a|/2Ξ|~a|
.η (log Ξ̂)5/2Ξe1/2

v e
1/2
R ,

(17.50)

sup
0≤|~a|≤D+5

‖∇~auH,J‖C0

N |~a|/2Ξ|~a|
.η log Ξ̂ ΞeR.(17.51)

Combining (17.46)–(17.47) with (17.50)–(17.51) and using our choice of

D above, λ = BλNΞ, and the universal bound on the number of vJ and δvJ,αβ
that are nonzero at any given time, we obtain

sup
0≤k≤3

λ−k‖∇kRj`T ‖C0 .η (BλNΞ)−1(log Ξ̂)5/2Ξe1/2
v e

1/2
R ,(17.52)

sup
0≤k≤3

λ−k‖∇kRj`T ‖C0 .η (BλNΞ)−1 log Ξ̂ ΞeR.(17.53)

We finally choose the parameter Bλ sufficiently large so that (17.40) holds (and

such that λ = BλNΞ is an integer). The other estimates in (17.41) now follow

from (17.52)–(17.53) and λ = BλNΞ. �
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17.5. Proof of Proposition 17.6. In this section we prove Proposition 17.6

below, which was used to bound the error terms in Section 17.4. The implicit

constants in this section will depend on the D introduced below.

Proposition 17.6. For every integer D ≥ 1 and for any smooth ω :

T3 → R with
∫
T3 ω(X)dX = 0, there exists C = CD,ω such that if u` is smooth

and satisfies suppt u
` ⊆ [t(I)− θ, t(I) + θ] and

sup
0≤|~a|≤D+5

‖∇~au‖C0

N |~a|/2Ξ|~a|
≤ H,(17.54)

then there exists a symmetric tensor field Qj` in the class CtC
3
x(R× T3) such

that

∇jQj` = (1−Π0)[u`ω(λΓI)],

sup
0≤k≤3

λ−k‖∇kQ‖C0 ≤ CD,ω(λ−1 +B−1
λ N−D/2)H,(17.55)

supptQ
j` ⊆ [t(I)− θ, t(I) + θ].(17.56)

Moreover, one can arrange that Q depends bilinearly on u and ω.

To prove the proposition, as in calculations of [DS16], we will expand ω

in a Fourier series to reduce to the case where ω(X) = eim·X and then sum

over m 6= 0. The case of ω(X) = eim·X will be handled as in [Ise17] using

a nonstationary phase argument with nonlinear phase functions. We remark

that the nonstationary phase technique in [DS16] based on the earlier [DLS13b]

is different in that it proves estimates directly for Qj` = Rj`[u ω(λΓI)] that

gain a factor of λ−1+ε rather than λ−1.

To prepare for the proof, we start by stating estimates for the phase

functions m · ΓI(t, x).

Proposition 17.7. Let m ∈ Z3 \ {0} and ξm(t, x) := m · ΓI . Then for

t ∈ [t(I)− θ, t(I) + θ], we have

‖∇~a∇ξm‖C0 .|~a| |m|N (|~a|−1)+Ξ|~a|,(17.57)

‖ |∇ξm|−1‖C0 . |m|−1.(17.58)

Proof. If we view ξm(t, x) as a map from R × R3 → R3, then ξm(t, x) is

the unique solution to

(∂t + vjε∇j)ξm = 0,

ξm(t(I), x) = m · x.

The gradient of ξm(t, x) then satisfies the equation

(∂t + vjε∇j)∇iξm = −∇ivjε∇jξm,(17.59)

∇iξm(t(I), x) = mi.
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Then the vector field ∇ξm obeys the same transport equations as the functions

∇ξI used in [Ise17] in the case of frequency-energy levels of order L = 2 . From

[Ise17, Prop. 17.4], we obtain

EM [ξm](Φs(t(I), x)) ≤ eCMΞe
1/2
v |s|EM [ξm](t(I), x),(17.60)

EM [ξm](t, x) :=
∑

0≤|~a|≤M
Ξ−2|~a|N−(|~a|−1)+ |∇~a∇ξm|2,(17.61)

where Φs is the coarse scale flow map defined in Section 12. For |s| ≤ θ, we

have Ξe
1/2
v |s| . 1 and the initial data satisfies EM [ξm](t(I), x) . |m|, from

which the bound (17.57) follows using (17.60)–(17.61).

To obtain (17.58), let ps denote the point ps = Φs(t(I), x). Then for

|s| ≤ θ,

d

ds
|∇ξm|−2(Φs(t(I), x)) = −2|∇ξm|−4(ps)∇iξm(ps)[Dt∇iξm](ps),∣∣∣∣ dds |∇ξm|−2(Φs(t(I), x))

∣∣∣∣ (17.59)

. ‖∇vε‖C0 |∇ξm|−2(Φs(t(I), x)),

Gronwall ⇒ |∇ξm|−2(Φs(t(I), x)) ≤ eC0‖∇vε‖C0 |s||∇ξm|−2(t(I), x).

From ‖∇vε‖C0 |s|.1 and |∇ξm|−2(t(I), x) = |m|−2, we have ‖ |∇ξm|−2‖C0 .
|m|−2, implying (17.58). �

As a step towards proving Proposition 17.6, we now state

Proposition 17.8. Under the assumptions of Proposition 17.6, if m ∈
Z3 \ {0}, then there exists a (complex-valued) symmetric tensor field Qj` =

Qj`m : R× T3 → S ⊗ C such that

∇jQj`m = (1−Π0)[u`e2πim·λΓI ],(17.62)

sup
0≤|~a|≤3

(|m|λ)−|~a|‖∇~aQm‖C0 ≤ CD,ω(λ−1 +B−1
λ N−D/2)H,(17.63)

supptQ
j`
m ⊆ [t(I)− θ, t(I) + θ].

Moreover, one can take Qj`m to depend linearly on u`.

Proof. Following [Ise17, §26], we write our solution using a parametrix

expansion of the form

Qj` = Qj`(D) + ‹Qj`(D), Qj`(D) = (2πλ)−1
D∑
k=1

e2πiλξmqj`(k).(17.64)

We explain first the case D = 1, where the method reduces to writing

Qj` = (2πλ)−1e2πiλξmqj`(1) + ‹Qj`(1).(17.65)
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After we choose a smooth symmetric tensor qj`(1) that solves i∇jξmqj`(1) = u`

pointwise, the first term in (17.65) will be a good approximate solution to

∇jQj` = eiλξmu`. The remainder term ‹Qj`(1) is then chosen to eliminate the

error by solving ∇j‹Qj`(1) = −(2πλ)−1e2πiλξm∇jqj`(1) = e2πiλξmu` −∇jQj`(1). This

last equation can only be solved exactly when the original e2πiλξmu` has in-

tegral 0; otherwise, one obtains a solution to (17.62) involving the projection

(1−Π0).

For D ≥ 1, we repeat this process to determine a sequence of qj`(k) and u`(k)

such that u`(0) = u` and

i∇jξmqj`(k) = u`(k−1),(17.66)

u`(k) = −(2πλ)−1∇jqj`(k)

on all of R × T3 for all 1 ≤ k ≤ D. To construct a good solution to the

underdetermined equation (17.66), we set qj`(k) = q̄j`(∇ξm)[u(k−1)], where q̄j` =

q̄j`(p)[u] is a map with the following properties:

q̄j` ∈ C∞(R3 \ {0} × R3) as a map taking values in S ⊗ C,(17.67)

q̄j`(p)[u] is linear in u and homogeneous of degree -1 in p,(17.68)

ipj q̄
j`(p)[u] = u` for all (p, u) ∈ R3 \ {0} × R3.(17.69)

One can construct such a map q̄ by decomposing

u` = u`⊥ + u`‖, u`‖ = |p|−2(u · p)p`

and then setting q̄j`(p)[u] = −i(qj`⊥ + qj`‖ ), where qj`‖ = |p|−2(u · p)δj` and

qj`⊥ = |p|−2(pju`⊥ + uj⊥p
`). With this construction, q̄j` is symmetric, one has

pjq
j`
⊥ = u`⊥ and pjq

j`
‖ = u`‖, and properties (17.67)–(17.69) all hold.

We now begin estimating the above parametrix. By (17.68), the map

q̄j`(p)[u] can be written in the form q̄j`(p)[u] = q̄j`a (p)ua, where the q̄j`a (p)

are homogeneous of degree −1 in p and smooth away from 0. Then qj`(k) =

q̄j`a (∇ξm)ua(k−1). We use the homogeneity of the derivatives of q̄j`a (∇ξm) to

write

∇~a[q̄j`a (∇ξm)] =

|~a|∑
r=0

∑
~ai

∂r q̄j`a (∇ξm)
r∏
i=1

∇~ai∇ξm

=

|~a|∑
r=0

∑
~ai

|∇ξm|−(1+r)∂r q̄j`a

Ç
∇ξm
|∇ξm|

å r∏
i=1

∇~ai∇ξm,
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where the sum ranges over a family of multi-indices with
∑
i |~ai| = |~a|. Using

(17.57)–(17.58), we have

‖∇~a[q̄j`a (∇ξm)]‖C0 .|~a|

|~a|∑
r=0

∑
~ai

|m|−(1+r) sup
|p|=1
|∂r q̄j`a (p)|

r∏
i=1

[N (|~ai|−1)+/2Ξ|~ai||m|],

‖∇~a[q̄j`a (∇ξm)]‖C0 .|~a| |m|−1N (|~a|−1)+/2Ξ|~a| . N |~a|/2Ξ|~a|.

(17.70)

By induction, we now prove the following estimates for qj`(k) = q̄j`a (∇ξm)ua(k−1)

and u`(k) = −λ−1∇jqj`(k):

‖∇~aqj`(k)‖C0 . N−(k−1)/2N |~a|/2Ξ|~a|H for all 0 ≤ |~a| ≤ D − k + 4, 1≤ k≤D,
(17.71)

‖∇~au`(k)‖C0 . B−1
λ N−k/2N |~a|/2Ξ|~a|H for all 0 ≤ |~a| ≤ D − k + 3, 0≤ k≤D.

(17.72)

As a base case, note that (17.72) holds for k = 0 (without the B−1
λ factor)

because ‖∇~au(0)‖C0 = ‖∇~au‖C0 ≤ N |~a|/2Ξ|~a|H for all 0 ≤ |~a| ≤ D + 5 by

definition of H in (17.54). Now for k ≥ 1, suppose (17.72) holds for k − 1

(without the B−1
λ if k− 1 = 0). Then if 0 ≤ |~a| ≤ D− k+ 4 = D− (k− 1) + 3,

we have

‖∇~aqj`(k)‖C0 .
∑

|~b|+|~c|=|~a|

‖∇~b[q̄
j`
a (∇ξm)]‖C0‖∇~cu(k−1)‖C0

.
∑

|~b|+|~c|=|~a|

[N |
~b|/2Ξ|

~b|][N−(k−1)/2N |~c|/2Ξ|~c|H]

. N−(k−1)/2N |~a|/2Ξ|~a|H.

Then for u`(k) = −(2πλ)−1∇jqj`(k) and 0 ≤ |~a| ≤ D − k + 3, we have

‖∇~au(k)‖C0 . λ−1‖∇~a∇jqj`(k)‖C0

. (BλNΞ)−1N−(k−1)/2N (|~a|+1)/2Ξ(|~a|+1)H

. B−1
λ N−k/2N |~a|/2Ξ|~a|H.

To estimate the parametrix in (17.64) we write, for 0 ≤ |~a| ≤ 3,

∇~aQj`(D) =
D∑
k=1

|~a|∑
r=0

(2πλ)−1+r
∑
~bi,~c

e2πiλξm∇~cqj`(k)

r∏
i=1

[∇~bi∇ξm],(17.73)

where the multi-indices in the summation satisfy r+ |~c|+∑
i |~bi| = |~a|. In the

extreme case where all the derivatives hit q(k), note that even for k = D, (17.71)

provides bounds on at least |~a| ≤ 3 derivatives. The worst term is the case
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r = |~a| where all the derivatives hit the phase function, each costing a factor

of λ|∇ξm| . λ|m| in the estimate. The bound we attain (using N−(k−2)/2 ≤ 1)

is

‖∇~aQj`(D)‖C0 .
D∑
k=1

|~a|∑
r=0

λ−1+r[N−(k−1)/2N |~c|/2Ξ|~c|H]
r∏
i=1

[|m|N |~bi|/2Ξ|
~bi|]

. λ−1
|~a|∑
r=0

λrN (|~a|−r)/2Ξ|~a|−r|m|rH

. λ−1λ|~a||m||~a|
|~a|∑
r=0

(BλNΞ)r−|~a|N (|~a|−r)/2Ξ|~a|−rH

. λ−1(|m|λ)|~a|H.(17.74)

The remainder term ‹Qj`(D) in (17.64) is defined to be‹Qj`(D) = Rj`[e2πiλξmu(D)].(17.75)

Since e2πiλξmu`(D) = e2πiλξmu` − ∇jQj`(D) (which can be seen by induction on

D), we see that Qj` in (17.64) solves the divergence equation (17.62) using

(7.3). To estimate ‹Q(D), we use that Rj` is a bounded operator on C0(T3).

This boundedness can be proven as in the bounds of Section 10.4 by estimating

‖Rj`[U ]‖C0(T3) ≤ ‖Rj`‖ ‖U‖C0(T3),

‖Rj`‖ ≤
∞∑
q=0

‖Rj`Pq‖ .
∞∑
q=0

2−q . 1.

Thus, as before in (17.73)–(17.74), if 0 ≤ |~a| ≤ 3, using (17.72) we have that

∇~a‹Qj`(D) = Rj`
 |~a|∑
r=0

λr
∑
~c,~bi

eiλξm∇~cu(D)

r∏
i=1

[∇~bi∇ξm]

 ,
‖∇~a‹Qj`(D)‖C0 .

|~a|∑
r=0

∑
~c,~bi

λr[B−1
λ N−D/2N |~c|/2Ξ|~c|H]

r∏
i=1

[|m|N |~bi|/2Ξ|
~bi|]

. B−1
λ N−D/2λ|~a||m||~a|

|~a|∑
r=0

∑
~c,~bi

(BλNΞ)r−|~a|N (|~a|−r)/2Ξ|~a|−rH,

‖∇~a‹Qj`(D)‖C0 . (|m|λ)|~a|B−1
λ N−D/2H.(17.76)

Combining (17.74) and (17.76) gives (17.63). It is also clear from (17.75) and

the construction of Q(D) that supptQ(D) ∪ suppt
‹Q(D) ⊆ suppt u ⊆ [t(I) − θ,

t(I) + θ]. This containment together with the previous discussion of (17.62)

concludes the proof of Proposition 17.8. �
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We are now ready to prove Proposition 17.6.

Proof of Proposition 17.6. Let ω : T3 → R be smooth and have integral 0

as in Proposition 17.6 above. Then the Fourier series

ω(X) =
∑
m6=0

ω̂(m)e2πim·X(17.77)

converges absolutely in C0(T3) and, since ω is real-valued and smooth, the

coefficients obey

ω̂(−m) = ω̂(m), |ω̂(m)| .ω |m|−40.(17.78)

For each m ∈ Z3, choose a solution Qj`m to ∇jQj`m = (1−Π0)[e2πiλm·ΓIu`] that

obeys the conclusions of Proposition 17.8, and set

Qj` :=
1

2

∑
m∈Z3\{0}

(
ω̂(m)Qj`m + ω̂(−m)Q

j`
m

)
.(17.79)

Then Qj` is real-valued by (17.78) and belongs to CtC
3
x(R×T3) by the following

estimate:

sup
0≤|~a|≤3

λ−|~a|‖∇~aQ‖C0 .
∑

m∈Z3\{0}
|ω̂(m)||m|3 sup

0≤|~a|≤3
(|m|λ)−|~a|‖∇~aQm‖C0

(17.80)

.
∑
m∈Z
|ω̂(m)||m|3(λ−1 +B−1

λ N−D/2)H(17.81)

(17.78)

. (λ−1 +B−1
λ N−D/2)H.(17.82)

Thus Qj` satisfies (17.55)–(17.56). Taking the divergence of Qj` in (17.79) and

using that u` is real-valued,

∇jQj` =
1

2

∑
m∈Z3

(
ω̂(m)(1−Π0)[e2πiλm·ΓIu`] + ω̂(−m)(1−Π0)[e−2πiλm·ΓIu`]

)
,

(17.83)

∇jQj` = (1−Π0)
( ∑
m∈Z3

ω̂(m)e2πim·(λΓI)u`
)

= (1−Π0)[u`ω(λΓI)].(17.84)

This calculation concludes the proof of Proposition 17.6. �

17.6. Concluding the proof of the Convex Integration Lemma. In this sec-

tion we conclude the proof of Lemma 3.3 by indicating where in the course of

the proof the various conclusions of the lemma have been shown. The constant

b0 whose existence is asserted by the lemma was chosen following lines (15.11)–

(15.14). The choices of b0 and K there assure that the square root used to

define the coefficients γJ is well defined and bounded from below. The bounds

implied by (3.13) and Definition 2.2 for the new velocity v1 = v + V were
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proven in Proposition 17.3. Inequality (3.15) for the velocity correction was

also proven in Proposition 17.3. The bounds implied by (3.13) and Defini-

tion 2.2 for the new stress R1 = RM +RS +RT +RH follow from the bounds

in Propositions 17.4 and 17.5.

To check the statement (3.14) regarding the growth of support, observe

that (3.4) and (3.6) imply

supptR ⊆ N(J ; 3−1Ξ−1e−1/2
v ) ∩

⋃
I

î
t(I)− 2−1θ, t(I) + 2−1θ

ó
.

Technically, statement (3.14) may not hold if we define e
1/2
I (t) by formula

(15.3) for all I ∈ Z. However, we can replace e
1/2
I (t) by 0 for I such that RI is

equal to 0 without affecting the proof. Modifying the construction in this way,

recalling from Lemma 3.2 and (3.5) that θ ≤ δ0Ξ−1e
−1/2
v ≤ 25−1Ξ−1e

−1/2
v , and

letting I be the subset of Z such that RI 6= 0, we have

suppt V ∪ supptR1 ⊆
⋃
I∈I

[t(I)− θ, t(I) + θ] ⊆ N(supptR; 2−1θ)

⊆ N(supptR; 50−1Ξ−1e−1/2
v ) ⊆ N

(
N(J ; 3−1Ξ−1e−1/2

v ); 50−1Ξ−1e−1/2
v

)
⇒ suppt V ∪ supptR1 ⊆ N(J ; Ξ−1e−1/2

v ).

Since suppt v ⊆ N(J ; 3−1Ξ−1e
−1/2
v ), we also have suppt v1 = suppt (v + V ) ⊆

N(J ; Ξ−1e
−1/2
v ), which confirms the containment (3.14) and hence concludes

the proof of Lemma 3.3.

18. Proof of the main theorem

In this section we give a proof of Theorem 1 based on Lemma 2.1. We

follow the algorithm for computing regularity in the presence of double expo-

nential frequency growth developed in [Ise17].

For the base case of the iteration, we will use the previous convex integra-

tion result of [Ise17], since Lemma 2.1 of the present paper does not include

any inputs that would guarantee the nontriviality of the solution. The final

solution is then constructed by iteratively applying Lemma 2.1.

Let α∗ < 1/3 be given. We introduce a parameter δ, 0 < δ < 1/4, that will

be chosen close to zero depending on α∗. Our proof will lead to the following

result, which immediately implies Theorem 1:

Theorem 3. For any 0 < δ < 1/4, there exists a weak solution (v, p) to

the incompressible Euler equations with nonempty, compact support in time in

R× T3 such that v ∈ Cαt,x, p ∈ C2α
t,x whenever

−
Å

1

2
− δα

ãÅ
1 +

δ

2

ã
+
δ

2
+ α

Å
3

2
+ δ

ã
< 0.(18.1)
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Note that the left-hand side of (18.1) is bounded by −1
2 + 3α

2 + O(δ).

Thus, given α∗ < 1/3, we can always choose δ > 0 so that (18.1) is satisfied

for α = α∗, and Theorem 1 now follows.

18.1. Regularity parameters. We start by introducing a few parameters.

The parameter δ ∈ (0, 1/4) is fixed. We introduce a parameter ε, which we

set equal to ε := δ
2 . We introduce a third parameter η, which we set equal

to η := ε
16 = δ

32 . We also define a parameter r := 20
δ2

. The parameters have

already been chosen in such a way that η � ε � δ, and r is large enough

depending on δ and ε. We define the constant Cη to be the constant from the

conclusion of Lemma 2.1 using the above choice of η > 0.

There will be two large constant parameters. One parameter is called

N(−1). The largest parameter will be called Z; it depends on the δ, ε, η above

and will be large compared to N(−1).

There will also be a sequence of parameters (Ξ(k), ev,(k), eR,(k)) that will

represent the frequency-energy level bounds on our approximate solutions. In

terms of these, we define Ξ̂(k) := Ξ(k)

Ä
ev
eR

ä1/2
(k)

.

18.2. The base case: k = -1. The base case will rely on the main lemma

in [Ise17], since this lemma gives information that will be crucial for proving

nontriviality of the solution, and also controls higher derivatives of the Euler-

Reynolds flow to make it compatible with the scheme of the current paper.

Consider first the zero solution to the Euler-Reynolds system (v, p,R)−1 =

(0, 0, 0). It has frequency energy levels (in the sense of [Ise17, Def. 10.1]) to

order 3 in C0 below (Ξ(−1), ev,(−1), eR,(−1)) = (3, 1, 1). Let e1/2(t) ≥ 0 be a

smooth function with compact support in R such that e1/2(0) = 1 and

sup
t

∣∣∣∣ dadta e1/2(t)

∣∣∣∣ ≤ 10(Ξ(−1)e
1/2
v,(−1))

re
1/2
R,(−1), a = 0, 1, 2.

Let Č be the constant in the main lemma (Lemma 10.1) of [Ise17], where we

take L = 3 and N(−1) ≥ Ξ
1/2
(−1). Applying that lemma with the function e1/2(t)

above and N(−1) to be chosen, we obtain an Euler-Reynolds flow (v, p,R)(0),

also with compact support in time, with frequency-energy levels to order 3 in

C0 (in the sense of Definition 2.2 above) bounded by

(Ξ(0), ev,(0), eR,(0)) =

Ñ
3ČN(−1), 1,

1

N
1/2
(−1)

é
.

For N(−1) sufficiently large, the following inequalities are satisfied in the stage

k = 0:

log Ξ̂(k) ≤
Å
ev
eR

ãε
(k)
,(18.2)
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Ξ̂(k) ≤
1

rr

Å
ev
eR

ãrε
(k)
,(18.3)

e
δrε
4

R,(k)Ξ(k) ≤ 1,(18.4)

Ξη(k)

Å
ev
eR

ã−1/2

(k)
eδR,(k) ≤ 1.(18.5)

This choice is possible thanks to our choice of r being large relative to δ and ε

— for example, when k = 0 the left-hand side of (18.4) is bounded above by

e
δrε
4

R,(0)Ξ(0) ≤ ČN
1− δrε

8

(−1) 3.

One obtains (18.3) and (18.5) similarly for sufficiently large N(−1).

Note that inequality (18.2) follows immediately from (18.3) by taking u

to be the right-hand side of (18.2) in the following elementary inequalityÅ
1 +

u

r

ãr
≤ eu for all u ≥ 0, r > 0.

The last conditions we require on N(−1) are the ones that will ultimately

guarantee that we construct a nontrivial solution. Observe that Lemma 10.1

of [Ise17] guarantees a bound of

sup
t

∣∣∣∣∫
T3
|v(0)(t, x)|2dx− e(t)

∣∣∣∣ ≤ Č eR,(−1)

N(−1)
.

(Note that, since we start with v(−1) = 0, the correction V = V(−1) in this case

is equal to our solution v(0).) For N(−1) sufficiently large, we can guarantee

that

.81 = e(0)− .19 ≤
∫
T3
|v(0)(0, x)|2dx ≤ ‖v(0)‖2C0

⇒ .9 ≤ ‖v(0)‖C0 .(18.6)

Finally, let Č0 be the constant that in the statement of inequality (2.9) in

Lemma 2.1 (which is the upper bound on the C0 norm of the correction). A

sufficiently large choice of N(−1) guarantees that

5000Č0(log Ξ̂(0))
1/2e

1/2
R,(0) ≤

1

400
.(18.7)

We now fix N(−1) to satisfy the above conditions together with (18.2)–(18.5).

18.3. The sequence of parameters. The goal of the present section is es-

tablish the main properties of the parameters (Ξ, ev, eR)(k) that will ultimately

be the frequency energy levels of our sequence of Euler-Reynolds flows. The

value of (Ξ(0), ev,(0), eR,(0)) is already determined. The remaining values of the
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sequence are governed by the parameters δ, ε, η and a parameter Z according

to the following rules:

Ξ(k+1) = CηZ

Å
ev
eR

ã 1
2

+ 5ε
2

(k)
e−δR,(k)Ξ(k),(18.8)

ev,(k+1) =

Å
ev
eR

ãε
(k)
eR,(k),(18.9)

eR,(k+1) =
e1+δ
R,(k)

Z
.(18.10)

The constant Cη above is the constant associated to the parameter η by

Lemma 2.1, with η = δ
32 specified above. We also define the sequence

N(k) := Z(log Ξ̂(k))
5/2
Å
ev
eR

ã1/2

(k)
e−δR,(k).(18.11)

Our choice of Z will be specified later in line (18.18).

The following proposition will ensure that the iteration proceeds in a well-

defined way for sufficiently large choices of Z.

Proposition 18.1. Let (Ξ(0), ev,(0), eR,(0)) be parameters that satisfy con-

ditions (18.2)–(18.5) of Section 18.2, with ev,(0) ≥ eR,(0) and eR,(0) < 1 < Ξ(0).

There exists Z0 such that for all Z ≥ Z0, the sequence determined by (18.8)–

(18.10) and (18.11) satisfies conditions (18.2)–(18.5) for all k ≥ 0 and alsoÅ
ev
eR

ã 1
2

(k)
≤ Z1/2e

− δ
2

R,(k),(18.12)

N(k) ≥ Ξη(k).(18.13)

The case k = 0. For Z sufficiently large depending on ev,(0), eR,(0), we can

ensure that (18.12) holds for k = 0. Also, (18.13) is an immediate conse-

quence of (18.5) and the definition (18.11) of N(k). Thus we may assume the

proposition holds for k = 0. We now prove the proposition for stage k+ 1. �

Proof of (18.3) and (18.2) for k + 1. Observe that

Ξ̂(k+1)

Å
ev
eR

ã−rε
(k+1)

= Ξ(k+1)

Å
ev
eR

ã 1
2
−rε

(k+1)
≤ Ξ(k+1)

Å
ev
eR

ã− rε
2

(k+1)
,

Ξ(k+1)

Å
ev
eR

ã− rε
2

(k+1)
=

[
CηZe

−δ
R,(k)

Å
ev
eR

ã 1+5ε
2

(k)
Ξ(k)

] ñÅ
ev
eR

ãε
(k)
Ze−δR,(k)

ô− rε
2

≤ CηZ1− rε
2

Å
ev
eR

ã 1+5ε
2
− rε

2

2

(k)
[e
δrε
4

R,(k)Ξ(k)].

By our choice of r, the power to which Z is raised in the last line is negative,

and likewise the energy ratio (ev/eR)(k) is raised to a positive power. The
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energy ratio term is therefore at most 1, and the constant term is bounded

by r−r for sufficiently large Z. The last term in brackets is at most 1 by the

induction hypothesis on (18.4). Finally, as noted previously in Section 18.2,

inequality (18.2) follows from (18.3). �

Proof of (18.4) for k + 1. Observe that

e
δrε
4

R,(k+1)Ξ(k+1) = CηZ
1− δrε

4

[Å
ev
eR

ã 1+5ε
2

(k)
e
−δ+ δ2rε

4

R,(k)

]
e
δrε
4

R,(k)Ξ(k).

The last product involving eR,(k) and Ξ(k) is at most 1 by the induction hy-

pothesis on (18.4). Applying the induction hypothesis of inequality (18.12)

and 5ε < 1 gives

e
δrε
4

R,(k+1)Ξ(k+1) ≤ CηZ2− δrε
4 e
−2δ+ δ2rε

4

R,(k) .

For Z large enough, the constant term is bounded by 1, and the power to

which eR,(k) is raised above is positive by the choice of r, which gives the

inequality. �

Proof of (18.5) and (18.13) for k+1. As before, (18.13) follows from (18.5).

To prove (18.5), observe that

Ξη(k+1)

Å
ev
eR

ã−1/2

(k+1)
eδR,(k)

=

[
CηZ

Å
ev
eR

ã 1+5ε
2

(k)
e−δR,(k)Ξ(k)

]η ñ
Z−1/2

Å
ev
eR

ã−ε/2
(k)

e
δ
2

R,(k)

ô
e
δ(1+δ)
R,(k)

Zδ

≤ (Cη)
ηZη−

1
2
−δ
Å
ev
eR

ã( 1+5
2 )η− ε2

(k)
e
δ(−η+ 1

2
+δ)

R,(k) [eδR,(k)Ξ
η
(k)].

By our induction hypotheses on (18.5) and (18.12), the last term in brackets

is at most

eδR,(k)Ξ
η
(k) ≤

Å
ev
eR

ã1/2

(k)
≤ Z1/2e

− δ
2

R,(k).

Using this bound and noting that (ev/eR)(k) is raised to a negative power by

the choice of η gives

Ξη(k+1)

Å
ev
eR

ã−1/2

(k+1)
eδR,(k) ≤ (Cη)

ηZη−δe
δ(−η+δ)
R,(k) .

Since we chose η < δ, we see that Z is raised to a negative power and eR,(k)

is raised to a positive power in the above estimate. For large Z, the constant

term is at most 1 and the estimate follows. �
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Proof of (18.12) for k + 1. By the induction hypothesis on (18.12) and

using (18.10) and ε = δ
2 , we obtainÅ

ev
eR

ã1/2

(k+1)
= Z1/2

Å
ev
eR

ã ε
2

(k)
e
− δ

2

R,(k) ≤ Z
1
2

+ ε
2 e
− δε

2
− δ

2

R,(k)

= Z
1
2Z

ε
2
− δ

2( 1+ε
1+δ )e

− δ
2( 1+ε

1+δ )
R,(k+1) ≤ Z

1/2e
− δ

2

R,(k+1). �

18.4. Iteration of the main lemma. We now prove Theorem 1 by repeated

iteration of Lemma 2.1.

Let (v(0), p(0), R(0)) be the Euler-Reynolds flow constructed in the base

case of Section 18.2, and let (Ξ(0), ev,(0), eR,(0)) be its associated frequency-

energy levels, which satisfy the assumptions of Proposition 18.1. Let I(0) be a

bounded, closed interval containing suppt v(0) ∪ supptR(0).

We construct a sequence of Euler-Reynolds flows with supporting time

intervals J(k) and frequency-energy levels bounded by (Ξ(k), ev,(k), eR,(k)) as

follows. For k ≥ 0, apply Lemma 2.1 with the parameter η chosen in Sec-

tion 18.1 and taking N to be the N(k) defined in (18.11). Note that the

parameter N(k) satisfies the admissibility conditions N(k) ≥ (ev/eR,(k))
1/2 and

N(k) ≥ Ξη(k) by Proposition 18.1. Lemma 2.1 then yields an Euler-Reynolds

flow (v(k+1), p(k+1), R(k+1)) such that

suppt v(k+1) ∪ supptR(k+1) ⊆ J(k+1) := N(J(k); Ξ−1
(k)e
−1/2
v,(k) )(18.14)

and such that the frequency energy levels of (v(k+1), p(k+1), R(k+1)) are bounded

by

(Ξ′(k), e
′
v,(k), e

′
R,(k)) =

Ñ
CηZ(log Ξ̂(k))

5/2e−δR,(k)Ξ(k), (log Ξ̂(k))eR,(k),
e1+δ
R,(k)

Z

é
.

By inequality (18.2) of Proposition 18.1, we have Ξ′(k) ≤ Ξ(k+1) and e′v,(k) ≤
ev,(k+1), and we also have e′R,(k) = eR,(k+1). We may therefore regard

(v(k+1), p(k+1), R(k+1))

as an Euler-Reynolds flow with frequency energy levels below

(Ξ(k+1), ev,(k+1), eR,(k+1)),

allowing the induction to continue in a well-defined way. Lemma 2.1 also gives

the following estimates for V(k) := v(k+1) − v(k):

‖V(k)‖C0 ≤ Č0(log Ξ̂(k))
1/2e

1/2
R,(k),(18.15)

‖∇V(k)‖C0 ≤ CηN(k)Ξ(k)(log Ξ̂(k))
1/2e

1/2
R,(k).(18.16)
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18.5. Continuity and nontriviality of the solution. We claim that the se-

quence of velocity fields v(k) converges uniformly to a limit that is a nontrivial,

continuous weak solution to the Euler equations. Indeed, from (18.15) we have

that for all k ≥ 0,

‖V(k+1)‖C0

(18.2)

≤ Č0

Å
ev
eR

ã ε
2

(k+1)
e

1/2
R,(k+1)

(18.12)

≤ Č0Z
ε
2 e

1
2
− δ

2

R,(k+1) ≤ Č0Z
ε+δ−1

2 e
(1+δ)( 1−δ

2 )
R,(k) ,

‖V(k+1)‖C0 ≤ Č0Z
− 1

3 e
1
4

R,(k).(18.17)

Using eR,(k+1) ≤ 1
2eR,(k), we can at this point choose Z large enough depending

on Č0 (= the constant in inequality (2.9)) and eR,(0) such that

∞∑
k=0

Č0Z
− 1

3 e
1
4

R,(k) ≤
3

400
.(18.18)

It follows that v(k) converges uniformly to a continuous velocity field v.

If we choose the integral 0 normalization for p(k) = ∆−1∇j∇`Rj`(k) −
∆−1∇j∇`(vj(k)v

`
(k)), then since R(k) → 0 uniformly, we have that p(k) con-

verges weakly in D′ to the pressure p = −∆−1∇j∇`(vjv`). One sees by testing

the Euler-Reynolds equations for (v(k), p(k), R(k)) against smooth test functions

that the pair (v, p) form a weak solution to the incompressible Euler equations.

To see that v is not the 0 solution, compare the lower bound (18.6) on

‖v(0)‖C0 to the upper bound

‖v − v(0)‖C0 ≤ ‖V(0)‖C0 +
∞∑
k=0

‖V(k+1)‖C0 ≤
1

400
+

3

400
= .01,

which follows from (18.7) and (18.17)–(18.18). It now remains to show that v

has compact support in time and satisfies the regularity stated in Theorem 3.

18.6. Regularity and compact support in time of the solution. We now

show that the incompressible Euler flow v defined in Section 18.4 above belongs

to the class v ∈ Cαt,x, p ∈ C2α
t,x for all α that satisfy inequality (18.1). The

time regularity theory of [Ise13b] shows that if 0 < α < 1 and (v, p) is an

incompressible Euler flow in the class v ∈ CtCαx , then v ∈ Cαt,x and p ∈ C2β
t,x for

all 0 ≤ β < α. It therefore suffices to show that v ∈ CtCαx for the stated range

of α.
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Interpolating (2.9) and (2.10) gives the following bound on the CtC
α
x norm

of each correction:

‖V(k)‖CtCαx ≤ C(N(k)Ξ(k))
α(log Ξ̂(k))

1/2e
1/2
R,(k)

≤ CZα[(log Ξ̂(k))
5α
2

Å
ev
eR

ãα
2

(k)
e−δαR,(k)Ξ

α
(k)](log Ξ̂(k))

1/2e
1/2
R,(k)

= CZα(log Ξ̂(k))
5α+1

2

Å
ev
eR

ãα
2

(k)
e

1
2
−δα

R,(k) Ξα(k),

‖V(k)‖CtCαx
CZα

(18.2)

≤ e
1
2
−δα

R,(k)

Å
ev
eR

ã1/2

(k)
Ξα(k).(18.19)

Next define the following sequence of parameter vectors:

ψ(k) :=

 log eR
log(ev/eR)

log Ξ


(k)

.

The evolution rules (18.8)–(18.10) can be rephrased as

ψ(k+1) =

 − logZ

logZ

log(CηZ)

+

 1 + δ 0 0

−δ ε 0

−δ 1
2 + ε 1

ψ(k).(18.20)

We call the 3 × 3 matrix appearing on the right-hand side of (18.20) the

“parameter evolution matrix” as in [Ise17], and we denote this matrix by Tδ.

Since Tδ is lower triangular, the eigenvalues of Tδ are the diagonal entries

(1 + δ, ε = δ
2 , 1). For large k, the ψ(k) are (projectively) concentrated near the

eigenline corresponding to the largest eigenvalue, (1 + δ), which is spanned by

the eigenvector

ψ+ :=

 −(1 + δ
2)

δ
3
2 + δ

 ∈ NS[Tδ − (1+δ)I] = NS

 0 0 0

−δ −1− δ
2 0

−δ 1
2 + δ

2 −δ

 .
(18.21)

More precisely, let (ψ+, ψε, ψ1) be an eigenbasis for Tδ corresponding to the

eigenvalues (1 + δ, ε, 1). In terms of this basis,

ψ(k) = c+,(k)ψ+ + cε,(k)ψε + c1,(k)ψ1(18.22)

and [− logZ, logZ, log(CηZ)]t = u+ψ+ + uεψε + u1ψ1. In this basis, (18.20)

transforms to

c+,(k+1) = u+ + (1 + δ)c+,(k),(18.23)

cε,(k+1) = uε + εcε,(k),(18.24)

c1,(k+1) = u1 + c1,(k).(18.25)
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From (18.24) and (18.25), one obtains by induction a linear upper bound of

|cε,(k)|+ |c1,(k)| ≤ |k|(|uε|+ |u1|) + |cε,(0)|+ |c1,(0)|.(18.26)

As for (18.23), we claim that u+ > 0 and

c+,(k) ≥ (1 + δ)kc+,(0) > 0 for all k.(18.27)

To prove the claim, we use the fact that [1, 0, 0] is a (1 + δ)-row-eigenvector:

[1, 0, 0][Tδ − (1 + δ)I] = 0. It is therefore invariant under the projection to the

1 + δ eigenspace:

[1, 0, 0] = [1, 0, 0]

ñ
(Tδ − εI)

(1 + δ − ε)
(Tδ − I)

δ

ô
.(18.28)

Applying [1, 0, 0] to (18.22) and using (18.21) and (18.28), one obtains u+ =
logZ

(1+ δ
2

)
and c+,(k) = − log eR,(k)

(1+ δ
2

)
. From this calculation, the claim (18.27) follows

from (18.23) by induction.

We now turn to the estimate (18.19). Let Eα,(k) denote the right-hand

side of the upper bound of (18.19). Then using (18.22) and (18.26),

logEα,(k) = [1/2− δα, 1/2, α]ψ(k),(18.29)

logEα,(k) = c+,(k)[1/2− δα, 1/2, α]ψ+ +Oα,Z(|k|).(18.30)

The O(·) term above grows linearly in k with an implied constant that depends

on α,Z,Cη. The assumption (18.1) on α in Theorem 3 is exactly the condition

that

[1/2− δα, 1/2, α]ψ+ = −
Å

1

2
− δα

ãÅ
1 +

δ

2

ã
+
δ

2
+ α

Å
3

2
+ δ

ã
< 0.(18.31)

Using (18.27), (18.19) and (18.30) we obtain a double-exponential decay for

the CtC
α
x norms of V(k):

‖V(k)‖CtCαx
CZα

≤ Eα,(k) ≤ e−cα(1+δ)k+Oα,Z(|k|).

The constant cα above is a positive number that depends on α,Z and the initial

(Ξ, ev, eR)(0). With this bound, we obtain the desired regularity v ∈ CtCαx for

our solution.

We now prove the compact support in time for the solution. By (18.14), it

suffices to show that the series
∑∞
k=0(Ξ(k)e

1/2
v,(k))

−1 =
∑∞
k=0 e

−1/2
R,(k)(ev/eR)

−1/2
(k) Ξ−1

(k)

converges to a finite value. As in the analysis from (18.29) to (18.31), it suffices

to check that

[−1/2,−1/2,−1]ψ+ =
1

2

Å
1 +

δ

2

ã
− δ

2
−
Å

3

2
+ δ

ã
< 0.

This calculation concludes the proof of Theorem 3.
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Appendix A.

In this appendix, we gather several general analysis facts that have been

used throughout the proofs of Lemmas 3.1–3.3. We start by proving Proposi-

tion 9.1, which is the well-known Littlewood-Paley characterization of the Ċα

seminorm. We refer to Section 9 for notation.

Proof of Proposition 9.1. Let ‖f‖Ḃα∞,∞ := supq 2αq‖Pqf‖C0 denote the

Littlewood-Paley version of the seminorm. To see that ‖f‖Ḃα∞,∞ .α ‖f‖Ċα ,

we use that
∫
Rn χq(h)dh = 0 to write

Pqf(x) =

∫
Rn
f(x− h)χq(h)dh

=

∫
Rn

(f(x− h)− f(x))χq(h)dh,

|Pqf(x)| ≤ ‖f‖Ċα
∫
Rn
|h|α|χq(h)|dh .α 2−αq‖f‖Ċα .

Multiplying by 2αq and taking a supremum over x and q gives ‖f‖Ḃα∞,∞ .α
‖f‖Ċα .

To prove ‖f‖Ċα . ‖f‖Ḃα∞,∞ , let x ∈ Tn, h ∈ Rn, h 6= 0. Choose q̄ ∈ Z
such that 2q̄−1 < |h| ≤ 2q̄. Using the decomposition (9.2) and that Π0f is a

constant, we have

f(x+ h)− f(x) =
∑
q≤q̄

[Pqf(x+ h)− Pqf(x)] +
∑
q>q̄

[Pqf(x+ h)− Pqf(x)],

∣∣∣∣∣∣∑q>q̄[Pqf(x+ h)− Pqf(x)]

∣∣∣∣∣∣ ≤∑q>q̄ 2‖Pqf‖C0

≤ 2
∑
q>q̄

2−αq‖f‖Ḃα∞,∞

(0 < α)⇒ .α 2−αq̄‖f‖Ḃα∞,∞ . |h|
α‖f‖Ḃα∞,∞ .

For the low-frequency part, apply the Mean Value Theorem and Pq = P≈qPq
to obtain∣∣∣∣∣∣∑q≤q̄[Pqf(x+ h)− Pqf(x)]

∣∣∣∣∣∣ ≤∑q≤q̄ |h|‖∇Pqf‖C0

≤ |h|
∑
q≤q̄
‖∇P≈qPqf‖C0

≤ |h|
∑
q≤q̄
‖∇P≈q‖ ‖Pqf‖C0

.α |h|
∑
q≤q̄

2q[2−αq‖f‖Ḃα∞,∞ ]

(α < 1)⇒ .α |h|2(1−α)q̄‖f‖Ḃα∞,∞ ≤ |h|
α‖f‖Ḃα∞,∞ . �
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We next prove the commutator estimate of Proposition 9.2.

Proof of Proposition 9.2. Let u ∈ L∞(Rn) be a smooth vector field and

f ∈ L∞(Rn) be a smooth function. Then for all x ∈ Rn,

u · ∇Pqf(x)− Pq[u · ∇f ](x)

= ui(x)
∂

∂xi

∫
Rn
f(x+ h)χq(h)dh

−
∫
Rn
ui(x+ h)

∂

∂xi
f(x+ h)χq(h)dh

=

∫
Rn

(ui(x)− ui(x+ h))
∂

∂hi
f(x+ h)χq(h)dh

=

∫
Rn

(ui(x)− ui(x+ h))
∂

∂hi
[f(x+ h)− f(x)]χq(h)dh.

Using that u ∈ L∞(Rn), f ∈ L∞(Rn) and χq is Schwartz, we may integrate by

parts in h to obtain

u · ∇Pqf(x)− Pq[u · ∇f ](x)

= −
∫
Rn

(ui(x)− ui(x+ h))(f(x+ h)− f(x))∇iχq(h)dh
(A.1)

+

∫
Rn
∇iui(x+ h)(f(x+ h)− f(x))χq(h)dh.(A.2)

We estimate the terms on the right-hand side by

|(A.2)| ≤ ‖∇u‖C0‖f‖Ċα
∫
Rn
|h|α|χq(h)|dh

. 2−αq‖∇u‖C0‖f‖Ċα ,

(A.1) =

∫
Rn

ñ∫ 1

0
∇aui(x+ σh)hadσ

ô
(f(x+ h)− f(x))∇iχq(h)dh,

|(A.1)| ≤ ‖∇u‖C0‖f‖Ċα
∫
Rn
|h|1+α|∇χq(h)|dh

. 2−αq‖∇u‖C0‖f‖Ċα . �

Proposition A.1 below lists some standard facts about nonsingular linear

transport equations.

Proposition A.1. Let t0 ∈ R and J be an open interval in R contain-

ing t0. Let u : J × Tn → Rn be a smooth vector field and g : J × Tn → R be

a smooth function ; i.e., u ∈ CtCkx , g ∈ CtCkx for all k ≥ 0. Let f0 : Tn → R
be smooth. Then there exists f : J × Tn → R such that f ∈ C1(J × Tn),

f ∈ ⋂k≥0CtC
k
x is smooth in the spatial variables on J × Tn, and f satisfies

(∂t + u · ∇)f = g on J × Tn,
f(t0, x) = f0(x) for x ∈ Tn.

(A.3)
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Furthermore, f is unique among solutions to (A.3) in the class f ∈ C1(J×Tn),

and f satisfies

‖f(t)‖C0 ≤ ‖f0‖C0 +

∣∣∣∣∣
∫ t

t0

‖g(τ)‖C0dτ

∣∣∣∣∣ for all t ∈ J.(A.4)

Proof. We only sketch the proof of (A.4). Let (t, x) ∈ J × Tn. Let γ(·) :

J → Tn be the unique solution to the ODE dγ
dτ (τ) = u(τ, γ(τ)) with γ(t) = x.

Then for any f ∈ C1(J × Tn) solving (A.3) and τ ∈ J , set ψ(τ) := f(τ, γ(τ)).

Then d
dτψ(τ) = g(τ, γ(τ)) for all τ ∈ J and ψ(t0) = f0(γ(t0)). Integrating

from t0 to t, we have that |ψ(t)| = |f(t, x)| is bounded by the right-hand side

of (A.4). �

Our proof of the Gluing Approximation Lemma relies on the following

proposition concerning existence of regular solutions to the transport-elliptic

equation 8.2. Recall that S ⊆ R3 ⊗ R3 denotes the space of real symmetric

(2, 0) tensors.

Theorem 4. Let J be an open subinterval of R and t0 ∈ J . Let v :

J × T3 → R3 be a smooth vector field v ∈ ⋂k≥0CtC
k
x that is divergence free

∇ivi = 0. Let ρ0 : T3 → S be smooth and Z : J × T3 → R3 be a smooth

vector field Z ∈ ⋂
k≥0CtC

k
x . Then there exists ρ : J × Tn → S such that

ρ ∈ C1(J × T3), ρ ∈ ⋂k≥0CtC
k
x is smooth in the spatial variables, and

(∂t + v · ∇)ρj` = Rj`[∇avi∇i(ρab) + Zb],

ρj`(t0, x) = ρj`0 (x).
(A.5)

Proof. The proof of Theorem 4 proceeds by modifying the work in [Ise17,

§§27.1-27.3]. There the analysis specialized to the case of ρj`0 = Rj`[U ] and

Zb = (∂t+v ·∇)U for some vector field U with spatial integral 0 (which suffices

for the applications of the present paper). The proof in [Ise17, §§27.1–27.3]

assumes estimates on v and Z that are uniform in time and emphasizes the

a priori estimates on the solution. Here we outline how to adapt the proof

to an arbitrary open time interval and focus on the proof of existence for the

solution.

Set ρj`(0)(t, x) = ρj`0 (x), and define ρj`(k+1) to be the unique solution to

(∂t + v · ∇)ρj`(k+1) = Rj`[∇avi∇i(ρab(k)) + Zb],

ρj`(k+1)(t0, x) = ρj`0 (x).
(A.6)

Observe that the functions ρj`(k) : J × T3 → S are well defined on all of J × T3

and are smooth in the spatial variables: ρ(k), ∂tρ(k) ∈
⋂
k≥0CtC

k
x . We claim

that for every compact subinterval J ⊆ J and every L ∈ Z+, the sequence ρ(k)

is Cauchy in CtC
L
x (J × T3).
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Let J be an compact subinterval of J . We claim that for all L ≥ 0,

the sequence ρ(k) is Cauchy in CtC
L
x (J × T3). Let L ≥ 1 be given. Choose

parameters τ̄−1,Λ > 0 such that

‖∇k+1v‖C0 ≤ Λkτ̄−1 for all 0 ≤ k ≤ L.(A.7)

For any ρ : J × Tn → S in the class
⋂
k≥0CtC

k
x , define the weighted energy

EL[ρ(t)] =
L∑

K=1

3∑
j,`=1

∑
|~a|=K

∫
Tn

|∇~aρj`(t, x)|4

Λ4K
dx.

For B ≥ 1 to be chosen later and smooth ρ : J×T3 → S, define the seminorm

‖ρ‖X = sup
t∈J

e−Bτ̄
−1|t−t0|EL[ρ(t)]1/4.

Let T be the map such that ρ(k+1) = T [ρ(k)], which is defined by solving (A.6).

We want to show that T is a contraction on CtW
L,4
x if one takes the appropriate

norm. Let ρ, ρ̃ : J×T3 → S be smooth (2, 0) tensor fields. Then differentiating

equation (A.6) for the difference T [ρ]− T [ρ̃] and commuting using (A.7), one

obtains that for all 1 ≤ |~a| ≤ L and all t ∈ J ,

‖(∂t + v · ∇)∇~a[T [ρ]− T [ρ̃]]‖L4(Tn)

≤ C|~a|Λ|~a|τ̄−1(EL[ρ− ρ̃]1/4 + EL[T [ρ]− T [ρ̃]]1/4).
(A.8)

The computation follows as in the a priori estimate in [Ise17, Props. 27.1, 27.2].

A key input in this estimate is the fact that∇Rj` acts as a bounded operator on

L4(T3), which follows from the Calderon-Zygmund theory on R3 as discussed

in [Ise17, Prop. 6.2].

Applying (A.8) and using (in a nonessential way) that ∇ivi = 0,

d

dt
EL
î
T [ρ](t)− T [ρ̃](t)

ó
=

L∑
K=1

3∑
j,`=1

∑
|~a|=K

Λ−4K
∫
Tn

(∂t + v · ∇)|∇~a
î
T [ρ]j` − T [ρ̃]j`

ó
|4(t, x)dx,

∣∣∣∣ ddtELîT [ρ](t)− T [ρ̃](t)
ó∣∣∣∣

(A.8)

≤ CLτ̄
−1(EL[ρ− ρ̃]1/4 + EL

î
T [ρ]− T [ρ̃]

ó1/4
)EL
î
T [ρ]− T [ρ̃]

ó 3
4

≤ CLτ̄−1(EL[ρ(t)− ρ̃(t)] + EL
î
T [ρ](t)− T [ρ̃](t)

ó
),(A.9) ∣∣∣∣ ddtELîT [ρ](t)− T [ρ̃](t)

ó∣∣∣∣
≤ CLτ̄−1e4Bτ̄−1|t−t0|(‖ρ− ρ̃‖4X + ‖T [ρ]− T [ρ̃]‖4X).
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In line (A.9), we applied Young’s inequality with the exponents 1
4 + 3

4 = 1.

Integrating the above estimate from t = t0 and observing that EL[T [ρ](t0) −
T [ρ̃](t0)] = 0, we obtain

EL[T [ρ](t)− T [ρ̃](t)] ≤ CL
4B

e4Bτ̄−1|t−t0|(‖ρ− ρ̃‖4X + ‖T [ρ]− T [ρ̃]‖4X),

‖T [ρ]− T [ρ̃]‖4X ≤
CL
4B
‖ρ− ρ̃‖4X +

CL
4B
‖T [ρ]− T [ρ̃]‖4X .

(A.10)

Choosing B large enough, the last term in (A.10) can be subtracted from both

sides and we obtain that

‖T [ρ]− T [ρ̃]‖X ≤
1

2
‖ρ− ρ̃‖X .(A.11)

It is also true that for all t ∈ J ,∫
T3

(T [ρ]j`(t, x)− T [ρ̃]j`(t, x))dx = 0.(A.12)

Equation (A.12) follows from the following conservation law, which uses∇ivi =

0 and (A.6):

d

dt

∫
Tn
T [ρ]j`(t, x)dx =

∫
Tn

(∂t + v · ∇)T [ρ]j`(t, x)dx = 0.

Combining (A.11) and (A.12), we see that T is a contraction on the space of

CtW
L,4
x tensor fields ρ : J×T3 → S when this space is endowed with the norm

‖ρ‖ = supt∈J |
∫
Tn ρ(t, x)dx|+ ‖ρ‖X . In particular, the sequence ρj`(k) is Cauchy

in CtW
L,4
x and hence Cauchy in CtC

L−1
x on J × T3 by Sobolev embedding.

Since J was an arbitrary compact subinterval of J containing t0 and L was

also arbitrary, we conclude that ρj`(k) converges to a limit ρ that exists on all

of J × T3 and is smooth ρ ∈ ⋂k≥0CtC
k
x . It also follows that ρ solves the

initial value problem (A.5) (as a distribution), from which we also have that

ρ ∈ C1(J × T3) and ∂tρ ∈
⋂
k≥0CtC

k
x . �
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and rigidity or C1,α isometric embeddings, in Nonlinear Partial

Differential Equations, Abel Symp. 7, Springer, Heidelberg, 2012,

pp. 83–116. MR 3289360. Zbl 1255.53038. https://doi.org/10.1007/

978-3-642-25361-4 5.

http://www.arxiv.org/abs/1302.2815
http://www.ams.org/mathscinet-getitem?mr=3374958
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1330.35303
https://doi.org/10.4007/annals.2015.182.1.3
https://doi.org/10.4007/annals.2015.182.1.3
http://www.ams.org/mathscinet-getitem?mr=3530360
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1351.35109
https://doi.org/10.1002/cpa.21586
https://doi.org/10.1002/cpa.21586
http://www.ams.org/mathscinet-getitem?mr=2422377
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1138.76020
https://doi.org/10.1088/0951-7715/21/6/005
http://www.arxiv.org/abs/1509.03213
http://www.ams.org/mathscinet-getitem?mr=3050291
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1296.76059
https://doi.org/10.1017/CBO9781139235792.004
http://www.ams.org/mathscinet-getitem?mr=3073150
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1291.35200
https://doi.org/10.1007/s00205-013-0639-3
http://www.arxiv.org/abs/1205.1226
http://www.ams.org/mathscinet-getitem?mr=3505175
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1311.35194
https://doi.org/10.1137/140957354
https://doi.org/10.1137/140957354
http://www.ams.org/mathscinet-getitem?mr=1298949
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0818.35085
https://doi.org/10.1007/BF02099744
https://doi.org/10.1007/BF02099744
http://www.ams.org/mathscinet-getitem?mr=3289360
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1255.53038
https://doi.org/10.1007/978-3-642-25361-4_5
https://doi.org/10.1007/978-3-642-25361-4_5


A PROOF OF ONSAGER’S CONJECTURE 961

[CFG11] D. Cordoba, D. Faraco, and F. Gancedo, Lack of uniqueness for

weak solutions of the incompressible porous media equation, Arch. Ra-

tion. Mech. Anal. 200 no. 3 (2011), 725–746. MR 2796131. Zbl 1241.

35156. https://doi.org/10.1007/s00205-010-0365-z.
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[TZ17] T. Tao and L. Zhang, Hölder continuous solutions of Boussinesq equa-

tion with compact support, J. Funct. Anal. 272 no. 10 (2017), 4334–

4402. MR 3626042. Zbl 1375.35351. https://doi.org/10.1016/j.jfa.2017.

01.013.

[TZ18] T. Tao and L. Zhang, On the continuous periodic weak solutions of

Boussinesq equations, SIAM J. Math. Anal. 50 no. 1 (2018), 1120–1162.

MR 3763091. Zbl 06840324. https://doi.org/10.1137/17M1115526.

(Received: August 30, 2016)

(Revised: December 5, 2017)

University of Texas at Austin, Austin, TX and California Institute

of Technology, Pasadena, CA

E-mail : isett@math.utexas.edu

http://www.ams.org/mathscinet-getitem?mr=3626042
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1375.35351
https://doi.org/10.1016/j.jfa.2017.01.013
https://doi.org/10.1016/j.jfa.2017.01.013
http://www.ams.org/mathscinet-getitem?mr=3763091
http://www.zentralblatt-math.org/zmath/en/search/?q=an:06840324
https://doi.org/10.1137/17M1115526
mailto:isett@math.utexas.edu

	Part 1. Introduction
	1. Organization of paper
	2. Notation and preliminaries

	Part 2. The main lemma and sublemmas
	3. The main sublemmas

	Part 3. The gluing sublemmas
	4. The regularization step
	5. Proof of gluing approximation: Outline
	6. The gluing construction
	7. Constructing a good anti-divergence 
	8. Existence considerations
	9. Preliminaries for the gluing proposition
	10. Proof of the gluing proposition
	10.1. Estimates for the pressure increment
	10.2. Estimates for the velocity increment
	10.3. Estimates for the anti-divergence I: 
	10.4. Estimates for the anti-divergence II: 
	10.5. Proof of the Gluing Approximation Lemma


	Part 4. The Convex Integration Sublemma
	11. Mikado flows
	12. The coarse scale flow and back-to-labels map
	13. Ansatz for the correction
	14. The error terms
	15. The algebraic equation
	16. The coarse scale velocity field and stress tensor
	17. Estimates for the construction
	17.1. Estimates for low-frequency terms in the construction
	17.2. Bounds on the correction
	17.3. Stress terms not involving the divergence equation 
	17.4. Stress terms involving the divergence equation 
	17.5. Proof of Proposition 17.6
	17.6. Concluding the proof of the Convex Integration Lemma

	18. Proof of the main theorem
	18.1. Regularity parameters
	18.2. The base case: k = -1
	18.3. The sequence of parameters
	18.4. Iteration of the main lemma
	18.5. Continuity and nontriviality of the solution
	18.6. Regularity and compact support in time of the solution

	Appendix A. 
	References


