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Nodal sets of Laplace eigenfunctions:
polynomial upper estimates of the

Hausdorff measure

By Alexander Logunov

Abstract

Let M be a compact C∞-smooth Riemannian manifold of dimension n,

n ≥ 3, and let ϕλ : ∆Mϕλ + λϕλ = 0 denote the Laplace eigenfunction on

M corresponding to the eigenvalue λ. We show that

Hn−1({ϕλ = 0}) ≤ Cλα,

where α > 1/2 is a constant, which depends on n only, and C > 0 depends

on M . This result is a consequence of our study of zero sets of harmonic

functions on C∞-smooth Riemannian manifolds. We develop a technique

of propagation of smallness for solutions of elliptic PDE that allows us to

obtain local bounds from above for the volume of the nodal sets in terms

of the frequency and the doubling index.

1. Preliminaries

Yau conjectured that the Laplace eigenfunctions ϕλ : ∆ϕλ + λϕλ = 0

on a compact C∞-smooth Riemannain manifold W of dimension n (without

boundary) satisfy

cλ1/2 ≤ Hn−1({ϕλ = 0}) ≤ Cλ1/2,

where Hn−1(·) denotes the (n − 1) dimensional Hausdorff measure, and pos-

itive constants c, C depend on the Riemannian metric and on the manifold

only. This conjecture was proved for real-analytic manifolds by Donnelly and

Fefferman ([7]). For non-analytic manifolds the best-known upper estimate in

dimension n = 2 was H1({ϕλ = 0}) ≤ Cλ3/4 due to Donnelly and Fefferman

([8]). A different proof for the same bound was given by Dong ([6]). Recently

this bound was refined to Cλ3/4−ε in [15].
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In higher dimensions the estimate Hn−1({ϕλ = 0}) ≤ CλC
√
λ by Hardt

and Simon ([11]) was the only known upper bound till now. We prove that

Hn−1({ϕλ = 0}) ≤ Cλα,
where α > 1/2 is a constant, which depends on n only, and C depends on M .

This estimate will follow from an estimate (Theorem 6.1) for harmonic

functions, which bounds the volume of the nodal set in terms of the frequency

function (or the doubling index).

We refer to [20] and [17] for the interesting conjectures on Laplace eigen-

functions and harmonic functions. See also [4], [5], [19], [7] for the previous

results on the lower bounds, which will be further improved in [14].

There is a standard trick that allows us to pass from Laplace eigenfunc-

tions to harmonic functions: one can add an extra variable t and consider a

function
u(x, t) = ϕ(x) exp(

√
λt),

which appears to be a harmonic function on the product manifold W × R.

Let M be a C∞-smooth Riemannian manifold (non-compact and with no

boundary), endowed with metric g. Consider a point p ∈ M and a harmonic

function u (with respect to g) on M . By Bg(p, r) we will denote a geodesic ball

with center at point p and radius r. Define H(r) =
∫

∂Bg(p,r)

u2dSr, where Sr

is the surface measure on ∂Bg(p, r) with respect to g. We will always assume

that r is smaller than the injectivity radius.

Agmon noted in [1] that for an ordinary harmonic function u in Rn the

function H(r) satisfies the logarithmic convexity property. There are two

equivalent ways to formulate this property: the three spheres theorem and

the monotonicity property of the frequency. The three spheres theorem claims

that for any harmonic function u in Rn, the following inequality holds:

H(R2) ≤ Hα(R1)H
1−α(R3)

for any positive numbers R1, R2, R3 with R2 = Rα1R
1−α
3 . We refer to [12],

where the three spheres theorem was generalized to the second order elliptic

partial differential equations with variable coefficients. The notion of frequency

was introduced by Almgren in [3]. Later we will severely use the result of [9]

by Garofalo and Lin on the almost monotonicity property of the frequency

function for harmonic functions on Riemannian manifolds.

Definition. The frequency function of a harmonic function u is defined by

β(r) :=
rH ′(r)

2H(r)
.

We remark that this definition is slightly different from the standard one,

since we do not normalize H(r) by the surface measure |Sr|. See [10] for a
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friendly introduction to frequency and also [9], [13] for applications to nodal

sets. In dimension two, understanding of nodal sets of harmonic functions is

better due to complex analysis techniques and topological reasons; see [18].

We will work only on a bounded subset of M : fix a point O on M and

assume hereafter that Bg(p, r) ⊂ Bg(O, 1).

The frequency is almost monotonic in the following sense (see Remark (3)

to Theorem 2.2 in [16]):

Lemma 1.1. For any ε > 0, there exists R0 = R0(ε,M, g,O) such that

(1) β(r1) ≤ (1 + ε)β(r2)

for any r1, r2: 0 < r1 < r2 < R0.

One can estimate the growth of H(r) in terms of the frequency in view of

the integral formula:

H(r2)

H(r1)
= exp

(
2

∫ r2

r1

β(r)d log r
)
.

Corollary 1.2. ( r2r1 )2β(r1)/(1+ε) ≤ H(r2)
H(r1)

≤ ( r2r1 )2β(r2)(1+ε).

Sometimes we will specify the center of the ball and our choice of the

function u and write β(p, r) and H(p, r) or βu(p, r) and Hu(p, r) in place of

β(r) and H(r).

We need a standard elliptic estimate that compares L∞ and L2 norms of

harmonic functions on concentric geodesic spheres: for any ε ∈ (0, 1), there

exists a constant C1 = C1(ε,M, g,O) > 0 such that

(2) sup
∂Bg(p,r)

|u|2 ≤ C1
H(r(1 + ε))

rn−1

for r ≤ R0, where R0 = R0(M, g,O) > 0.

The reverse estimate holds for arbitrary continuous functions on M :

(3) H(r) ≤ C2(M, g,O)rn−1 sup
∂Bg(p,r)

|u|2,

where C2(M, g,O) is a positive constant such that the whole surface measure

of a geodesic sphere satisfies |Sr| ≤ rn−1C2(M, g), r ≤ R0.

Let us consider normal coordinates in a geodesic ball Bg(O,R), where R

is a sufficiently small number. In these coordinates we will treat the Laplace

operator as an elliptic operator in a fixed domain in Rn, say, a cube Q. We

will identify O with the origin and denote the ordinary Euclidean distance by

d(x, y) and the Riemannian distance by dg(x, y). Let ε > 0 be a small number.

We will assume hereafter that

(4)
dg(x, y)

d(x, y)
∈ (1− ε, 1 + ε)
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for points x, y in Bg(O,R0): x 6= y, where R0 = R0(ε,M, g,O) > 0. The exis-

tence of such R0 for any ε is provided by the choice of the normal coordinates.

For the purposes of the paper, it will be more convenient to work with a

notion similar to the frequency: so-called doubling index, which deals with L∞

norms in place of L2 and Euclidean balls in place of geodesic balls. For a given

ball B (ball in standard Euclidean metric), define the doubling index N(B) by

2N(B) =
sup
2B

|u|

sup
B

|u| . Given a positive number r we denote by rB the homothety

image of B with coefficient r such that rB and B have the same center. If

B is an Euclidean ball in Rn with center at x and radius r, then N(x, r) will

denote the doubling index for this ball.

We will use the estimates of growth of harmonic functions in terms of the

doubling index.

Lemma 1.3. For any ε ∈ (0, 1), there exist C = C(ε,M, g,O) > 0 and

R = R(ε,M, g,O) > 0 such that

(5) tN(x,ρ)(1−ε)−C ≤
sup

B(x,tρ)
|u|

sup
B(x,ρ)

|u|
≤ tN(x,tρ)(1+ε)+C

for any x ∈ M and numbers ρ > 0, t > 2 satisfying B(x, tρ) ⊂ B(O,R) (and

for any harmonic function u). Furthermore, there exists N0 = N0(ε,M, g)

such that if additionally N(x, ρ) > N0, then

(6) tN(x,ρ)(1−ε) ≤
sup

B(x,tρ)
|u|

sup
B(x,ρ)

|u|
.

The estimates (5) and (6) are corollaries from almost monotonicity of the

frequency (1) and standard elliptic estimates. For the convenience of the reader

we deduce them in Lemmas 7.2 and 7.3.

We will show in Theorem 6.1 that there exist r = r(M) > 0 and α =

α(n) > 1 such that the following inequality holds:

Hn−1({u = 0} ∩B(O, r)) ≤ C(N(O,Kr))α,

where K = K(n) ≥ 2 and C = C(M).

Note that for real analytic manifolds, one can replace α by 1 in the es-

timate above, using complex analysis techniques (holomorhpic extension of a

harmonic function to an open set in Cn and Jensen’s formula on one dimen-

sional sections); see [9].

We remark that only a few properties of Hn−1 are used in the proof:

subadditivity and the rescaling property. So there is a chance that the methods

of this paper might be applied to other characteristics of nodal sets.
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We outline the question we are trying to investigate in this paper: Is the

frequency additive in some sense?

Some partial positive answers are obtained in the simplex lemma and

in the hyperplane lemma, which are combined to get the polynomial upper

bounds for the volume of the nodal sets in terms of the frequency (or the

doubling index).
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2. The simplex lemma

Let x1, . . . , xn+1 be vertices of a simplex S in Rn. The symbol diam(S)

will denote the diameter of S and by width(S) we will denote the width

of S, i.e., the minimum distance between a pair of parallel hyperplanes such

that S is contained between them. Define the relative width of S: w(S) =

width(S)/ diam(S). Let a > 0, and assume that w(S) > a. In particular, we

assume that x1, . . . , xn+1 do not lie on the same hyperplane. For the purposes

of the paper, there will be sufficient a particular choice of a, which depends on

the dimension n only; the choice will be specified in Section 5. Denote by x0
the barycenter of S.

We will use an Euclidean geometry lemma: there exist c1 > 0, K ≥ 2/a

depending on a, n only such that if ρ = K diam(S), then B(x0, ρ(1 + c1)) ⊂
∪n+1
i=1 B(xi, ρ).

We remark that if the simplex is very degenerate (a is small), then c1 has

to be small and the number K has to be big:

c1 → 0,K → +∞ as a→ 0.

Lemma 2.1. Let Bi be balls with centers at xi and radii not greater than
K
2 diam(S), i = 1, . . . , n + 1, where K = K(a, n) is from the Euclidean ge-

ometry lemma. There exist positive numbers c = c(a, n), C = C(a, n) ≥ K ,
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r=r(M, g,O, a), N0=N0(M, g,O, a) such that if S⊂B(O, r) and if N(Bi)>N

for each xi, i = 1 . . . n+ 1, where N is a number greater than N0, then

N(x0, C diam(S)) > N(1 + c).

Proof. In view of almost monotonicity of the doubling index (5) we will

assume that all Bi have the same radius ρ = K diam(S).

Let M be the supremum of |u| over the union of B(xi, ρ). Then |u| is not

greater than M in B(x0, ρ(1 + c1)) and sup
B(xi,ρ)

|u| = M for some i. Let t > 2

and ε > 0; these parameters will be specified later. Assume that (6) holds for

B(xi, ρt). Then sup
B(xi,ρt)

|u| ≥MtN(1−ε).

We need a metric geometry fact, which follows from the triangle inequality:

there exists δ = δ(t) ∈ (0, 1) such that B(xi, ρt) ⊂ B(x0, ρt(1+δ)) and δ(t)→ 0

as t→ +∞.

Let ‹N be the doubling index for B(x0, ρt(1 + δ)). Suppose (5) holds for

the pair of balls B(x0, ρt(1 + δ)) and B(x0, ρ(1 + c1)). Thenñ
t(1 + δ)

1 + c1

ôÑ(1+ε)+C

≥
sup

B(x0,ρt(1+δ))
|u|

sup
B(x0,ρ(1+c1))

|u|

≥
sup

B(xi,ρt)
|u|

sup
B(x0,ρ(1+c1))

|u|
≥ MtN(1−ε)

M
= tN(1−ε).

Hence

(7)

ñ
t(1 + δ)

1 + c1

ôÑ(1+ε)+C

≥ tN(1−ε).

Now, we specify our choice of parameters. We first choose t > 2 so that

δ(t) < c1/2. Then

(8)
t(1 + δ)

1 + c1
≤ t1−c2

for some c2 = c2(t, c1) ∈ (0, 1). Second, we choose ε = ε(c2) > 0 and c =

c(c2) > 0 such that

(9)
1− ε

(1 + ε)(1− c2)
> 1 + 2c.

Third, we choose R = R(ε,M, g,O) > 0 and N0 = N0(ε,M, g,O) such that

Lemma 1.3 holds for these parameters, and we put r := R/(10Kt). This choice

of r provides (5) for the pair of balls B(x0, ρt(1 + δ)) and B(x0, ρ(1 + c1)) and

(6) for B(xi, ρt). Hence inequality (7) holds and (8) gives

t(1−c2)(Ñ(1+ε)+C) ≥ tN(1−ε).
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We therefore have‹N ≥ N (1− ε)
(1 + ε)(1− c2)

− C1 ≥ N(1 + 2c)− C1 ≥ N(1 + c) + (cN0 − C1).

We can also ask N0 to be big enough so that cN0 − C1 > 0. Thus‹N > N(1 + c). �

3. Propagation of smallness of the Cauchy data

If one considers a smooth Riemannian metric g in a unit cube Q in Rn,

then any harmonic function u (with respect to g) satisfies Lu = 0, where L is

a uniformly elliptic (in a slightly smaller cube) operator of second order in the

divergence form with smooth coefficients. Consider a cube q ⊂ 1
2Q with side r,

and let F be a face of q. In this section we formulate a result that we will

refer to as the propagation of smallness of the Cauchy data for elliptic PDE.

See Lemma 4.3 in [13] and Theorem 1.7 in [2] for the proof of the result below,

which we bring not in full generality but in a convenient way for our purposes.

Suppose that |u| ≤ 1 in q. There exist C > 0 and α ∈ (0, 1), depending on

L only such that if |u| ≤ ε on F and |∇u| ≤ ε
r on F , ε < 1, then

(10) sup
1
2
q

|u| ≤ Cεα.

Remark 3.1. We will apply propagation of smallness of the Cauchy data in

the case when the coefficients of the operator L are sufficiently close in the L∞

norm to the coefficients of the standard Laplace operator ∆ in B(O,R0) and

the derivatives of coefficients L are sufficiently small. Under these assumptions

α can be chosen to depend only on n; see Theorem 1.7 in [2].

4. Hyperplane lemma

Given a cube Q, we will denote sup
x∈Q,r∈(0,diam(Q))

N(x, r) by N(Q) and call

it the doubling index of Q. This definition is different from a doubling index

for balls but more convenient in the following sense. If a cube q is contained

in a cube Q, then N(q) ≤ N(Q). Furthermore, if a cube q is covered by cubes

Qi with diam(Qi) ≥ diam(q), then N(Qi) ≥ N(q) for some Qi.

Lemma 4.1. Let Q be a cube [−R,R]n in Rn. Divide Q into (2A + 1)n

equal subcubes qi with side-length 2R
2A+1 . Consider the cubes qi,0 that have non-

empty intersection with the hyperplane xn = 0. Suppose that for each qi,0,

there exist xi ∈ qi,0 and ri < 10 diam(qi,0) such that N(xi, ri) > N , where N

is a given positive number. Then there exist A0 = A0(n), R0 = R0(M, g,O),

N0 = N0(M, g,O) such that if A > A0, N > N0, R < R0, then N(Q) > 2N .
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Proof. We will ask R0 to be small enough so that Lemma 1.3 holds with

ε = 1/2 and 10n · R0 in place of R in Lemma 1.3. Also we may assume

that coefficients of L are close to the coefficients of the standard Laplacian in

C1(B(O, 10n ·R0)) to be able to use (10). We have described our choice of R0.

For the sake of simplicity, we will assume that R = 1/2 and R0 ≥ 1/2.

The general case follows by changing the scale in the argument below.

Let B be the unit ball B(O, 1), and let M be the supremum of u over
1
8B. For each xi in 1

16B, the ball B(xi, 1/32) is contained in 1/8B. Hence

sup
B(xi,1/32)

|u| ≤M . Using N(xi, ri) > N and (5) with ε = 1/2 we get

sup
2qi,0

|u| ≤ sup
B(xi,

4
√
n

2A+1
)

|u| ≤ C sup
B(xi,1/32)

|u|
Ç

128
√
n

2A+ 1

åN
2

≤M2−cN logA,

where c = c(n) > 0. In the last inequality we assumed that A > A0(n) and N

is sufficiently large .

By a standard elliptic estimate,

sup
qi,0
|∇u| ≤ CA sup

2qi,0

|u| ≤ CAM2−cN logA ≤M2−c1(n)N logA.

Thus |u| and |∇u| are bounded by M2−c1N logA on 1
8B ∩ {xn = 0}.

Let q be a cube with side 1
16
√
n

in the halfspace {xn > 0} such that q ⊂ 1
8B

and
1

32
√
n
B ∩ {xn = 0} ⊂ ∂q ∩ {xn = 0}.

In other words, q has a face F on the hyperplane {xn = 0}. Let p be the center

of q. Then B(p, 1
32
√
n

) ⊂ q.
Consider the function v = u

M , whose absolute value is not greater than

1 in q. The Cauchy data of v is small on F : |v| and |∇v| are smaller than

2−c1N logA. Denote 2−c1N logA by ε. Applying propagation of smallness for the

Cauchy data, we obtain sup
1
2
q

|v| ≤ εα. In terms of u we have sup
1
2
q

|u| ≤ Mεα =

M2−αc1N logA.

The ball B(p, 1
64
√
n

) is contained in 1
2q, and therefore

sup
B(p, 1

64
√
n
)

|u| ≤M2−
αcN
2

logA.

However sup
B(p,1/2)

|u| ≥M since 1
8B ⊂ B(p, 1/2). Hence

sup
B(p,1/2)

|u|

sup
B(p, 1

64
√
n
)

|u|
≥ 2αc1N logA.
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Denote by ‹N the doubling index for B(p, 1/2). By (5) with ε = 1/2 we have

sup
B(p,1/2)

|u|

sup
B(p, 1

64
√
n
)

|u|
≤ (64

√
n)Ñ/2.

Hence ‹N≥c2N logA for some c2=c2(n) > 0, and ‹N≥2N for A big enough. �

Corollary 4.2. Let Q be a cube [−R,R]n in Rn, and let N(Q) not be

greater than a number N . For any ε > 0 there exists an odd positive integer

A1 = A1(n, ε) such that the following holds : Let us divide Q into An1 smaller

equal subcubes qi and consider the cubes qi,0 that have non-empty intersection

with the hyperplane xn = 0. If N > N0(M, g,O), R < R0(M, g,O), then the

number of subcubes qi,0 that have doubling index greater than N/2 is less than

εAn−11 .

Proof. According to Lemma 4.1 we can choose an integer A0 and N0 > 0,

assume N > N0, partition Q into (2A0 + 1)n equal subcubes, and then at least

one subcube with non-empty intersection with {xn = 0} has doubling index

smaller than N/2.

Now, let us partition Q into (2A0 + 1)kn equal subcubes qi and denote by

Mk the number of subcubes with non-empty intersection with {xn = 0} and

doubling index greater than N/2. If a cube qi has doubling index smaller than

N/2, then any of its subcubes also does.

It is not important in the proof of Lemma 4.1 that Q is a cube with center

at the origin; the same argument shows that if we divide a cube qi, which has

non-zero intersection with {xn = 0}, into (2A0 + 1)n equal subcubes, then at

least one subcube with non-empty intersection with {xn = 0} has doubling

index smaller than N/2. This observation gives Mk+1 ≤Mk((2A0+1)n−1−1).

Thus Mk ≤ (1 − 1
(2A0+1)n−1 )k(2A0 + 1)k(n−1). Choosing k so that

(1− 1
(2A0+1)n−1 )k ≤ ε, we finish the proof. �

Remark 4.3. The same argument shows that in Lemma 4.1 and in Corol-

lary 4.2 one can replace Q by any of its homothety-rotation-shift copies Qr ⊂
B(O,R0), r ∈ (0, 1), R0 = R0(M, g,O) and replace the hyperplane {xn = 0}
by a hyperplane that contains the center of Qr and is parallel to one of its faces.

Lemma 4.1 and Corollary 4.2 will remain true with A1,A0 and N0 independent

of r.

5. Number of cubes with big doubling index

In this section we follow notation from Sections 1 and 2. The next theorem

seems to be a useful tool in nodal geometry. We will apply it later to obtain

upper estimates of the volume of the nodal sets in terms of the doubling index.
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Theorem 5.1. There exist constants c > 0, an integer A depending on

the dimension d only and positive numbers N0 = N0(M, g,O), r = r(M, g,O)

such that for any cube Q ⊂ B(O, r), the following holds : if we partition Q into

An equal subcubes, then the number of subcubes with doubling index greater

than max(N(Q)/(1 + c), N0) is less than 1
2A

n−1.

Proof. Let us fix a small ε > 0, which will be specified later, and choose

A1 = A1(ε, n) such that Corollary 4.2 holds for this ε and A1 = 2A0 + 1 as

well as the remark after Corollary 4.2. Let us subsequently divide Q into equal

subcubes so that at the j-th division step Q is partitioned into (2A0+1)nj equal

subcubes Qi1,i2,...,ij , i1, i2, . . . , ij ∈ {1, 2, . . . , (2A0 + 1)n}, so that Qi1,i2,...,ij ⊂
Qi1,i2,...,ij−1 . Let the parameter c > 0. We will say that the cube Qi1,i2,...,ij is

bad if N(Qi1,i2,...,ij ) > N(Q)/(1 + c) and good otherwise.

Fix a cube Qi1,i2,...,ij =: q. We are interested in the number of its bad

subcubes Qi1,i2,...,ij+1 =: qij+1 . For the sake of convenience, we will omit the

index j + 1 and write qi in place of qij+1 . We will prove the following lemma:

Lemma 5.2. If ε, c are sufficiently small, and j > j0, where j0 = j0(ε, c),

then #{i : N(qi) > N(Q)/(1 + c)} ≤ 1
2(2A0 + 1)n−1.

Let F be the set of all points x in q such that there exists r ∈ (0, diam(qi)]

such that N(x, r) > N(Q)/(1+c). If a closed cube qi is bad, then it contains at

least one point from F . We use the notation ‹w(F ) := width(F )
diam(q) for the relative

width of F in q. We will prove Lemma 5.2 after the following lemma:

Lemma 5.3. For any w0 > 0, there exist a positive integer j0 and a

constant c0 > 0 such that if j > j0, c < c0, then ‹w(F ) < w0.

To prove this lemma we need an Euclidean geometry fact: for any set

of points F in q with non-zero ‹w(F ), there exists a = a(‹w(F ), n) > 0 and a

simplex S ⊂ F such that w(S) > a and diam(S) > a · diam(q).

For each vertex xk of S, there is a ball B(xk, rk) with N(xk, rk) ≥ N/(1+c)

and rk ≤ diam(q) ≤ 1
a diam(S). We can apply Lemma 2.1 for the simplex S.

Then N(x0, C0 diam(S)) > (1 + c0)N/(1 + c), where x0 is a barycenter of S

and c0,C0 are positive constants depending on a (and n) only and therefore

on ‹w(F ) only (and n). If c0 > c and C0 diam(S) ≤ diam(Q), then that means

a contradiction with N(Q) ≤ N . This is why we require j to be big enough:

diam(S) ≤ diam(q) ≤ diam(Q)
(2A0+1)j

≤ diam(Q)/3j , and it is sufficient to take j

such that 3j > C0.

Now, Lemma 5.3 is proved and we can think that ‹w(F ) is smaller than

a fixed number w0 = 1
2A0+1 and proceed to prove Lemma 5.2. There exists

a hyperplane P such that its w0 · diam(q) neighborhood contains all F . Fur-

thermore, we can find a bigger cube q̃ with one face parallel to P such that
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the center of q̃ is in P ∩ q and diam(q̃) = 10
√
n · diam(q). Automatically q̃

contains q. Divide q̃ into (2A0 + 1)n equal subcubes q̃i. We will denote by

q̃i,0 such subcubes that have non-zero intersection with P . Since w0 ≤ 1
2A0+1 ,

each bad cube qi is contained in a 2
√
n·diam(q)
2A0+1 neighborhood of P and each

bad cube qi is covered by a finite number (which depends on n only) of q̃i,0.

Therefore the number of bad cubes qi is less than the number of bad cubes q̃i,0
times some constant depending on dimension n only.

Now, assume the contrary to Lemma 5.2. Suppose that the number of

bad qi is greater than 1
2(2A0 + 1)n−1. Then the number of bad cubes q̃i,0 is at

least 1
C (2A0 + 1)n−1, where C = C(n) > 0.

Finally, we choose ε, which did not play a role till now: ε is any number

in (0, 1
2C ). Recall that A0 = A0(ε) is such that Corollary 4.2 holds for A1 =

2A0 + 1 and this ε as well as the remark after Corollary 4.2. Since the number

of bad q̃i,0 is greater than ε(2A0 +1)n−1, we have N(q̃) ≥ 2N/(1+ c). Without

loss of generality we assume that c < 1/10. Then there exists a point p̃ ∈ q̃ such

that N(p̃,diam(q̃)) ≥ 3
2N . The last observation looks to be inconsistent with

N(Q) ≤ N , however q̃ is not necessarily contained in Q and the contradiction

is not immediate. This obstacle is easy to overcome. Consider any point

p ∈ q ⊂ Q. There exists a large C1 = C1(n) such that N(p, C1 diam(q̃)) ≥
(1− 1/100)N(p̃,diam(q̃)) (see Lemma 7.4). Thus there is a contradiction with

N(Q) ≤ N since N(p, C1 diam(q̃)) > N and C1 diam(q̃) ≤ diam(Q) if j is big

enough. The proof of Lemma 5.2 is completed. Now, it is a straightforward

matter to prove Theorem 5.1.

Denote by Kj the number of bad cubes on j-th step. If Qi1,i2,...,ij is good,

then any of its subcubes is also good by the definition of doubling index for

cubes. If Qi1,i2,...,ij =: q is bad, then by Lemma 5.2 the number of bad subcubes

Qi1,i2,...,ij+1 in q is less than 1
2(2A0 + 1)n−1. Hence

Kj+1 ≤
1

2
(2A0 + 1)n−1Kj

for j > j0. We can define A = (2A0 + 1)j and see that

Kj ≤ Kj0

1

2j−j0
(2A0 + 1)(n−1)(j−j0) ≤ 1

2
An−1

for j big enough. �

6. Upper estimates of the volume of the nodal set

Theorem 6.1.There exist positive numbers r= r(M, g,O),C =C(M, g,O)

and α = α(n) such that for any harmonic function u on M and any cube

Q ⊂ B(O, r),

(11) Hn−1({u = 0} ∩Q) ≤ C diamn−1(Q)Nα
u (Q),

where Nu(Q) is the doubling index of Q for the function u.
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Proof. Choose r so that Theorem 5.1 holds with this r and some c = c(n),

A = A(n). Now, define the function

F (N) := sup
Hn−1({u = 0} ∩Q)

diamn−1(Q)
,

where the supremum is taken over the set of harmonic functions u on M , which

we denote by Harm(M), and cubes Q within B(O, r) such that Nu(Q) ≤ N .

The estimate (11) is equivalent to

(12) F (N) ≤ CNα.

We note that if u changes a sign in Q, then Nu(Q) ≥ 1, since lim
t→+0

N(x, t) is

equal to the vanishing order of u at x. Due to the Hardt-Simon exponential

bounds we know F (N) < +∞ for each positive N .

We will call N > 0 bad if

(13) F (N) > 4A · F (N/(1 + c)).

Our goal is to show that the set of bad N is bounded. In view of monotonicity

of F it would imply (12) immediately, where the constant α depends on A and

c only and therefore only on the dimension n.

Consider a bad N and a function u with a cube Q such that F (N) is

almost attained for them:

(14)
Hn−1({u = 0} ∩Q)

diamn−1(Q)
>

3

4
F (N)

while Nu(Q) ≤ N . Divide Q into An equal subcubes Qi, i = 1, . . . , An. Divide

Qi into two groups

G1 := {Qi : N/(1 + c) < N(Qi) ≤ N}
and

G2 := {Qi : N(Qi) ≤ N/(1 + c)}.

By Theorem 5.1 we know that the number of cubes inG1 satisfies |G1| ≤ 1
2A

n−1

if N > N0(M, g). Note that

Hn−1({u = 0} ∩Q) ≤
∑

Qi∈G1

Hn−1({u = 0} ∩Qi)

+
∑

Qi∈G2

Hn−1({u = 0} ∩Qi)

≤ |G1|F (N)
diamn−1(Q)

An−1

+ |G2|F (N/(1 + c))
diamn−1(Q)

An−1
= I + II.
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Since |G1| ≤ 1
2A

n−1, we can estimate I ≤ 1
2F (N) diamn−1(Q). Using that

N is bad, we have II ≤ |G2|F (N)
4A

diamn−1(Q)
An−1 and |G2| ≤ An, hence II ≤

1
4F (N) diamn−1(Q). Finally, Hn−1({u = 0} ∩ Q) ≤ 3

4F (N) diamn−1(Q), and

the last inequality contradicts to (14). Thus we have shown that the set of bad

N is bounded by some N0 = N0(M, g). �

Theorem 6.2. Let (W, g) be a compact C∞-smooth Riemannian manifold

without boundary. For a Laplace eigenfunction ϕ on W with ∆ϕ + λϕ = 0,

define its nodal set Zϕ := {ϕ = 0}. There exist C = C(W, g) and α, depending

only on the dimension n of W , such that

Hn−1(Zϕ) ≤ Cλα.

Proof. We will use a standard trick that allows to pass from Laplace eigen-

functions to harmonic functions by adding an extra variable. Consider a prod-

uct manifold M = W × R, where one can define a harmonic function u by

u(x, t) = ϕ(x)e
√
λ·t, x ∈W, t ∈ R.

The Donnelly-Fefferman doubling index estimate for Laplace eigenfunc-

tions claims

sup
Bg(p,2r)

|ϕ| ≤ 2C
√
λ sup
Bg(p,r)

|ϕ|,

where C = C(M, g), p is any point on W and r ∈ (0, R0(M, g)). It implies that

the doubling index of u is also bounded by C1

√
λ in balls with radius smaller

than some R1=R1(W, g). Let us fix a point O∈M and a point ‹O=(O, 0)∈M .

We can apply Theorem 6.1 to see that Hn({u = 0}∩B(‹O, r)) ≤ C2λ
α for some

r = r(W, g) > 0.

It remains to note that Hn({u = 0} ∩B(‹O, r)) ≤ C2λ
α implies

Hn−1({ϕ = 0} ∩Bg(O, r/2)) ≤ C3λ
α

since the zero set of u is exactly Zϕ × R. Finally, one can cover M by finite

number of such balls and obtain the desired global estimate of the volume of

the nodal set. �

Remark. The same argument gives a local volume estimate of the nodal set:

Hn−1({ϕ = 0} ∩Bg(O, r)) ≤ Crn−1λα.

7. Auxiliary lemmas

Lemma 7.1. If ε1 > 0 is a sufficiently small number (ε1 < 1/1010), then

there exist C = C(ε1,M, g,O) > 0 and R1 = R1(ε1,M, g,O) > 0 such that

(15) β(p, 2r(1+ε1))(1+100ε1)+C ≥ N(p, r) ≥ β(p, r(1+ε1))(1−100ε1)−C

for r ∈ (0, R1) and p ∈ B(O,R1).
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We remark that it is not a misprint and the argument in β in the right-

hand side of (15) is strictly greater than r.

Proof. By the equivalence of metrics (4) we have B(p, r) ⊂ Bg(p, r(1+ε)),

and by the standard elliptic estimate

sup
B(p,r)

|u|2 ≤ sup
Bg(p,r(1+ε))

|u|2 ≤ C1H(r(1 + ε)2)/rn−1

and

sup
B(p,2r)

|u|2 ≥ sup
Bg(p,2r(1−ε))

|u|2 ≥ C2H(2r(1− ε))/rn−1.

Hence we can estimate

N(p, r) =
1

2
log2

sup
B(p,2r)

|u|2

sup
B(p,r)

|u|2
≥ 1

2
log2

1

C3

H(2r(1− ε))
H(r(1 + ε)2)

,

and by Corollary 1.2 the right-hand side is at least

log2

 1

C3

Ç
2(1− ε)
(1 + ε)2

åβ(r(1+ε)2)/(1+ε) ≥ β(r(1 + ε)2)(1− 20ε)− C4.

We assumed above that ε is sufficiently small. Now, we can let ε1 be such that

(1 + ε)2 = 1 + ε1, so ε1 ∼ 2ε, and the right-hand side inequality of (15) is

obtained.

To obtain the opposite estimate we argue in the same manner:

sup
B(p,r)

|u|2 ≥ sup
Bg(p,r(1−ε))

|u|2 ≥ C2H(r(1− ε))/rn−1

and

sup
B(p,2r)

|u|2 ≤ sup
Bg(p,2r(1+ε))

|u|2 ≤ C3H(2r(1 + ε)2)/rn−1.

Applying these estimates we have

N(p, r) = log2

sup
B(p,2r)

|u|

sup
B(p,r)

|u|
≤ 1

2
log2C4

H(2r(1 + ε)2)

H(r(1− ε))
.

In a view of (1.2), the right-hand side can be estimated from above by

β(2r(1 + ε)2)(1 + 20ε) + C5 ≤ β(p, 2r(1 + ε1))(1 + 100ε1) + C5,

where ε1 satisfies (1 + ε)2 = 1 + ε1. �
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Lemma 7.2. Let ε be a small positive number. Then there exists R =

R(ε,M, g,O) such that for any x ∈ B(O,R) and for any numbers t > 2 and

ρ > 0 such that tρ < R,

(16) sup
B(x,tρ)

|u| ≥ tN(x,ρ)(1−ε)−C(ε,M,g) sup
B(x,ρ)

|u|.

Furthermore, there exists N0 = N0(ε,M, g) such that if N(x, ρ) > N0, then

additionally

(17) sup
B(x,tρ)

|u| ≥ tN(x,ρ)(1−ε) sup
B(x,ρ)

|u|.

Proof. We can assume that t > 21+ε; otherwise tN(x,ρ)(1−ε) ≤ 2N(x,ρ) and

sup
B(x,tρ)

|u| ≥ sup
B(x,2ρ)

|u| ≥ 2N(x,ρ) sup
B(x,ρ)

|u| ≥ tN(x,ρ)(1−ε) sup
B(x,ρ)

|u|.

Hereafter the constants C1, C2, . . . will be positive numbers depending on

ε, M , g only. Inequality (3) says that

(18) sup
B(x,tρ)

|u|2 ≥ C6
H(x, tρ)

(tρ)n−1
.

Let ε1 be equal to ε/1000. We can apply (15) for ε1 to see that

β(x, 2ρ(1 + ε1))(1 + 100ε1) + C7 ≥ N(x, ρ).

In view of Corollary 1.2 we obtain

(19) H(x, tρ) ≥ H(x, 2ρ(1 + ε1))

Ç
t

2(1 + ε1)

å 2N(x,ρ)
(1+100ε1)(1+ε1)

−C8

.

We use t > 21+ε to ensure that tρ > 2ρ(1 + ε1). A standard elliptic estimate

yields

(20) H(x, 2ρ(1 + ε1)) ≥ C9ρ
n−1 sup

B(x,2ρ)
|u|2 = C92

2N(x,ρ)ρn−1 sup
B(x,ρ)

|u|2.

The combination of (18), (19), and (20) implies

sup
B(x,tρ)

|u| ≥ C102
N(x,ρ)t−(n−1)/2

Ç
t

2(1 + ε1)

åN(x,ρ)/(1+200ε1)−C8/2

sup
B(x,ρ)

|u|

≥ C10t
−(n−1)/2

Ç
t

(1 + ε1)

åN(x,ρ)/(1+200ε1)−C11

sup
B(x,ρ)

|u|.

Now, in order to establish (16), it is sufficient to note that

tN(x,ρ)/(1+200ε1) ≥ tN(x,ρ)(1−ε/2) ≥ tN(x,ρ)(1−ε)2N(x,ρ)ε/2

and

2N(x,ρ)ε/2 ≥ (1 + ε1)
N(x,p)/(1+200ε1)

since 2ε/2 ≥ 1 + ε/100.
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(17) follows immediately from (16) if we apply it to twice smaller ε, require

N(x, ρ) > 2
εC(ε/2,M, g) and put a new smaller R = R(ε/2,M, g). �

Lemma 7.3. Let ε be a small positive number. Then there exists R =

R(ε,M, g,O) such that for any x ∈ B(O,R) and any numbers t > 2 and ρ > 0

such that tρ < R,

(21) sup
B(x,tρ)

|u| ≤ tN(x,tρ)(1+ε)+C(ε,M,g) sup
B(x,ρ)

|u|.

Furthermore, there exists N0 = N0(ε,M, g,O) such that if N(x, ρ) > N0, then

additionally

(22) sup
B(x,tρ)

|u| ≤ tN(x,tρ)(1+ε) sup
B(x,ρ)

|u|.

Proof. The proof is parallel to the proof of the previous lemma. Put

ε1 = ε/1000.

Inequality (2) says that

(23) sup
B(x,tρ)

|u|2 ≤ C1
H(x, tρ(1 + ε1))

(tρ)n−1
.

We can apply (15) for ε1 to see that

β(x, tρ(1 + ε1)) ≤ N(x, tρ)(1 + 100ε1) + C2.

In view of Corollary 1.2 we obtain

(24) H(x, tρ(1 + ε1)) ≤ H(x, ρ) (t(1 + ε1))
2N(x,tρ)(1+100ε1)(1+ε1)+C3 .

Inequality (3) implies

(25) H(x, ρ) ≤ C5 sup
B(x,ρ)

|u|2ρn−1.

Combination of (23), (24), and (25) gives us

sup
B(x,tρ)

|u| ≤ C6
(t(1 + ε1))

N(x,tρ)(1+100ε1)(1+ε1)+C3

t(n−1)/2
sup
B(x,ρ)

|u|

≤ C7 (t(1 + ε1))
N(x,tρ)(1+200ε1)+C3 sup

B(x,ρ)
|u|.

Noting that t10ε1 ≥ (1 + ε1), since t > 2, we can estimate

(t(1 + ε1))
N(x,tρ)(1+200ε1)+C3 ≤ tN(x,tρ)(1+500ε1)+C8 .

The proof of (21) is finished.

Inequality (22) follows immediately from (21) if we apply it to twice

smaller ε, require N(x, tρ) > 2
εC(ε/2,M, g) and put a new smaller R =

R(ε/2,M, g). �
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Lemma 7.4. There exist r = r(M, g,O) and N0 = N0(M, g,O) such that

for any points x1, x2 ∈ B(O, r) and ρ such that N(x1, ρ) > N0 and d(x1, x2) <

ρ < r, there exists C = C(M, g,O) > 0 such that

N(x2, Cρ) >
99

100
N(x1, ρ).

Proof. One can choose such numerical C that

B(x2, Cρ) ⊃ B(x1, Cρ(1− 1/1010))

and

B(x2, Cρ/2(1− 10−9)) ⊂ B(x1, Cρ(1− 1/1010)).

It follows from (17) and (22) that if we choose t and N0 properly, then

2N(x2,Cρ)(1+1/1000) ≥
sup

B(x2,Cρ)
|u|

sup
B(x2,Cρ/2(1−10−9))

|u|

≥
sup

B(x1,Cρ(1−10−10))
|u|

sup
B(x1,Cρ/2(1−10−10))

|u|
≥ 2N(x1,ρ)(1−1/1000).

Thus

N(x2, Cρ) >
999

1001
N(x1, ρ) >

99

100
N(x1, ρ). �
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