Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

By Alexander Logunov

Abstract

Let \mathbb{M} be a compact C^{∞}-smooth Riemannian manifold of dimension n, $n \geq 3$, and let $\varphi_{\lambda}: \Delta_{M} \varphi_{\lambda}+\lambda \varphi_{\lambda}=0$ denote the Laplace eigenfunction on \mathbb{M} corresponding to the eigenvalue λ. We show that $$
H^{n-1}\left(\left\{\varphi_{\lambda}=0\right\}\right) \leq C \lambda^{\alpha},
$$ where $\alpha>1 / 2$ is a constant, which depends on n only, and $C>0$ depends on \mathbb{M}. This result is a consequence of our study of zero sets of harmonic functions on C^{∞}-smooth Riemannian manifolds. We develop a technique of propagation of smallness for solutions of elliptic PDE that allows us to obtain local bounds from above for the volume of the nodal sets in terms of the frequency and the doubling index.

1. Preliminaries

Yau conjectured that the Laplace eigenfunctions $\varphi_{\lambda}: \Delta \varphi_{\lambda}+\lambda \varphi_{\lambda}=0$ on a compact C^{∞}-smooth Riemannain manifold W of dimension n (without boundary) satisfy

$$
c \lambda^{1 / 2} \leq H^{n-1}\left(\left\{\varphi_{\lambda}=0\right\}\right) \leq C \lambda^{1 / 2}
$$

where $H^{n-1}(\cdot)$ denotes the $(n-1)$ dimensional Hausdorff measure, and positive constants c, C depend on the Riemannian metric and on the manifold only. This conjecture was proved for real-analytic manifolds by Donnelly and Fefferman ([7]). For non-analytic manifolds the best-known upper estimate in dimension $n=2$ was $H^{1}\left(\left\{\varphi_{\lambda}=0\right\}\right) \leq C \lambda^{3 / 4}$ due to Donnelly and Fefferman ([8]). A different proof for the same bound was given by Dong ([6]). Recently this bound was refined to $C \lambda^{3 / 4-\varepsilon}$ in [15].

[^0]In higher dimensions the estimate $H^{n-1}\left(\left\{\varphi_{\lambda}=0\right\}\right) \leq C \lambda^{C \sqrt{\lambda}}$ by Hardt and Simon ([11]) was the only known upper bound till now. We prove that

$$
H^{n-1}\left(\left\{\varphi_{\lambda}=0\right\}\right) \leq C \lambda^{\alpha},
$$

where $\alpha>1 / 2$ is a constant, which depends on n only, and C depends on M.
This estimate will follow from an estimate (Theorem 6.1) for harmonic functions, which bounds the volume of the nodal set in terms of the frequency function (or the doubling index).

We refer to [20] and [17] for the interesting conjectures on Laplace eigenfunctions and harmonic functions. See also [4], [5], [19], [7] for the previous results on the lower bounds, which will be further improved in [14].

There is a standard trick that allows us to pass from Laplace eigenfunctions to harmonic functions: one can add an extra variable t and consider a function

$$
u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t)
$$

which appears to be a harmonic function on the product manifold $W \times \mathbb{R}$.
Let M be a C^{∞}-smooth Riemannian manifold (non-compact and with no boundary), endowed with metric g. Consider a point $p \in M$ and a harmonic function u (with respect to g) on M. By $B_{g}(p, r)$ we will denote a geodesic ball with center at point p and radius r. Define $H(r)=\int_{\partial B_{g}(p, r)} u^{2} d S_{r}$, where S_{r} is the surface measure on $\partial B_{g}(p, r)$ with respect to g. We will always assume that r is smaller than the injectivity radius.

Agmon noted in [1] that for an ordinary harmonic function u in \mathbb{R}^{n} the function $H(r)$ satisfies the logarithmic convexity property. There are two equivalent ways to formulate this property: the three spheres theorem and the monotonicity property of the frequency. The three spheres theorem claims that for any harmonic function u in \mathbb{R}^{n}, the following inequality holds:

$$
H\left(R_{2}\right) \leq H^{\alpha}\left(R_{1}\right) H^{1-\alpha}\left(R_{3}\right)
$$

for any positive numbers R_{1}, R_{2}, R_{3} with $R_{2}=R_{1}^{\alpha} R_{3}^{1-\alpha}$. We refer to [12], where the three spheres theorem was generalized to the second order elliptic partial differential equations with variable coefficients. The notion of frequency was introduced by Almgren in [3]. Later we will severely use the result of [9] by Garofalo and Lin on the almost monotonicity property of the frequency function for harmonic functions on Riemannian manifolds.

Definition. The frequency function of a harmonic function u is defined by

$$
\beta(r):=\frac{r H^{\prime}(r)}{2 H(r)} .
$$

We remark that this definition is slightly different from the standard one, since we do not normalize $H(r)$ by the surface measure $\left|S_{r}\right|$. See [10] for a
friendly introduction to frequency and also [9], [13] for applications to nodal sets. In dimension two, understanding of nodal sets of harmonic functions is better due to complex analysis techniques and topological reasons; see [18].

We will work only on a bounded subset of M : fix a point O on M and assume hereafter that $B_{g}(p, r) \subset B_{g}(O, 1)$.

The frequency is almost monotonic in the following sense (see Remark (3) to Theorem 2.2 in [16]):

Lemma 1.1. For any $\varepsilon>0$, there exists $R_{0}=R_{0}(\varepsilon, M, g, O)$ such that

$$
\begin{equation*}
\beta\left(r_{1}\right) \leq(1+\varepsilon) \beta\left(r_{2}\right) \tag{1}
\end{equation*}
$$

for any r_{1}, r_{2} : $0<r_{1}<r_{2}<R_{0}$.
One can estimate the growth of $H(r)$ in terms of the frequency in view of the integral formula:

$$
\frac{H\left(r_{2}\right)}{H\left(r_{1}\right)}=\exp \left(2 \int_{r_{1}}^{r_{2}} \beta(r) d \log r\right)
$$

Corollary 1.2. $\left(\frac{r_{2}}{r_{1}}\right)^{2 \beta\left(r_{1}\right) /(1+\varepsilon)} \leq \frac{H\left(r_{2}\right)}{H\left(r_{1}\right)} \leq\left(\frac{r_{2}}{r_{1}}\right)^{2 \beta\left(r_{2}\right)(1+\varepsilon)}$.
Sometimes we will specify the center of the ball and our choice of the function u and write $\beta(p, r)$ and $H(p, r)$ or $\beta_{u}(p, r)$ and $H_{u}(p, r)$ in place of $\beta(r)$ and $H(r)$.

We need a standard elliptic estimate that compares L^{∞} and L^{2} norms of harmonic functions on concentric geodesic spheres: for any $\varepsilon \in(0,1)$, there exists a constant $C_{1}=C_{1}(\varepsilon, M, g, O)>0$ such that

$$
\begin{equation*}
\sup _{\partial B_{g}(p, r)}|u|^{2} \leq C_{1} \frac{H(r(1+\varepsilon))}{r^{n-1}} \tag{2}
\end{equation*}
$$

for $r \leq R_{0}$, where $R_{0}=R_{0}(M, g, O)>0$.
The reverse estimate holds for arbitrary continuous functions on M :

$$
\begin{equation*}
H(r) \leq C_{2}(M, g, O) r^{n-1} \sup _{\partial B_{g}(p, r)}|u|^{2}, \tag{3}
\end{equation*}
$$

where $C_{2}(M, g, O)$ is a positive constant such that the whole surface measure of a geodesic sphere satisfies $\left|S_{r}\right| \leq r^{n-1} C_{2}(M, g), r \leq R_{0}$.

Let us consider normal coordinates in a geodesic ball $B_{g}(O, R)$, where R is a sufficiently small number. In these coordinates we will treat the Laplace operator as an elliptic operator in a fixed domain in \mathbb{R}^{n}, say, a cube Q. We will identify O with the origin and denote the ordinary Euclidean distance by $d(x, y)$ and the Riemannian distance by $d_{g}(x, y)$. Let $\varepsilon>0$ be a small number. We will assume hereafter that

$$
\begin{equation*}
\frac{d_{g}(x, y)}{d(x, y)} \in(1-\varepsilon, 1+\varepsilon) \tag{4}
\end{equation*}
$$

for points x, y in $B_{g}\left(O, R_{0}\right): x \neq y$, where $R_{0}=R_{0}(\varepsilon, M, g, O)>0$. The existence of such R_{0} for any ε is provided by the choice of the normal coordinates.

For the purposes of the paper, it will be more convenient to work with a notion similar to the frequency: so-called doubling index, which deals with L^{∞} norms in place of L^{2} and Euclidean balls in place of geodesic balls. For a given ball B (ball in standard Euclidean metric), define the doubling index $N(B)$ by $2^{N(B)}=\frac{\sup |u|}{\sup |u|}$. Given a positive number r we denote by $r B$ the homothety image of $\stackrel{B}{B}$ with coefficient r such that $r B$ and B have the same center. If B is an Euclidean ball in \mathbb{R}^{n} with center at x and radius r, then $N(x, r)$ will denote the doubling index for this ball.

We will use the estimates of growth of harmonic functions in terms of the doubling index.

Lemma 1.3. For any $\varepsilon \in(0,1)$, there exist $C=C(\varepsilon, M, g, O)>0$ and $R=R(\varepsilon, M, g, O)>0$ such that

$$
\begin{equation*}
t^{N(x, \rho)(1-\varepsilon)-C} \leq \frac{\sup _{B(x, t \rho)}|u|}{\sup _{B(x, \rho)}|u|} \leq t^{N(x, t \rho)(1+\varepsilon)+C} \tag{5}
\end{equation*}
$$

for any $x \in M$ and numbers $\rho>0, t>2$ satisfying $B(x, t \rho) \subset B(O, R)$ (and for any harmonic function u). Furthermore, there exists $N_{0}=N_{0}(\varepsilon, M, g)$ such that if additionally $N(x, \rho)>N_{0}$, then

$$
\begin{equation*}
t^{N(x, \rho)(1-\varepsilon)} \leq \frac{\sup _{B(x, t \rho)}|u|}{\sup _{B(x, \rho)}|u|} . \tag{6}
\end{equation*}
$$

The estimates (5) and (6) are corollaries from almost monotonicity of the frequency (1) and standard elliptic estimates. For the convenience of the reader we deduce them in Lemmas 7.2 and 7.3.

We will show in Theorem 6.1 that there exist $r=r(M)>0$ and $\alpha=$ $\alpha(n)>1$ such that the following inequality holds:

$$
H^{n-1}(\{u=0\} \cap B(O, r)) \leq C(N(O, K r))^{\alpha},
$$

where $K=K(n) \geq 2$ and $C=C(M)$.
Note that for real analytic manifolds, one can replace α by 1 in the estimate above, using complex analysis techniques (holomorhpic extension of a harmonic function to an open set in \mathbb{C}^{n} and Jensen's formula on one dimensional sections); see [9].

We remark that only a few properties of H^{n-1} are used in the proof: subadditivity and the rescaling property. So there is a chance that the methods of this paper might be applied to other characteristics of nodal sets.

We outline the question we are trying to investigate in this paper: Is the frequency additive in some sense?

Some partial positive answers are obtained in the simplex lemma and in the hyperplane lemma, which are combined to get the polynomial upper bounds for the volume of the nodal sets in terms of the frequency (or the doubling index).

Acknowledgments. This work was started in collaboration with Eugenia Malinnikova who suggested to apply the combinatorial approach to nodal sets of Laplace eigenfunctions. Her role in this work is no less than the author's one. Unfortunately, she refused to be a coauthor of this paper. On various stages of the work I discussed it with Lev Buhovsky and Mikhail Sodin. Eugenia, Lev and Mikhail also read the first draft of this paper and made many suggestions and comments. I thank all of them.

This work was started while the author was visiting NTNU, continued at the Chebyshev Laboratory (SPBSU) and finished at TAU. The final version of the paper was completed at the Institute for Advanced Study. I am grateful to these institutions for their hospitality and for great working conditions.

The author was supported in part by ERC Advanced Grant 692616, ISF Grants 1380/13, 382/15 and by a Schmidt Fellowship at the Institute for Advanced Study.

2. The simplex lemma

Let x_{1}, \ldots, x_{n+1} be vertices of a simplex S in \mathbb{R}^{n}. The symbol $\operatorname{diam}(S)$ will denote the diameter of S and by $\operatorname{width}(S)$ we will denote the width of S, i.e., the minimum distance between a pair of parallel hyperplanes such that S is contained between them. Define the relative width of $S: w(S)=$ width $(S) / \operatorname{diam}(S)$. Let $a>0$, and assume that $w(S)>a$. In particular, we assume that x_{1}, \ldots, x_{n+1} do not lie on the same hyperplane. For the purposes of the paper, there will be sufficient a particular choice of a, which depends on the dimension n only; the choice will be specified in Section 5 . Denote by x_{0} the barycenter of S.

We will use an Euclidean geometry lemma: there exist $c_{1}>0, K \geq 2 / a$ depending on a, n only such that if $\rho=K \operatorname{diam}(S)$, then $B\left(x_{0}, \rho\left(1+c_{1}\right)\right) \subset$ $\cup_{i=1}^{n+1} B\left(x_{i}, \rho\right)$.

We remark that if the simplex is very degenerate (a is small), then c_{1} has to be small and the number K has to be big:

$$
c_{1} \rightarrow 0, K \rightarrow+\infty \text { as } a \rightarrow 0 .
$$

Lemma 2.1. Let B_{i} be balls with centers at x_{i} and radii not greater than $\frac{K}{2} \operatorname{diam}(S), i=1, \ldots, n+1$, where $K=K(a, n)$ is from the Euclidean geometry lemma. There exist positive numbers $c=c(a, n), C=C(a, n) \geq K$,
$r=r(M, g, O, a), N_{0}=N_{0}(M, g, O, a)$ such that if $S \subset B(O, r)$ and if $N\left(B_{i}\right)>N$ for each $x_{i}, i=1 \ldots n+1$, where N is a number greater than N_{0}, then $N\left(x_{0}, C \operatorname{diam}(S)\right)>N(1+c)$.

Proof. In view of almost monotonicity of the doubling index (5) we will assume that all B_{i} have the same radius $\rho=K \operatorname{diam}(S)$.

Let M be the supremum of $|u|$ over the union of $B\left(x_{i}, \rho\right)$. Then $|u|$ is not greater than M in $B\left(x_{0}, \rho\left(1+c_{1}\right)\right)$ and $\sup _{B\left(x_{i}, \rho\right)}|u|=M$ for some i. Let $t>2$ and $\varepsilon>0$; these parameters will be specified later. Assume that (6) holds for $B\left(x_{i}, \rho t\right)$. Then $\sup _{B\left(x_{i}, \rho t\right)}|u| \geq M t^{N(1-\varepsilon)}$.

We need a metric geometry fact, which follows from the triangle inequality: there exists $\delta=\delta(t) \in(0,1)$ such that $B\left(x_{i}, \rho t\right) \subset B\left(x_{0}, \rho t(1+\delta)\right)$ and $\delta(t) \rightarrow 0$ as $t \rightarrow+\infty$.

Let \widetilde{N} be the doubling index for $B\left(x_{0}, \rho t(1+\delta)\right)$. Suppose (5) holds for the pair of balls $B\left(x_{0}, \rho t(1+\delta)\right)$ and $B\left(x_{0}, \rho\left(1+c_{1}\right)\right)$. Then

$$
\begin{aligned}
{\left[\frac{t(1+\delta)}{1+c_{1}}\right]^{\widetilde{N}(1+\varepsilon)+C} } & \geq \frac{\sup _{B\left(x_{0}, \rho t(1+\delta)\right)}|u|}{\sup _{B\left(x_{0}, \rho\left(1+c_{1}\right)\right)}|u|} \\
& \geq \frac{\sup _{B\left(x_{i}, \rho t\right)}|u|}{\sup _{B\left(x_{0}, \rho\left(1+c_{1}\right)\right)}|u|} \geq \frac{M t^{N(1-\varepsilon)}}{M}=t^{N(1-\varepsilon)} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left[\frac{t(1+\delta)}{1+c_{1}}\right]^{\widetilde{N}(1+\varepsilon)+C} \geq t^{N(1-\varepsilon)} \tag{7}
\end{equation*}
$$

Now, we specify our choice of parameters. We first choose $t>2$ so that $\delta(t)<c_{1} / 2$. Then

$$
\begin{equation*}
\frac{t(1+\delta)}{1+c_{1}} \leq t^{1-c_{2}} \tag{8}
\end{equation*}
$$

for some $c_{2}=c_{2}\left(t, c_{1}\right) \in(0,1)$. Second, we choose $\varepsilon=\varepsilon\left(c_{2}\right)>0$ and $c=$ $c\left(c_{2}\right)>0$ such that

$$
\begin{equation*}
\frac{1-\varepsilon}{(1+\varepsilon)\left(1-c_{2}\right)}>1+2 c . \tag{9}
\end{equation*}
$$

Third, we choose $R=R(\varepsilon, M, g, O)>0$ and $N_{0}=N_{0}(\varepsilon, M, g, O)$ such that Lemma 1.3 holds for these parameters, and we put $r:=R /(10 \mathrm{Kt})$. This choice of r provides (5) for the pair of balls $B\left(x_{0}, \rho t(1+\delta)\right)$ and $B\left(x_{0}, \rho\left(1+c_{1}\right)\right)$ and (6) for $B\left(x_{i}, \rho t\right)$. Hence inequality (7) holds and (8) gives

$$
t^{\left(1-c_{2}\right)(\widetilde{N}(1+\varepsilon)+C)} \geq t^{N(1-\varepsilon)} .
$$

We therefore have

$$
\widetilde{N} \geq N \frac{(1-\varepsilon)}{(1+\varepsilon)\left(1-c_{2}\right)}-C_{1} \geq N(1+2 c)-C_{1} \geq N(1+c)+\left(c N_{0}-C_{1}\right)
$$

We can also ask N_{0} to be big enough so that $c N_{0}-C_{1}>0$. Thus

$$
\widetilde{N}>N(1+c)
$$

3. Propagation of smallness of the Cauchy data

If one considers a smooth Riemannian metric g in a unit cube Q in \mathbb{R}^{n}, then any harmonic function u (with respect to g) satisfies $L u=0$, where L is a uniformly elliptic (in a slightly smaller cube) operator of second order in the divergence form with smooth coefficients. Consider a cube $q \subset \frac{1}{2} Q$ with side r, and let F be a face of q. In this section we formulate a result that we will refer to as the propagation of smallness of the Cauchy data for elliptic PDE. See Lemma 4.3 in [13] and Theorem 1.7 in [2] for the proof of the result below, which we bring not in full generality but in a convenient way for our purposes.

Suppose that $|u| \leq 1$ in q. There exist $C>0$ and $\alpha \in(0,1)$, depending on L only such that if $|u| \leq \varepsilon$ on F and $|\nabla u| \leq \frac{\varepsilon}{r}$ on $F, \varepsilon<1$, then

$$
\begin{equation*}
\sup _{\frac{1}{2} q}|u| \leq C \varepsilon^{\alpha} . \tag{10}
\end{equation*}
$$

Remark 3.1. We will apply propagation of smallness of the Cauchy data in the case when the coefficients of the operator L are sufficiently close in the L^{∞} norm to the coefficients of the standard Laplace operator Δ in $B\left(O, R_{0}\right)$ and the derivatives of coefficients L are sufficiently small. Under these assumptions α can be chosen to depend only on n; see Theorem 1.7 in [2].

4. Hyperplane lemma

Given a cube Q, we will denote $\sup _{x \in Q, r \in(0, \operatorname{diam}(Q))} N(x, r)$ by $N(Q)$ and call it the doubling index of Q. This definition is different from a doubling index for balls but more convenient in the following sense. If a cube q is contained in a cube Q, then $N(q) \leq N(Q)$. Furthermore, if a cube q is covered by cubes Q_{i} with $\operatorname{diam}\left(Q_{i}\right) \geq \operatorname{diam}(q)$, then $N\left(Q_{i}\right) \geq N(q)$ for some Q_{i}.

Lemma 4.1. Let Q be a cube $[-R, R]^{n}$ in \mathbb{R}^{n}. Divide Q into $(2 A+1)^{n}$ equal subcubes q_{i} with side-length $\frac{2 R}{2 A+1}$. Consider the cubes $q_{i, 0}$ that have nonempty intersection with the hyperplane $x_{n}=0$. Suppose that for each $q_{i, 0}$, there exist $x_{i} \in q_{i, 0}$ and $r_{i}<10 \operatorname{diam}\left(q_{i, 0}\right)$ such that $N\left(x_{i}, r_{i}\right)>N$, where N is a given positive number. Then there exist $A_{0}=A_{0}(n), R_{0}=R_{0}(M, g, O)$, $N_{0}=N_{0}(M, g, O)$ such that if $A>A_{0}, N>N_{0}, R<R_{0}$, then $N(Q)>2 N$.

Proof. We will ask R_{0} to be small enough so that Lemma 1.3 holds with $\varepsilon=1 / 2$ and $10 n \cdot R_{0}$ in place of R in Lemma 1.3. Also we may assume that coefficients of L are close to the coefficients of the standard Laplacian in $C^{1}\left(B\left(O, 10 n \cdot R_{0}\right)\right)$ to be able to use (10). We have described our choice of R_{0}.

For the sake of simplicity, we will assume that $R=1 / 2$ and $R_{0} \geq 1 / 2$. The general case follows by changing the scale in the argument below.

Let B be the unit ball $B(O, 1)$, and let M be the supremum of u over $\frac{1}{8} B$. For each x_{i} in $\frac{1}{16} B$, the ball $B\left(x_{i}, 1 / 32\right)$ is contained in $1 / 8 B$. Hence $\sup _{B\left(x_{i}, 1 / 32\right)}|u| \leq M$. Using $N\left(x_{i}, r_{i}\right)>N$ and (5) with $\varepsilon=1 / 2$ we get

$$
\sup _{2 q_{i, 0}}|u| \leq \sup _{B\left(x_{i}, \frac{4 \sqrt{n}}{2 A+1}\right)}|u| \leq C \sup _{B\left(x_{i}, 1 / 32\right)}|u|\left(\frac{128 \sqrt{n}}{2 A+1}\right)^{\frac{N}{2}} \leq M 2^{-c N \log A},
$$

where $c=c(n)>0$. In the last inequality we assumed that $A>A_{0}(n)$ and N is sufficiently large .

By a standard elliptic estimate,

$$
\sup _{q_{i, 0}}|\nabla u| \leq C A \sup _{2 q_{i, 0}}|u| \leq C A M 2^{-c N \log A} \leq M 2^{-c_{1}(n) N \log A} .
$$

Thus $|u|$ and $|\nabla u|$ are bounded by $M 2^{-c_{1} N \log A}$ on $\frac{1}{8} B \cap\left\{x_{n}=0\right\}$.
Let q be a cube with side $\frac{1}{16 \sqrt{n}}$ in the halfspace $\left\{x_{n}>0\right\}$ such that $q \subset \frac{1}{8} B$ and

$$
\frac{1}{32 \sqrt{n}} B \cap\left\{x_{n}=0\right\} \subset \partial q \cap\left\{x_{n}=0\right\} .
$$

In other words, q has a face F on the hyperplane $\left\{x_{n}=0\right\}$. Let p be the center of q. Then $B\left(p, \frac{1}{32 \sqrt{n}}\right) \subset q$.

Consider the function $v=\frac{u}{M}$, whose absolute value is not greater than 1 in q. The Cauchy data of v is small on $F:|v|$ and $|\nabla v|$ are smaller than $2^{-c_{1} N \log A}$. Denote $2^{-c_{1} N \log A}$ by ε. Applying propagation of smallness for the Cauchy data, we obtain $\sup |v| \leq \varepsilon^{\alpha}$. In terms of u we have $\sup |u| \leq M \varepsilon^{\alpha}=$ $M 2^{-\alpha c_{1} N \log A}$.

The ball $B\left(p, \frac{1}{64 \sqrt{n}}\right)$ is contained in $\frac{1}{2} q$, and therefore

$$
\sup _{B\left(p, \frac{1}{64 \sqrt{n}}\right)}|u| \leq M 2^{-\frac{\alpha c N}{2} \log A} .
$$

However $\sup _{B(p, 1 / 2)}|u| \geq M$ since $\frac{1}{8} B \subset B(p, 1 / 2)$. Hence

$$
\frac{\sup _{B(p, 1 / 2)}|u|}{\sup _{B\left(p, \frac{1}{64 \sqrt{n}}\right)}|u|} \geq 2^{\alpha c_{1} N \log A} .
$$

Denote by \widetilde{N} the doubling index for $B(p, 1 / 2)$. By (5) with $\varepsilon=1 / 2$ we have

$$
\frac{\sup _{B(p, 1 / 2)}|u|}{\sup _{B\left(p, \frac{1}{64 \sqrt{n}}\right)}|u|} \leq(64 \sqrt{n})^{\tilde{N} / 2}
$$

Hence $\widetilde{N} \geq c_{2} N \log A$ for some $c_{2}=c_{2}(n)>0$, and $\widetilde{N} \geq 2 N$ for A big enough.
Corollary 4.2. Let Q be a cube $[-R, R]^{n}$ in \mathbb{R}^{n}, and let $N(Q)$ not be greater than a number N. For any $\varepsilon>0$ there exists an odd positive integer $A_{1}=A_{1}(n, \varepsilon)$ such that the following holds: Let us divide Q into A_{1}^{n} smaller equal subcubes q_{i} and consider the cubes $q_{i, 0}$ that have non-empty intersection with the hyperplane $x_{n}=0$. If $N>N_{0}(M, g, O), R<R_{0}(M, g, O)$, then the number of subcubes $q_{i, 0}$ that have doubling index greater than $N / 2$ is less than εA_{1}^{n-1}.

Proof. According to Lemma 4.1 we can choose an integer A_{0} and $N_{0}>0$, assume $N>N_{0}$, partition Q into $\left(2 A_{0}+1\right)^{n}$ equal subcubes, and then at least one subcube with non-empty intersection with $\left\{x_{n}=0\right\}$ has doubling index smaller than $N / 2$.

Now, let us partition Q into $\left(2 A_{0}+1\right)^{k n}$ equal subcubes q_{i} and denote by M_{k} the number of subcubes with non-empty intersection with $\left\{x_{n}=0\right\}$ and doubling index greater than $N / 2$. If a cube q_{i} has doubling index smaller than $N / 2$, then any of its subcubes also does.

It is not important in the proof of Lemma 4.1 that Q is a cube with center at the origin; the same argument shows that if we divide a cube q_{i}, which has non-zero intersection with $\left\{x_{n}=0\right\}$, into $\left(2 A_{0}+1\right)^{n}$ equal subcubes, then at least one subcube with non-empty intersection with $\left\{x_{n}=0\right\}$ has doubling index smaller than $N / 2$. This observation gives $M_{k+1} \leq M_{k}\left(\left(2 A_{0}+1\right)^{n-1}-1\right)$.

Thus $M_{k} \leq\left(1-\frac{1}{\left(2 A_{0}+1\right)^{n-1}}\right)^{k}\left(2 A_{0}+1\right)^{k(n-1)}$. Choosing k so that $\left(1-\frac{1}{\left(2 A_{0}+1\right)^{n-1}}\right)^{k} \leq \varepsilon$, we finish the proof.

Remark 4.3. The same argument shows that in Lemma 4.1 and in Corollary 4.2 one can replace Q by any of its homothety-rotation-shift copies $Q_{r} \subset$ $B\left(O, R_{0}\right), r \in(0,1), R_{0}=R_{0}(M, g, O)$ and replace the hyperplane $\left\{x_{n}=0\right\}$ by a hyperplane that contains the center of Q_{r} and is parallel to one of its faces. Lemma 4.1 and Corollary 4.2 will remain true with A_{1}, A_{0} and N_{0} independent of r.

5. Number of cubes with big doubling index

In this section we follow notation from Sections 1 and 2. The next theorem seems to be a useful tool in nodal geometry. We will apply it later to obtain upper estimates of the volume of the nodal sets in terms of the doubling index.

Theorem 5.1. There exist constants $c>0$, an integer A depending on the dimension d only and positive numbers $N_{0}=N_{0}(M, g, O), r=r(M, g, O)$ such that for any cube $Q \subset B(O, r)$, the following holds: if we partition Q into A^{n} equal subcubes, then the number of subcubes with doubling index greater than $\max \left(N(Q) /(1+c), N_{0}\right)$ is less than $\frac{1}{2} A^{n-1}$.

Proof. Let us fix a small $\varepsilon>0$, which will be specified later, and choose $A_{1}=A_{1}(\varepsilon, n)$ such that Corollary 4.2 holds for this ε and $A_{1}=2 A_{0}+1$ as well as the remark after Corollary 4.2. Let us subsequently divide Q into equal subcubes so that at the j-th division step Q is partitioned into $\left(2 A_{0}+1\right)^{n j}$ equal subcubes $Q_{i_{1}, i_{2}, \ldots, i_{j}}, i_{1}, i_{2}, \ldots, i_{j} \in\left\{1,2, \ldots,\left(2 A_{0}+1\right)^{n}\right\}$, so that $Q_{i_{1}, i_{2}, \ldots, i_{j}} \subset$ $Q_{i_{1}, i_{2}, \ldots, i_{j-1}}$. Let the parameter $c>0$. We will say that the cube $Q_{i_{1}, i_{2}, \ldots, i_{j}}$ is bad if $N\left(Q_{i_{1}, i_{2}, \ldots, i_{j}}\right)>N(Q) /(1+c)$ and good otherwise.

Fix a cube $Q_{i_{1}, i_{2}, \ldots, i_{j}}=: q$. We are interested in the number of its bad subcubes $Q_{i_{1}, i_{2}, \ldots, i_{j+1}}=: q_{i_{j+1}}$. For the sake of convenience, we will omit the index $j+1$ and write q_{i} in place of $q_{i_{j+1}}$. We will prove the following lemma:

Lemma 5.2. If ε, c are sufficiently small, and $j>j_{0}$, where $j_{0}=j_{0}(\varepsilon, c)$, then $\#\left\{i: N\left(q_{i}\right)>N(Q) /(1+c)\right\} \leq \frac{1}{2}\left(2 A_{0}+1\right)^{n-1}$.

Let F be the set of all points x in q such that there exists $r \in\left(0, \operatorname{diam}\left(q_{i}\right)\right]$ such that $N(x, r)>N(Q) /(1+c)$. If a closed cube q_{i} is bad, then it contains at least one point from F. We use the notation $\widetilde{w}(F):=\frac{\operatorname{width}(F)}{\operatorname{diam}(q)}$ for the relative width of F in q. We will prove Lemma 5.2 after the following lemma:

Lemma 5.3. For any $w_{0}>0$, there exist a positive integer j_{0} and a constant $c_{0}>0$ such that if $j>j_{0}, c<c_{0}$, then $\widetilde{w}(F)<w_{0}$.

To prove this lemma we need an Euclidean geometry fact: for any set of points F in q with non-zero $\widetilde{w}(F)$, there exists $a=a(\widetilde{w}(F), n)>0$ and a simplex $S \subset F$ such that $w(S)>a$ and $\operatorname{diam}(S)>a \cdot \operatorname{diam}(q)$.

For each vertex x_{k} of S, there is a ball $B\left(x_{k}, r_{k}\right)$ with $N\left(x_{k}, r_{k}\right) \geq N /(1+c)$ and $r_{k} \leq \operatorname{diam}(q) \leq \frac{1}{a} \operatorname{diam}(S)$. We can apply Lemma 2.1 for the simplex S. Then $N\left(x_{0}, C_{0} \operatorname{diam}(S)\right)>\left(1+c_{0}\right) N /(1+c)$, where x_{0} is a barycenter of S and c_{0}, C_{0} are positive constants depending on a (and n) only and therefore on $\widetilde{w}(F)$ only (and n). If $c_{0}>c$ and $C_{0} \operatorname{diam}(S) \leq \operatorname{diam}(Q)$, then that means a contradiction with $N(Q) \leq N$. This is why we require j to be big enough: $\operatorname{diam}(S) \leq \operatorname{diam}(q) \leq \frac{\operatorname{diam}(Q)}{\left(2 A_{0}+1\right)^{j}} \leq \operatorname{diam}(Q) / 3^{j}$, and it is sufficient to take j such that $3^{j}>C_{0}$.

Now, Lemma 5.3 is proved and we can think that $\widetilde{w}(F)$ is smaller than a fixed number $w_{0}=\frac{1}{2 A_{0}+1}$ and proceed to prove Lemma 5.2. There exists a hyperplane P such that its $w_{0} \cdot \operatorname{diam}(q)$ neighborhood contains all F. Furthermore, we can find a bigger cube \widetilde{q} with one face parallel to P such that
the center of \widetilde{q} is in $P \cap q$ and $\operatorname{diam}(\widetilde{q})=10 \sqrt{n} \cdot \operatorname{diam}(q)$. Automatically \widetilde{q} contains q. Divide \widetilde{q} into $\left(2 A_{0}+1\right)^{n}$ equal subcubes \widetilde{q}_{i}. We will denote by $\widetilde{q}_{i, 0}$ such subcubes that have non-zero intersection with P. Since $w_{0} \leq \frac{1}{2 A_{0}+1}$, each bad cube q_{i} is contained in a $\frac{2 \sqrt{n} \cdot \operatorname{diam}(q)}{2 A_{0}+1}$ neighborhood of P and each bad cube q_{i} is covered by a finite number (which depends on n only) of $\widetilde{q}_{i, 0}$. Therefore the number of bad cubes q_{i} is less than the number of bad cubes $\widetilde{q}_{i, 0}$ times some constant depending on dimension n only.

Now, assume the contrary to Lemma 5.2. Suppose that the number of $\operatorname{bad} q_{i}$ is greater than $\frac{1}{2}\left(2 A_{0}+1\right)^{n-1}$. Then the number of bad cubes $\widetilde{q}_{i, 0}$ is at least $\frac{1}{C}\left(2 A_{0}+1\right)^{n-1}$, where $C=C(n)>0$.

Finally, we choose ε, which did not play a role till now: ε is any number in $\left(0, \frac{1}{2 C}\right)$. Recall that $A_{0}=A_{0}(\varepsilon)$ is such that Corollary 4.2 holds for $A_{1}=$ $2 A_{0}+1$ and this ε as well as the remark after Corollary 4.2. Since the number of bad $\widetilde{q}_{i, 0}$ is greater than $\varepsilon\left(2 A_{0}+1\right)^{n-1}$, we have $N(\widetilde{q}) \geq 2 N /(1+c)$. Without loss of generality we assume that $c<1 / 10$. Then there exists a point $\widetilde{p} \in \widetilde{q}$ such that $N(\widetilde{p}, \operatorname{diam}(\widetilde{q})) \geq \frac{3}{2} N$. The last observation looks to be inconsistent with $N(Q) \leq N$, however \widetilde{q} is not necessarily contained in Q and the contradiction is not immediate. This obstacle is easy to overcome. Consider any point $p \in q \subset Q$. There exists a large $C_{1}=C_{1}(n)$ such that $N\left(p, C_{1} \operatorname{diam}(\widetilde{q})\right) \geq$ $(1-1 / 100) N(\widetilde{p}, \operatorname{diam}(\widetilde{q}))$ (see Lemma 7.4). Thus there is a contradiction with $N(Q) \leq N$ since $N\left(p, C_{1} \operatorname{diam}(\widetilde{q})\right)>N$ and $C_{1} \operatorname{diam}(\widetilde{q}) \leq \operatorname{diam}(Q)$ if j is big enough. The proof of Lemma 5.2 is completed. Now, it is a straightforward matter to prove Theorem 5.1.

Denote by K_{j} the number of bad cubes on j-th step. If $Q_{i_{1}, i_{2}, \ldots, i_{j}}$ is good, then any of its subcubes is also good by the definition of doubling index for cubes. If $Q_{i_{1}, i_{2}, \ldots, i_{j}}=: q$ is bad, then by Lemma 5.2 the number of bad subcubes $Q_{i_{1}, i_{2}, \ldots, i_{j+1}}$ in q is less than $\frac{1}{2}\left(2 A_{0}+1\right)^{n-1}$. Hence

$$
K_{j+1} \leq \frac{1}{2}\left(2 A_{0}+1\right)^{n-1} K_{j}
$$

for $j>j_{0}$. We can define $A=\left(2 A_{0}+1\right)^{j}$ and see that

$$
K_{j} \leq K_{j_{0}} \frac{1}{2^{j-j_{0}}}\left(2 A_{0}+1\right)^{(n-1)\left(j-j_{0}\right)} \leq \frac{1}{2} A^{n-1}
$$

for j big enough.

6. Upper estimates of the volume of the nodal set

Theorem 6.1. There exist positive numbers $r=r(M, g, O), C=C(M, g, O)$ and $\alpha=\alpha(n)$ such that for any harmonic function u on M and any cube $Q \subset B(O, r)$,

$$
\begin{equation*}
H^{n-1}(\{u=0\} \cap Q) \leq C \operatorname{diam}^{n-1}(Q) N_{u}^{\alpha}(Q) \tag{11}
\end{equation*}
$$

where $N_{u}(Q)$ is the doubling index of Q for the function u.

Proof. Choose r so that Theorem 5.1 holds with this r and some $c=c(n)$, $A=A(n)$. Now, define the function

$$
F(N):=\sup \frac{H^{n-1}(\{u=0\} \cap Q)}{\operatorname{diam}^{n-1}(Q)}
$$

where the supremum is taken over the set of harmonic functions u on M, which we denote by $\operatorname{Harm}(M)$, and cubes Q within $B(O, r)$ such that $N_{u}(Q) \leq N$. The estimate (11) is equivalent to

$$
\begin{equation*}
F(N) \leq C N^{\alpha} \tag{12}
\end{equation*}
$$

We note that if u changes a sign in Q, then $N_{u}(Q) \geq 1$, since $\lim _{t \rightarrow+0} N(x, t)$ is equal to the vanishing order of u at x. Due to the Hardt-Simon exponential bounds we know $F(N)<+\infty$ for each positive N.

We will call $N>0$ bad if

$$
\begin{equation*}
F(N)>4 A \cdot F(N /(1+c)) . \tag{13}
\end{equation*}
$$

Our goal is to show that the set of bad N is bounded. In view of monotonicity of F it would imply (12) immediately, where the constant α depends on A and c only and therefore only on the dimension n.

Consider a bad N and a function u with a cube Q such that $F(N)$ is almost attained for them:

$$
\begin{equation*}
\frac{H^{n-1}(\{u=0\} \cap Q)}{\operatorname{diam}^{n-1}(Q)}>\frac{3}{4} F(N) \tag{14}
\end{equation*}
$$

while $N_{u}(Q) \leq N$. Divide Q into A^{n} equal subcubes $Q_{i}, i=1, \ldots, A^{n}$. Divide Q_{i} into two groups

$$
G_{1}:=\left\{Q_{i}: N /(1+c)<N\left(Q_{i}\right) \leq N\right\}
$$

and

$$
G_{2}:=\left\{Q_{i}: N\left(Q_{i}\right) \leq N /(1+c)\right\} .
$$

By Theorem 5.1 we know that the number of cubes in G_{1} satisfies $\left|G_{1}\right| \leq \frac{1}{2} A^{n-1}$ if $N>N_{0}(M, g)$. Note that

$$
\begin{aligned}
H^{n-1}(\{u=0\} \cap Q) \leq & \sum_{Q_{i} \in G_{1}} H^{n-1}\left(\{u=0\} \cap Q_{i}\right) \\
& +\sum_{Q_{i} \in G_{2}} H^{n-1}\left(\{u=0\} \cap Q_{i}\right) \\
\leq & \left|G_{1}\right| F(N) \frac{\operatorname{diam}^{n-1}(Q)}{A^{n-1}} \\
& +\left|G_{2}\right| F(N /(1+c)) \frac{\operatorname{diam}^{n-1}(Q)}{A^{n-1}}=I+I I .
\end{aligned}
$$

Since $\left|G_{1}\right| \leq \frac{1}{2} A^{n-1}$, we can estimate $I \leq \frac{1}{2} F(N) \operatorname{diam}^{n-1}(Q)$. Using that N is bad, we have $I I \leq\left|G_{2}\right| \frac{F(N)}{4 A} \frac{\operatorname{diam}^{n-1}(Q)}{A^{n-1}}$ and $\left|G_{2}\right| \leq A^{n}$, hence $I I \leq$ $\frac{1}{4} F(N) \operatorname{diam}^{n-1}(Q)$. Finally, $H^{n-1}(\{u=0\} \cap Q) \leq \frac{3}{4} F(N) \operatorname{diam}^{n-1}(Q)$, and the last inequality contradicts to (14). Thus we have shown that the set of bad N is bounded by some $N_{0}=N_{0}(M, g)$.

Theorem 6.2. Let (W, g) be a compact C^{∞}-smooth Riemannian manifold without boundary. For a Laplace eigenfunction φ on W with $\Delta \varphi+\lambda \varphi=0$, define its nodal set $Z_{\varphi}:=\{\varphi=0\}$. There exist $C=C(W, g)$ and α, depending only on the dimension n of W, such that

$$
H^{n-1}\left(Z_{\varphi}\right) \leq C \lambda^{\alpha} .
$$

Proof. We will use a standard trick that allows to pass from Laplace eigenfunctions to harmonic functions by adding an extra variable. Consider a product manifold $M=W \times \mathbb{R}$, where one can define a harmonic function u by

$$
u(x, t)=\varphi(x) e^{\sqrt{\lambda} \cdot t}, x \in W, t \in \mathbb{R} .
$$

The Donnelly-Fefferman doubling index estimate for Laplace eigenfunctions claims

$$
\sup _{B_{g}(p, 2 r)}|\varphi| \leq 2^{C \sqrt{\lambda}} \sup _{B_{g}(p, r)}|\varphi|,
$$

where $C=C(M, g), p$ is any point on W and $r \in\left(0, R_{0}(M, g)\right)$. It implies that the doubling index of u is also bounded by $C_{1} \sqrt{\lambda}$ in balls with radius smaller than some $R_{1}=R_{1}(W, g)$. Let us fix a point $O \in M$ and a point $\widetilde{O}=(O, 0) \in M$. We can apply Theorem 6.1 to see that $H^{n}(\{u=0\} \cap B(\widetilde{O}, r)) \leq C_{2} \lambda^{\alpha}$ for some $r=r(W, g)>0$.

It remains to note that $H^{n}(\{u=0\} \cap B(\widetilde{O}, r)) \leq C_{2} \lambda^{\alpha}$ implies

$$
H^{n-1}\left(\{\varphi=0\} \cap B_{g}(O, r / 2)\right) \leq C_{3} \lambda^{\alpha}
$$

since the zero set of u is exactly $Z_{\varphi} \times \mathbb{R}$. Finally, one can cover M by finite number of such balls and obtain the desired global estimate of the volume of the nodal set.

Remark. The same argument gives a local volume estimate of the nodal set:

$$
H^{n-1}\left(\{\varphi=0\} \cap B_{g}(O, r)\right) \leq C r^{n-1} \lambda^{\alpha} .
$$

7. Auxiliary lemmas

Lemma 7.1. If $\varepsilon_{1}>0$ is a sufficiently small number $\left(\varepsilon_{1}<1 / 10^{10}\right)$, then there exist $C=C\left(\varepsilon_{1}, M, g, O\right)>0$ and $R_{1}=R_{1}\left(\varepsilon_{1}, M, g, O\right)>0$ such that

$$
\begin{equation*}
\beta\left(p, 2 r\left(1+\varepsilon_{1}\right)\right)\left(1+100 \varepsilon_{1}\right)+C \geq N(p, r) \geq \beta\left(p, r\left(1+\varepsilon_{1}\right)\right)\left(1-100 \varepsilon_{1}\right)-C \tag{15}
\end{equation*}
$$

for $r \in\left(0, R_{1}\right)$ and $p \in B\left(O, R_{1}\right)$.

We remark that it is not a misprint and the argument in β in the righthand side of (15) is strictly greater than r.

Proof. By the equivalence of metrics (4) we have $B(p, r) \subset B_{g}(p, r(1+\varepsilon))$, and by the standard elliptic estimate

$$
\sup _{B(p, r)}|u|^{2} \leq \sup _{B_{g}(p, r(1+\varepsilon))}|u|^{2} \leq C_{1} H\left(r(1+\varepsilon)^{2}\right) / r^{n-1}
$$

and

$$
\sup _{B(p, 2 r)}|u|^{2} \geq \sup _{B_{g}(p, 2 r(1-\varepsilon))}|u|^{2} \geq C_{2} H(2 r(1-\varepsilon)) / r^{n-1} .
$$

Hence we can estimate

$$
N(p, r)=\frac{1}{2} \log _{2} \frac{\sup _{B(p, 2 r)}|u|^{2}}{\sup _{B(p, r)}|u|^{2}} \geq \frac{1}{2} \log _{2} \frac{1}{C_{3}} \frac{H(2 r(1-\varepsilon))}{H\left(r(1+\varepsilon)^{2}\right)},
$$

and by Corollary 1.2 the right-hand side is at least

$$
\log _{2}\left[\frac{1}{C_{3}}\left(\frac{2(1-\varepsilon)}{(1+\varepsilon)^{2}}\right)^{\beta\left(r(1+\varepsilon)^{2}\right) /(1+\varepsilon)}\right] \geq \beta\left(r(1+\varepsilon)^{2}\right)(1-20 \varepsilon)-C_{4} .
$$

We assumed above that ε is sufficiently small. Now, we can let ε_{1} be such that $(1+\varepsilon)^{2}=1+\varepsilon_{1}$, so $\varepsilon_{1} \sim 2 \varepsilon$, and the right-hand side inequality of (15) is obtained.

To obtain the opposite estimate we argue in the same manner:

$$
\sup _{B(p, r)}|u|^{2} \geq \sup _{B_{g}(p, r(1-\varepsilon))}|u|^{2} \geq C_{2} H(r(1-\varepsilon)) / r^{n-1}
$$

and

$$
\sup _{B(p, 2 r)}|u|^{2} \leq \sup _{B_{g}(p, 2 r(1+\varepsilon))}|u|^{2} \leq C_{3} H\left(2 r(1+\varepsilon)^{2}\right) / r^{n-1} .
$$

Applying these estimates we have

$$
N(p, r)=\log _{2} \frac{\sup _{B(p, 2 r)}|u|}{\sup _{B(p, r)}|u|} \leq \frac{1}{2} \log _{2} C_{4} \frac{H\left(2 r(1+\varepsilon)^{2}\right)}{H(r(1-\varepsilon))} .
$$

In a view of (1.2), the right-hand side can be estimated from above by

$$
\beta\left(2 r(1+\varepsilon)^{2}\right)(1+20 \varepsilon)+C_{5} \leq \beta\left(p, 2 r\left(1+\varepsilon_{1}\right)\right)\left(1+100 \varepsilon_{1}\right)+C_{5},
$$

where ε_{1} satisfies $(1+\varepsilon)^{2}=1+\varepsilon_{1}$.

Lemma 7.2. Let ε be a small positive number. Then there exists $R=$ $R(\varepsilon, M, g, O)$ such that for any $x \in B(O, R)$ and for any numbers $t>2$ and $\rho>0$ such that $t \rho<R$,

$$
\begin{equation*}
\sup _{B(x, t \rho)}|u| \geq t^{N(x, \rho)(1-\varepsilon)-C(\varepsilon, M, g)} \sup _{B(x, \rho)}|u| . \tag{16}
\end{equation*}
$$

Furthermore, there exists $N_{0}=N_{0}(\varepsilon, M, g)$ such that if $N(x, \rho)>N_{0}$, then additionally

$$
\begin{equation*}
\sup _{B(x, t \rho)}|u| \geq t^{N(x, \rho)(1-\varepsilon)} \sup _{B(x, \rho)}|u| . \tag{17}
\end{equation*}
$$

Proof. We can assume that $t>2^{1+\varepsilon}$; otherwise $t^{N(x, \rho)(1-\varepsilon)} \leq 2^{N(x, \rho)}$ and

$$
\sup _{B(x, t \rho)}|u| \geq \sup _{B(x, 2 \rho)}|u| \geq 2^{N(x, \rho)} \sup _{B(x, \rho)}|u| \geq t^{N(x, \rho)(1-\varepsilon)} \sup _{B(x, \rho)}|u| .
$$

Hereafter the constants C_{1}, C_{2}, \ldots will be positive numbers depending on ε, M, g only. Inequality (3) says that

$$
\begin{equation*}
\sup _{B(x, t \rho)}|u|^{2} \geq C_{6} \frac{H(x, t \rho)}{(t \rho)^{n-1}} . \tag{18}
\end{equation*}
$$

Let ε_{1} be equal to $\varepsilon / 1000$. We can apply (15) for ε_{1} to see that

$$
\beta\left(x, 2 \rho\left(1+\varepsilon_{1}\right)\right)\left(1+100 \varepsilon_{1}\right)+C_{7} \geq N(x, \rho) .
$$

In view of Corollary 1.2 we obtain

$$
\begin{equation*}
H(x, t \rho) \geq H\left(x, 2 \rho\left(1+\varepsilon_{1}\right)\right)\left(\frac{t}{2\left(1+\varepsilon_{1}\right)}\right)^{\frac{2 N(x, \rho)}{\left(1+100 \varepsilon_{1}(1)\left(1+\varepsilon_{1}\right)\right.}-C_{8}} . \tag{19}
\end{equation*}
$$

We use $t>2^{1+\varepsilon}$ to ensure that $t \rho>2 \rho\left(1+\varepsilon_{1}\right)$. A standard elliptic estimate yields

$$
\begin{equation*}
H\left(x, 2 \rho\left(1+\varepsilon_{1}\right)\right) \geq C_{9} \rho^{n-1} \sup _{B(x, 2 \rho)}|u|^{2}=C_{9} 2^{2 N(x, \rho)} \rho^{n-1} \sup _{B(x, \rho)}|u|^{2} . \tag{20}
\end{equation*}
$$

The combination of (18), (19), and (20) implies

$$
\begin{aligned}
\sup _{B(x, t \rho)}|u| & \geq C_{10} 2^{N(x, \rho)} t^{-(n-1) / 2}\left(\frac{t}{2\left(1+\varepsilon_{1}\right)}\right)^{N(x, \rho) /\left(1+200 \varepsilon_{1}\right)-C_{8} / 2} \sup _{B(x, \rho)}|u| \\
& \geq C_{10} t^{-(n-1) / 2}\left(\frac{t}{\left(1+\varepsilon_{1}\right)}\right)^{N(x, \rho) /\left(1+200 \varepsilon_{1}\right)-C_{11}} \sup _{B(x, \rho)}|u| .
\end{aligned}
$$

Now, in order to establish (16), it is sufficient to note that

$$
t^{N(x, \rho) /\left(1+200 \varepsilon_{1}\right)} \geq t^{N(x, \rho)(1-\varepsilon / 2)} \geq t^{N(x, \rho)(1-\varepsilon)} 2^{N(x, \rho) \varepsilon / 2}
$$

and

$$
2^{N(x, \rho) \varepsilon / 2} \geq\left(1+\varepsilon_{1}\right)^{N(x, p) /\left(1+200 \varepsilon_{1}\right)}
$$

since $2^{\varepsilon / 2} \geq 1+\varepsilon / 100$.
(17) follows immediately from (16) if we apply it to twice smaller ε, require $N(x, \rho)>\frac{2}{\varepsilon} C(\varepsilon / 2, M, g)$ and put a new smaller $R=R(\varepsilon / 2, M, g)$.

Lemma 7.3. Let ε be a small positive number. Then there exists $R=$ $R(\varepsilon, M, g, O)$ such that for any $x \in B(O, R)$ and any numbers $t>2$ and $\rho>0$ such that $t \rho<R$,

$$
\begin{equation*}
\sup _{B(x, t \rho)}|u| \leq t^{N(x, t \rho)(1+\varepsilon)+C(\varepsilon, M, g)} \sup _{B(x, \rho)}|u| . \tag{21}
\end{equation*}
$$

Furthermore, there exists $N_{0}=N_{0}(\varepsilon, M, g, O)$ such that if $N(x, \rho)>N_{0}$, then additionally

$$
\begin{equation*}
\sup _{B(x, t \rho)}|u| \leq t^{N(x, t \rho)(1+\varepsilon)} \sup _{B(x, \rho)}|u| . \tag{22}
\end{equation*}
$$

Proof. The proof is parallel to the proof of the previous lemma. Put $\varepsilon_{1}=\varepsilon / 1000$.

Inequality (2) says that

$$
\begin{equation*}
\sup _{B(x, t \rho)}|u|^{2} \leq C_{1} \frac{H\left(x, t \rho\left(1+\varepsilon_{1}\right)\right)}{(t \rho)^{n-1}} \tag{23}
\end{equation*}
$$

We can apply (15) for ε_{1} to see that

$$
\beta\left(x, t \rho\left(1+\varepsilon_{1}\right)\right) \leq N(x, t \rho)\left(1+100 \varepsilon_{1}\right)+C_{2} .
$$

In view of Corollary 1.2 we obtain

$$
\begin{equation*}
H\left(x, t \rho\left(1+\varepsilon_{1}\right)\right) \leq H(x, \rho)\left(t\left(1+\varepsilon_{1}\right)\right)^{2 N(x, t \rho)\left(1+100 \varepsilon_{1}\right)\left(1+\varepsilon_{1}\right)+C_{3}} . \tag{24}
\end{equation*}
$$

Inequality (3) implies

$$
\begin{equation*}
H(x, \rho) \leq C_{5} \sup _{B(x, \rho)}|u|^{2} \rho^{n-1} \tag{25}
\end{equation*}
$$

Combination of (23), (24), and (25) gives us

$$
\begin{aligned}
\sup _{B(x, t \rho)}|u| & \leq C_{6} \frac{\left(t\left(1+\varepsilon_{1}\right)\right)^{N(x, t \rho)\left(1+100 \varepsilon_{1}\right)\left(1+\varepsilon_{1}\right)+C_{3}}}{t^{(n-1) / 2}} \sup _{B(x, \rho)}|u| \\
& \leq C_{7}\left(t\left(1+\varepsilon_{1}\right)\right)^{N(x, t \rho)\left(1+200 \varepsilon_{1}\right)+C_{3}} \sup _{B(x, \rho)}|u| .
\end{aligned}
$$

Noting that $t^{10 \varepsilon_{1}} \geq\left(1+\varepsilon_{1}\right)$, since $t>2$, we can estimate

$$
\left(t\left(1+\varepsilon_{1}\right)\right)^{N(x, t \rho)\left(1+200 \varepsilon_{1}\right)+C_{3}} \leq t^{N(x, t \rho)\left(1+500 \varepsilon_{1}\right)+C_{8}} .
$$

The proof of (21) is finished.
Inequality (22) follows immediately from (21) if we apply it to twice smaller ε, require $N(x, t \rho)>\frac{2}{\varepsilon} C(\varepsilon / 2, M, g)$ and put a new smaller $R=$ $R(\varepsilon / 2, M, g)$.

Lemma 7.4. There exist $r=r(M, g, O)$ and $N_{0}=N_{0}(M, g, O)$ such that for any points $x_{1}, x_{2} \in B(O, r)$ and ρ such that $N\left(x_{1}, \rho\right)>N_{0}$ and $d\left(x_{1}, x_{2}\right)<$ $\rho<r$, there exists $C=C(M, g, O)>0$ such that

$$
N\left(x_{2}, C \rho\right)>\frac{99}{100} N\left(x_{1}, \rho\right) .
$$

Proof. One can choose such numerical C that

$$
B\left(x_{2}, C \rho\right) \supset B\left(x_{1}, C \rho\left(1-1 / 10^{10}\right)\right)
$$

and

$$
B\left(x_{2}, C \rho / 2\left(1-10^{-9}\right)\right) \subset B\left(x_{1}, C \rho\left(1-1 / 10^{10}\right)\right) .
$$

It follows from (17) and (22) that if we choose t and N_{0} properly, then

$$
\begin{aligned}
2^{N\left(x_{2}, C \rho\right)(1+1 / 1000)} & \geq \frac{\sup _{B\left(x_{2}, C \rho\right)}|u|}{\sup _{B\left(x_{2}, C \rho / 2\left(1-10^{-9}\right)\right)}|u|} \\
& \geq \frac{\sup _{B\left(x_{1}, C \rho\left(1-10^{-10}\right)\right)}^{\sup _{B\left(x_{1}, C \rho / 2\left(1-10^{-10}\right)\right)}|u|} \geq 2^{N\left(x_{1}, \rho\right)(1-1 / 1000)} .}{} .
\end{aligned}
$$

Thus

$$
N\left(x_{2}, C \rho\right)>\frac{999}{1001} N\left(x_{1}, \rho\right)>\frac{99}{100} N\left(x_{1}, \rho\right) .
$$

References

[1] S. Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Été, 1965), Les Presses de l'Université de Montréal, Montreal, Que., 1966. MR 0252808. Zbl 0147.07702.
[2] G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems 25 no. 12 (2009), 123004, 47. MR 2565570. Zbl 1190.35228. https://doi.org/10.1088/0266-5611/ 25/12/123004.
[3] F. J. Almgren, Jr., Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, in Minimal Submanifolds and Geodesics (Proc. Japan-United States Sem., Tokyo, 1977), North-Holland, Amsterdam-New York, 1979, pp. 1-6. MR 574247. Zbl 0439.49028.
[4] J. Brüning, Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators, Math. Z. 158 no. 1 (1978), 15-21. MR 0478247. Zbl 0349.58012. https://doi. org/10.1007/BF01214561.
[5] T. H. Colding and W. P. Minicozzi, II, Lower bounds for nodal sets of eigenfunctions, Comm. Math. Phys. 306 no. 3 (2011), 777-784. MR 2825508. Zbl 1238.58020. https://doi.org/10.1007/s00220-011-1225-x.
[6] R.-T. Dong, Nodal sets of eigenfunctions on Riemann surfaces, J. Differential Geom. 36 no. 2 (1992), 493-506. MR 1180391. Zbl 0776.53024. https://doi.org/ $10.4310 / \mathrm{jdg} / 1214448750$.
[7] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 no. 1 (1988), 161-183. MR 0943927. Zbl 0659.58047. https://doi.org/10.1007/BF01393691.
[8] H. Donnelly and C. Fefferman, Nodal sets for eigenfunctions of the Laplacian on surfaces, J. Amer. Math. Soc. 3 no. 2 (1990), 333-353. MR 1035413. Zbl 0702. 58077. https://doi.org/10.2307/1990956.
[9] N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, A_{p} weights and unique continuation, Indiana Univ. Math. J. 35 no. 2 (1986), 245268. MR 0833393. Zbl 0678.35015. https://doi.org/10.1512/iumj.1986.35.35015.
[10] Q. Han and F.-H. Lin, Nodal sets of solutions of elliptic differential equations, book in preparation.
[11] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 no. 2 (1989), 505-522. MR 1010169. Zbl 0692.35005. https://doi.org/10.4310/jdg/1214443599.
[12] E. M. Landis, Some questions in the qualitative theory of second-order elliptic equations (case of several independent variables), Uspehi Mat. Nauk 18 no. 1 (109) (1963), 3-62. MR 0150437. Zbl 0122.33701. https://doi.org/10.1070/ RM1963v018n01ABEH004124.
[13] F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 44 no. 3 (1991), 287-308. MR 1090434. Zbl 0734.58045. https: //doi.org/10.1002/cpa. 3160440303.
[14] A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower bound in Yau's conjecture, Ann. of Math. 187 no. 1 (2018), 241-262. https://doi.org/10.4007/annals.2018/187.1.5.
[15] A. Logunov and Eu. Malinnikova, Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, preprint.
[16] D. Mangoubi, The effect of curvature on convexity properties of harmonic functions and eigenfunctions, J. Lond. Math. Soc. (2) 87 no. 3 (2013), 645-662. MR 3073669. Zbl 1316.35220. https://doi.org/10.1112/jlms/jds067.
[17] N. Nadirashvili, Geometry of nodal sets and multiplicity of eigenvalues, Curr. Dev. Math. (1997), 231-235. https://doi.org/10.4310/CDM.1997.v1997.n1.a16.
[18] F. Nazarov, L. Polterovich, and M. Sodin, Sign and area in nodal geometry of Laplace eigenfunctions, Amer. J. Math. 127 no. 4 (2005), 879-910. MR 2154374. Zbl 1079.58026. https://doi.org/10.1353/ajm.2005.0030.
[19] C. D. Sogge and S. Zelditch, Lower bounds on the Hausdorff measure of nodal sets II, Math. Res. Lett. 19 no. 6 (2012), 1361-1364. MR 3091613. Zbl 1283. 58020. https://doi.org/10.4310/MRL.2012.v19.n6.a14.
[20] S. T. Yau, Problem section, in Seminar on Differential Geometry, Ann. of Math. Stud. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669-706. MR 0645762. Zbl 0479.53001. https://doi.org/10.1515/9781400881918-035.
(Received: May 10, 2016)
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel Chebyshev Laboratory, St. Petersburg State University, Saint Petersburg, Russia
Institute for Advanced Study, Princeton, NJ, USA
E-mail: log239@yandex.ru

[^0]: Keywords: Harmonic functions, Laplace eigenfunctions, nodal sets, Yau's conjecture, doubling index, frequency

 AMS Classification: Primary: 58G25; Secondary: 35P05.
 (c) 2018 Department of Mathematics, Princeton University.

