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Positivity for quantum cluster algebras

By Ben Davison

In memory of Kentaro Nagao

Abstract

Building on work by Kontsevich, Soibelman, Nagao and Efimov, we

prove the positivity of quantum cluster coefficients for all skew-symmetric

quantum cluster algebras, via a proof of a conjecture first suggested by

Kontsevich on the purity of mixed Hodge structures arising in the the-

ory of cluster mutation of spherical collections in 3-Calabi–Yau categories.

The result implies positivity, as well as the stronger Lefschetz property con-

jectured by Efimov, and also the classical positivity conjecture of Fomin

and Zelevinsky, recently proved by Lee and Schiffler. Closely related to

these results is a categorified “no exotics” type theorem for cohomological

Donaldson–Thomas invariants, which we discuss and prove in the appendix.
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1. Introduction

1.1. Background. This paper concerns the positivity conjecture for quan-

tum cluster algebras, which were introduced in [BZ05]. These algebras are

certain combinatorially defined noncommutative algebras over Z[q±1/2], gen-

erated by a distinguished set of n-element subsets, for some fixed n, called

the clusters. These clusters are related to each other by a recursive proce-

dure, called cluster mutation. We refer the reader to the excellent references

[Kel10], [Kel11b] for a comprehensive guide and introduction to the background

on cluster algebras, and we recall the necessary definitions in Section 2. While

quantum cluster mutations have a straightforward definition, the behaviour of

clusters after iterated cluster mutation is rather complicated.

The quantum cluster positivity conjecture states that every element in

every cluster is a Laurent polynomial in the monomials of any other cluster,

where the coefficients of these Laurent polynomials are themselves Laurent

polynomials in q1/2 with positive integer coefficients. This statement, with-

out the positivity, was proved at the outset of the subject by Berenstein and

Zelevinsky in [BZ05]. Specialising the quantum cluster positivity conjecture at

q1/2 = 1 we obtain the classical positivity conjecture of Fomin and Zelevinsky

[FZ02], recently proved by Lee and Schiffler [LS15] in the skew-symmetric case,

and then in the case of geometric type by Gross, Hacking, Keel and Kontse-

vich [GHKK14], via quite different methods, which are not so distant from the

mathematics of the current paper.

Some cases of the quantum version of the positivity conjecture have al-

ready been proved. In [KQ14, Cor. 3.3.10] the conjecture is proved by Kimura

and Qin in the case in which the cluster algebra has a seed with an acyclic

quiver, building on ideas of Nakajima [Nak11] in the classical case. By different

methods, which are much closer to the ones employed in this paper, Efimov

[Efi11] recovers positivity in the case that either the cluster S′ containing

the monomial that we wish to express in terms of some other cluster S corre-

sponds to an acyclic quiver, or in the case that S itself corresponds to an acyclic



POSITIVITY FOR QUANTUM CLUSTER ALGEBRAS 159

quiver. In this instance Efimov proves the stronger Lefschetz property (see Def-

inition 2.2 below), which we prove in the general case. Finally in [DMSS15],

following [Efi11], along with Maulik, Schürmann and Szendrői we were able

to prove the quantum cluster positivity conjecture, along with the Lefschetz

property, for all quantum cluster algebras admitting a seed, the quiver of which

admits a quasihomogeneous nondegenerate potential. This result is sufficient

to prove the conjecture in many, but not all, cases arising “in nature.”

The papers [Efi11] and [DMSS15] closely follow the outline in the paper

[Nag13]. The discussion [Nag13, §7] is recommended for the reader wishing to

gain some heuristic insight into the functioning of the proof below (although

effort has been made to make the present paper reasonably self-contained).

There are some differences between our approach and that of [Nag13], which

can be explained with reference to the following principle, quoted from [Nag13]:

“Starting from a simple categorical statement, provide an identity in

the motivic Hall algebra. Pushing it out by the integration map, we

get a power series identity for the generating functions of Donaldson–

Thomas invariants.”

Via elementary recursive arguments, the resulting power series expansions re-

cover mutated quantum cluster monomials.

We start with the same categorical statement — the existence and unique-

ness of Harder–Narasimhan filtrations — but we use it instead to provide an

isomorphism in the category of mixed Hodge modules over the space of dimen-

sion vectors, as opposed to an equality in a Grothendieck ring. Our integration

map (and the resulting identities) are essentially the same as the map used by

Nagao, which was introduced by Kontsevich and Soibelman in their work on

motivic Donaldson–Thomas invariants and Hall algebras [KS10]. The benefit

of working with these mixed Hodge modules, which provide a categorification

of the motivic Hall algebra, is that we can make use of powerful results from

Saito’s theory of mixed Hodge modules [Sai89b], [Sai90a], [Sai89c]. In particu-

lar, we make essential use of the concept of purity of mixed Hodge modules and

Saito’s version of the decomposition theorem of Beilinson, Bernstein, Deligne

and Gabber [BBD82].

The relation of purity to the quantum cluster positivity conjecture was

first made explicit in a conjecture suggested by Kontsevich and explained by

Efimov in [Efi11]. Before this, the deep connection between cluster mutation

and the motivic Donaldson–Thomas theory of 3-Calabi–Yau categories was

established by Kontsevich and Soibelman in [KS10]. It is in this framework

that the above quote of Nagao makes sense. Via further work of Kontsevich

and Soibelman [KS11] the vanishing cycle cohomology of the particular mod-

uli space underlying the element in the motivic Hall algebra that produces

quantum cluster coefficients under the integration map carries a monodromic
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mixed Hodge structure, as defined in [KS11, §7]. Purity of this monodromic

mixed Hodge structure implies the quantum cluster positivity conjecture; this

implication was proved by Efimov in [Efi11]. Kontsevich and Efimov conjec-

tured, and we prove below as Theorem 5.2, that this purity statement holds

generically.1 We conclude the paper with the resulting derivation of quantum

cluster positivity, which we state as Theorem 2.4 below.

1.2. Standing conventions. Throughout the paper we set N={r∈Z| r≥0}.
All varieties, schemes and stacks are assumed to be complex. All quotients of

schemes by algebraic groups are taken in the stack theoretic sense, unless we

specify otherwise. All functors are derived, unless we specify otherwise.

Given an object M in an Abelian or triangulated category D, we denote

by [M ] the corresponding element in the Grothendieck group, which we denote

by K0(D).

Given an algebraA, we denote by mod-A the category of finite-dimensional

right A-modules, and Mod-A denotes the category of all right A-modules.

Where we consider the derived category of A-modules, a superscript f .d will

indicate that we restrict to the full subcategory containing those complexes of

modules with finite dimensional total cohomology.

All quivers in the paper are finite. If s = (s1, . . . , st) is a sequence of

vertices of a quiver, we denote by s′ the truncated sequence (s1, . . . , st−1), and

for t′ ≤ t we denote by s≤t′ the truncated sequence (s1, . . . , st′).

For 1 ≤ s ≤ n, we will use the symbol 1s to denote the sth element in the

natural set of generators for Zn. We consider vectors as column vectors, so

that the bilinear form associated to a square matrix C is defined by (d′,d′′) :=

d′TCd′′.

If M is a moduli space of modules for a finitely generated algebra A, and

Mnilp ⊂ M is the reduced subspace whose geometric points correspond to

nilpotent modules, and F is a monodromic mixed Hodge module on M, we

write Fnilp to denote (Mnilp →M)∗(M
nilp →M)∗F .

If F ∈ D is an element of a triangulated category with a given t-structure,

we denote the total cohomology

H(F) :=
⊕
i

Hi(F)[−i].

At numerous points we take ordered tensor products
⊗
γ∈S Fγ, where S

is an infinite ordered set. These are to be understood in the following sense.

Firstly, it will always be the case that each Fγ is canonically written as a direct

1In fact we are able to do without the genericity assumption.
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sum 1⊕F ′γ, where 1 is a monoidal unit. Then we define

⊗
γ∈S
Fγ =

⊕
finite T⊂S

Ñ⊗
γ∈T
F ′γ

é
.

The direct sum includes the term 1 corresponding to the empty subset ∅ ⊂ S.

Remark 1.1. For the reader that is familiar with preceding work on the

link between Donaldson–Thomas theory and quantum cluster mutation in

[Efi11] and [DMSS15], we flag and explain a technical difference in the ap-

proach of the present paper. Firstly, recall (or see Section 2.2) that the

mutation of an algebraic quiver with potential need not be algebraic, in the

sense of Definition 2.5. In [Efi11] and [DMSS15] this issue was handled as

follows. We picked a formal potential W for Q and considered the category

A = Mod-Ĵac(Q,W ) of right modules over the associated completed Jacobi al-

gebra, defined in Section 2.2. We compared this category with the tilted heart

A′ = (Mod-Ĵac(Q,W ))(F ′
s
,T ′

s
[−1]), where (T ′s ,F ′s) is a torsion structure on A,

built recursively from the data of a sequence of vertices s, using the version of

Nagao’s procedure in [Nag13, §3] that starts with a left tilt. That is, in the

case that s is empty, F ′s = Mod-Ĵac(Q,W ).

For certain choices of W , there is an equivalence of categories A′ ∼=
Mod-Ĵac(Q′,W ′), where now W ′ is algebraic, and so in the target category A′,
Donaldson–Thomas theory is more straightforward to set up. In particular,

the moduli stack in the motivic Hall algebra that we apply the integration

map to and then conjugate by in order to reproduce the operation of quan-

tum cluster mutation (the stack of finite-dimensional objects in T ′s ) carries a

monodromic mixed Hodge structure on its vanishing cycle cohomology, via the

constructions of [KS11], since it may be considered as a substack of the stack

of objects in A′.
Note, however, that the intermediate torsion categories T ′s≤t′ occurring in

the recursive definition of T ′s are all subcategories of A, and not A′. Since we

have no guarantee that A = Mod-Ĵac(Q,W ) is the category of right modules

of a (completed) Jacobi algebra arising from an algebraic quiver with potential,

it is thus not clear how to use the Hodge-theoretic constructions of [KS11] in

inductive arguments.

We remedy this by picking W to be an algebraic potential for Q and tilt-

ing right; i.e., the category we tilt towards is A′′ = (Mod-Ĵac(Q,W ))(F ′′
s

[1],T ′′
s

),

where (T ′′s ,F ′′s ) is a torsion structure built using the version of Nagao’s recipe

that starts with a right tilt. That is, if s is empty, we have T ′′s = Mod-Ĵac(Q,W ).

With this approach, quantum cluster mutation is given by conjugating by the

integral of the stack of finite-dimensional objects in F ′′s . Furthermore, the

categories F ′′s≤t′ that we encounter in inductive arguments are subcategories
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of A, which now has been chosen to be the category of representations of a

Jacobi algebra with an algebraic potential, allowing us to use Hodge theory

inductively.

As a result of this subtle change in setup, some of the statements below

are technically different from their counterparts in the literature, and for this

reason, as well as the hope that the paper can be relatively self-contained, some

proofs are repeated. Finally, due to this change, strictly speaking, the version

of Kontsevich’s conjecture that we prove as Theorem 5.2 is different from the

version stated in [Efi11].

1.3. Acknowledgements. I would like to thank Bernhard Keller for pa-

tiently explaining cluster mutation to me, and Balázs Szendrői for introduc-

ing me to the subject in the first place. During the writing of this paper,

I was a postdoctoral researcher at EPFL, supported by the Advanced Grant

“Arithmetic and Physics of Higgs moduli spaces” No. 320593 of the European

Research Council. During the revision of this paper I was supported by the

University of Glasgow.

2. Quivers and cluster algebras

2.1. Quantum cluster algebras. Let Q be a finite quiver, i.e., a pair of finite

sets Q1 (the arrows) and Q0 (the vertices), along with two maps s, t : Q1 → Q0,

taking an arrow to its source and target, respectively. We assume that Q has

no loops or 2-cycles. We define two bilinear forms on ZQ0 :

(d′,d′′)Q =
∑
i∈Q0

d′id
′′
i −

∑
a∈Q1

d′t(a)d
′′
s(a),(1)

〈d′,d′′〉Q =(d′,d′′)Q − (d′′,d′)Q.(2)

We will omit the subscript Q where there is no chance of confusion. We

fix a labelling of the vertices Q0 by numbers {1, . . . , n} and fix a number

m ≤ n. This defines for us an ice quiver, i.e., a quiver with the extra data

of a subset of vertices S ⊂ Q0, the so-called frozen vertices. In our case we

set S = {m + 1, . . . , n}. The full subquiver Qprinc containing the vertices

{1, . . . ,m} is called the principal part of Q — these are the vertices that we

are allowed to perform mutations at.

The mutation µi(Q) of Q at a vertex i ≤ m is performed in three steps:

(1) for all paths of length 2 passing through i, i.e., pairs of arrows b, c ∈ Q0

with t(b) = i = s(c), we introduce an arrow [cb] with s([cb]) = s(b) and

t([cb]) = t(c);

(2) for all arrows b ∈ Q1 incident to i, we replace b with an arrow b with the

opposite orientation;
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(3) if for two vertices j, j′ there are r arrows going from j to j′, and r′ arrows

going from j′ to j, with r ≥ r′, we delete all of the arrows going from j′

to j, and r′ of the arrows going from j to j′.

The set of frozen vertices is unchanged by mutation. This defines an auto-

morphism of the set of isomorphism classes of ice quivers without loops and

2-cycles. The operation is well defined because of the deletion step, and is

an automorphism because mutation at i is an involution on the set of such

isomorphism classes.

Let L be a rank n free Z-module, and let Λ : L × L → L be a skew-

symmetric bilinear form. The quantum torus TΛ is freely generated, as a

Z[q±1/2]-module, by elements Xe, for e ∈ L, with multiplication on these

elements defined by

(3) Xe ·Xf = qΛ(e,f)/2Xe+f

and extended Z[q±1/2]-linearly to the whole of TΛ. We denote by FΛ the skew

field of fractions of TΛ. A toric frame for FΛ is a map

M : Zn → FΛ

defined by M(c) = τ(Xν(c)) with τ ∈ AutQ(q1/2)(FΛ) and ν : Zn → L an

isomorphism of lattices. We fix an identification L = Zn, and we fix an initial

toric frame M by setting τ = id. The pair (Q,M) is called the initial seed.

Since Q contains no 2-cycles, the isomorphism class of the ice quiver Q is

encoded in the n ×m matrix B̃, defined by setting B̃ij = aji − aij , where aij
is the number of arrows a ∈ Q1 with s(a) = i and t(a) = j. We identify Λ

with the n × n matrix associated with Λ via the identification L = Zn. The

matrix B̃ may alternatively be described as the matrix given by expressing the

bilinear form −〈•, •〉Q in the standard basis and then deleting the last (n−m)

columns. We say that B̃ is compatible with Λ if

(4) B̃TΛ = Ĩ ,

where the first m columns of Ĩ are the identity matrix, and the remaining

entries are zeroes. We say the ice quiver Q is compatible with Λ if B̃ is.

The elements M(11), . . . ,M(1m) ∈ FΛ are called the cluster variables,

while the elements M(1m+1), . . . ,M(1n) are called the coefficients. So the

cluster variables of the initial seed are X11 , . . . , X1m , while the coefficients are

X1m+1 , . . . , X1n . Note that the coefficients are unchanged by mutation.

We define the ring AQ to be the free Z[q±1/2]-module generated by ele-

ments Y e, for e ∈ Nm, with multiplication defined by

(5) Y e · Y f = q〈f ,e〉Q/2Y e+f .
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If B̃ and Λ are compatible, then the map

ι : AQ → TΛ(6)

Y e → X−B̃·e

is a homomorphism of algebras. Let P = Z((q1/2)). We define ÂQ to be the

completion of AQ⊗Z[q±1/2]P with respect to the two-sided ideal generated by

{Y 1s |s ≤ m}. Consider the TΛ-module K =
∏

e∈Zn X
eP , with TΛ-action

defined via (3). The map ι extends naturally to a map ι̂ : ÂQ → K, which is

injective by (4), and we define

T̂Λ :=
⋃

e∈Zn
Xe · Image(ι̂)

with multiplication as in (3). There is a natural inclusion of Z[q±1/2]-algebras

TΛ ⊂ T̂Λ.

If B̃ is the matrix associated to the ice quiver Q and s is a vertex in the

principal part of Q, we define µs(B̃) to be the matrix associated to the mutated

ice quiver µs(Q). We define the mutation of toric frames via the rule

µs(M)(1i) =

M(1i) for i 6= s,

M (
∑
brs>0 brs1r − 1s) +M (−∑brs<0 brs1r − 1s) for i = s.

(7)

Mutation of seeds is defined by µs((Q,M)) = (µs(Q),µs(M)). The classical

notion of cluster mutation is recovered by specialising at q1/2 = 1.

We consider the initial seed (Q,M) defined above. If s = (s1, . . . , st) is

a sequence of mutations, we define µs(Q) := µst(· · ·µs1(Q) · · · ) and define

µs((Q,M)) similarly. If a quiver Q is understood, we write µs(M) to denote

the toric frame of µs((Q,M)), i.e., the toric frame defined recursively from the

initial seed (Q,M), where at each stage in the recursive procedure we use the

mutated quiver to define the sum in (7). The set¶
{µs(M)(1i)|i ≤ m} | s a sequence of vertices of Qprinc

©
is called the set of clusters, while the set

{µs(M)(d) | s a sequence of vertices of Qprinc, d ∈ Nn}

is called the set of cluster monomials. The quantum cluster algebra AΛ,Q is

the sub Z[q±1/2]-algebra of FΛ generated by the set

{µs(M)(d) | s a sequence of vertices of Qprinc, d ∈ Nm × Zn−m}.

Setting q1/2 = 1, we recover the ordinary commutative cluster algebra AQ of

[FZ02].
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Remark 2.1. We say that the cluster algebraAQ associated to an ice quiver

Q can be quantized if we can find a quiver Q′, containing Q as a full subquiver,

such that if we set the principal part of Q′ to be the same as the principal part

of Q (i.e., we only add frozen vertices), we can find a skew-symmetric n′ × n′
matrix Λ compatible with Q′, where |Q′0| = n′. By [DMSS15, Lemma 4.4],

this can always be done.

By a result of Berenstein and Zelevinsky [BZ05, Cor. 5.2], the inclusion

AΛ,Q ⊂ FΛ factors through the inclusion TΛ ⊂ FΛ. Equivalently, for a given

mutated toric frame M ′ = µs(M) and an arbitrary cluster monomial Y , we

can write

(8) Y =
∑
d∈Zn

ad(q1/2)M ′(d),

where the ad(q1/2) ∈ Z[q±1/2].

Definition 2.2. We say that a Laurent polynomial a(q1/2) is of Lefschetz

type if it can be written as a sum of polynomials of the form

(qd/2 − q−d/2)/(q1/2 − q−1/2)

for positive integers d.

In particular, a polynomial of Lefschetz type has positive integral coeffi-

cients.

Remark 2.3. Say b(q1/2) =
∑
i∈Z dim(V i)qi/2 is the characteristic polyno-

mial of a Z-graded finite-dimensional vector space. Then b(q1/2) is of Lefschetz

type if and only if there is a degree two operator l : V • → V •+2 such that

lk : V −k → V k is an isomorphism for all k. For example, by the hard Lefschetz

theorem, this occurs if V = H(X,Q)[dim(X)] is the (shifted) cohomology of a

smooth projective variety.

The purpose of this paper is to prove the following theorem. The proof

will be completed in Section 6.

Theorem 2.4 (Quantum cluster positivity). Let AΛ,Q be a quantum clus-

ter algebra defined by a compatible pair (Q,Λ). For a mutated toric frame

M ′ and a cluster monomial Y , the Laurent polynomials ad(q1/2) appearing

in the expression (8) are of Lefschetz type and, in particular, they have pos-

itive coefficients. Furthermore, they can be written in the form ad(q1/2) =

bd(q)q−deg(bd(q))/2 for bd(q) ∈ N[q]; i.e., each polynomial ad(q1/2) contains

only even or odd powers of q1/2.

2.2. Mutation of quivers with potential. Given a quiver as in Section 2.1,

we define CQ to be the free path algebra of Q over C. This algebra contains
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a two-sided ideal CQ≥1 generated by the elements a ∈ Q1, and we define ĈQ
to be the topological algebra obtained by completing CQ with respect to this

ideal.

Given a topological algebra A, we define Acyc := A/[A,A]. Let W ∈ ĈQcyc

be a potential, i.e., a formal linear combination of cyclic words in Q, where we

consider two cyclic words to be the same if we can cyclically permute one to

the other.

Definition 2.5. We say that a potential is algebraic if it is in the image of

the injection

CQ/[CQ,CQ] ↪→ ĈQcyc,

i.e., it is a finite linear combination of cyclic words in Q. We say that the

quiver with potential (QP for short) (Q,W ) is algebraic if W is.

Sometimes we will refer to a potential as a formal potential if we want to

make it clear that it is not necessarily algebraic.

Given a cyclic word c ∈ CQ/[CQ,CQ] and an arrow a ∈ Q1, we define

∂c/∂a =
∑
c̃=bag

gb,

where c̃ is a fixed lift of c to CQ. Extending by linearity and then continu-

ity, we obtain an operation ∂/∂a : ĈQcyc → ĈQ, restricting to an operation

∂/∂a : CQ/[CQ,CQ]→ CQ. Given a QP (Q,W ), we define the Jacobi algebra

Ĵac(Q,W ) := ĈQ/〈∂W/∂a|a ∈ Q1〉,

and if W is algebraic, we define the algebraic Jacobi algebra

Jac(Q,W ) := CQ/〈∂W/∂a|a ∈ Q1〉.

If W is an algebraic potential, by pulling back along the map Jac(Q,W ) →
Ĵac(Q,W ) we obtain a functor mod-Ĵac(Q,W )→ mod-Jac(Q,W ).

Proposition 2.6. Let W be an algebraic potential for a quiver Q. The

functor mod-Ĵac(Q,W ) → mod-Jac(Q,W ) is an equivalence after restricting

the target to (mod-Jac(Q,W ))nilp, the full subcategory of finite dimensional

Jac(Q,W )-modules for which all sufficiently long paths act by the zero map.

Proof. Let M be a finite-dimensional Jac(Q,W )-module for which every

element z ∈ CQ≥1 acts nilpotently. Then by Engel’s theorem, for the Lie

algebra

Image (CQ≥1 → EndC(M)) ,

there is a basis of M on which every element of Jac(Q,W ) acts via strictly

upper triangular matrices, and so the action of CQ factors through the map

CQ → CQ/CQ≥dim(M) and, in particular, M carries a continuous ĈQ action
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inducing the given Jac(Q,W )-action. Conversely, assume that a Jac(Q,W )-

action on a vector space extends to a continuous ĈQ-action. Then write the

action of z ∈ Jac(Q,W )≥1 as an upper triangular matrix, with D denoting the

maximum modulus of the entries on the diagonal. If D 6= 0, we may consider

the action of z + D−1z2 + D−2z3 + · · · to arrive at a contradiction, and so

we deduce that the action of z is via a strictly upper triangular matrix. By

Engel’s theorem again, all paths of length greater than dim(M) act on M via

the zero map. �

If (Q,W ) is a QP and s∈Q0, we denote by S(Q)s the nilpotent Ĵac(Q,W )-

module with dimension vector 1s, which by Proposition 2.6 we may also con-

sider as a nilpotent Jac(Q,W )-module if (Q,W ) is an algebraic QP.

Given a QP (Q,W ) and a principal vertex s ≤ m, we recall the definition

of the mutated QP µs((Q,W )) from [DWZ08], [DWZ10], which are compre-

hensive references for the material in this subsection. We assume that Q has

no loops or 2-cycles. The premutation µ′s((Q,W )) = (µ′s(Q),µ′s(W )) is de-

fined on the Q component in the same way as mutation, except we leave out

the deletion step (so µ′s(Q) may contain 2-cycles). We obtain Ws from W by

replacing every instance of cb in W , where cb is a path of length two passing

through s (as in step one of the definition of mutation for Q), with [cb]. We

then define

µ′s(W ) = Ws +
∑

c,b∈Q1

s(c)=t(b)=s

[cb]bc.

Given a quiver Q′ with vertex set equal to our fixed set {1, . . . , n}, we define

R :=
⊕
s∈Q′0

C ∼= C⊕n,

and for s ∈ Q′0, we define es ∈ R to be the idempotent corresponding to the

vertex s. We fix an R-bimodule EQ′ with dim(ejEQ′ei) equal to the number

of arrows from i to j in Q′. Fixing an identification between the arrows of Q′

from i to j, and a basis for the vector space ejEQ′ei, defines an isomorphism‘CQ′ ∼= T̂R(EQ′), where T̂R(EQ′) is the completed free unital tensor algebra

generated by the R-bimodule EQ′ . Let W be a formal potential for Q′. By

the splitting theorem [DWZ08, Th. 4.6] there is an isomorphism of completed

unital R-algebras

ψ : T̂(EQ′) ∼= T̂(EQ′triv ⊕R-bimod EQ′
red

)

such that ψ(W ) = Wtriv + Wred, with Wtriv ∈ T̂(EQ′triv)cyc and Wred ∈
T̂(EQ′

red
)cyc, such that Ĵac(Q′triv,Wtriv) ∼= R in the category of completed

R-algebras, and such that Wred can be expressed as a formal linear combi-

nation of cyclic words of length at least three. Here, Q′triv is the quiver with
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dim(ejEQ′trivei) arrows from i to j, and Q′red is defined similarly. We define

(Q′,W )red := (Q′red,Wred). Finally, we define

µs((Q,W )) = (µ′s(Q),µ′s(W ))red.

The mutated QP is well defined up to isomorphisms induced by isomorphisms

of completed R-algebras.

We say that W is nondegenerate with respect to mutation at s if the

underlying quiver of µs((Q,W )) is equal to µs(Q), which occurs if and only if

the underlying quiver contains no 2-cycles. Given a sequence s = (s1, . . . , st)

of vertices of Q0, we say that W is nondegenerate with respect to s if for all

t′ ≤ t, the underlying quiver of µ s≤t′ (Q,W ) contains no 2-cycles so that, in

particular, each µ s≤t′ (Q,W ) is well defined, recursively. We say that W is

nondegenerate if it is nondegenerate with respect to all sequences of principal

vertices. Since we work over C, by [DWZ08, Cor. 7.4], there always exists an

algebraic nondegenerate potential for Q.

3. Some Donaldson–Thomas theory

3.1. Monodromic mixed Hodge modules. Let X be a complex variety. We

define as in [Sai89c], [Sai90a] the derived category D(MHM(X)) of mixed

Hodge modules on X, or we refer the reader to [Sai89b] for an overview. We

refer the reader to [KS11, §§4, 7] for a discussion of the related concept of mon-

odromic mixed Hodge structures, which we expand upon to suit our purposes

here.

The category of monodromic mixed Hodge modules on X, which we de-

note by MMHM(X), is defined as the Serre quotient of two subcategories of

MHM(X×A1). First we define BX to be the full subcategory of MHM(X×A1)

containing those F such that for every x ∈ X, the total cohomology of the

pullback ({x} ×Gm ↪→ X × A1)∗F is an admissible variation of mixed Hodge

structure on Gm. Via Saito’s description of MHM(X × A1), we may alterna-

tively describe BX as the subcategory of MHM(X × A1) obtained by iterated

extension of mixed Hodge modules ICY (L)[dim(Y )], where L is a pure varia-

tion of Hodge structure on a dense open subvariety Y ′ of the regular locus Yreg

of a closed irreducible subvariety Y ⊂ X × A1, where Gm acts by scaling A1

and this action restricts to an action on Y ′. Secondly, we define CX to be the

full subcategory of MHM(X ×A1) containing those F obtained as π∗G[1], for

G ∈ MHM(X), and π : X × A1 → X the natural projection. A mixed Hodge

module F is in CX if and only if the total cohomology of ({x}×A1 → X×A1)∗F
is an admissible variation of mixed Hodge structure for all x ∈ X. Again, via

Saito’s results, we may alternatively describe CX as the smallest full subcate-

gory, closed under extensions, containing ICY×A1(L)[dim(Y ) + 1] for Y ⊂ X

an irreducible closed subvariety, and L a pure variation of Hodge structure on
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Y ′×A1, a dense open subvariety of Yreg×A1, since by [SZ85], any such variation

of Hodge structure is trivial along the fibres of the projection X × A1 → X.

The category CX is a Serre subcategory of BX .

Following [KS11, §7] we define

MMHM(X) := BX/CX .

The natural functor D(BX)/DCX (BX) → D(BX/CX) is an equivalence

of triangulated categories, where DCX (BX) ⊂ D(BX) is the full subcategory

containing those objects whose cohomology objects are in CX . The subcate-

gory DCX (BX) is stable under the Verdier duality functor DX×A1 defined on

D(MHM(X ×A1)), and so the category D(MMHM(X)) = D(BX/CX) inherits

a Verdier duality functor, which we denote Dmon
X . We define the four functors

f∗, f !, f∗, f! for categories of monodromic mixed Hodge modules via the same

observation. We embed MHM(X) inside MMHM(X) via direct image along

the zero section (X × {0} z−→ X × A1).

Since the associated graded object GrW (F) of an object in CX is also

in CX , an object in MMHM(X) has a well-defined weight filtration; if

F G

$
����

F ′
?�

OO

∼= // G′′

represents an isomorphism F → G in BX/CX (i.e., F/F ′ and ker($) are ele-

ments of CX), then after applying the functor Wn to the diagram it represents

the isomorphism WnF ∼= WnG in the quotient category by exactness of the

functor Wn [Sai88, 5.1.14].

Definition 3.1. We say that an object of MMHM(X) is pure of weight n

if Wn−1F = 0 and WnF = F . We say that an object F ∈ D(MMHM(X)) is

pure of weight n if Hl(F) is pure of weight l + n for all l, or we will just say

that F is pure if it is pure of weight zero.

We defineH(F) :=
⊕
i∈ZHi(F)[−i], and so the object F ∈ D(MMHM(X))

is pure if and only if H(F) is.

Definition 3.2. We define D≥,lf(MMHM(X)) ⊂ D(MMHM(X)) to be the

full subcategory containing those objects F satisfying the following condition:

for each connected component Y ∈ π0(X), there exists a NY ∈ Z such that

GrgW (H(F)|Y ) = 0 for all g ≤ NY . Here H(F) is the total cohomology of F ,

considered as an object of D(MMHM(X)) via the cohomological grading (i.e.,

as a complex with zero differential). We require also that for all g > NY ,

GrgW (H(F)|Y ) ∈ Db(MMHM(Y )). We define D≤,lf(MMHM(X)) similarly.
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The categories D≥,lf(MMHM(X)) and D≤,lf(MMHM(X))op are equivalent

via Verdier duality. For two varieties X and Y , we define an external tensor

product D≥,lf(MMHM(X))×D≥,lf(MMHM(Y ))→ D≥,lf(MMHM(X ×Y )) by

setting

(9) F � G := (X × Y × A1 × A1 idX×Y ×+−−−−−−→ X × Y × A1)∗π
∗
1,3F ⊗ π∗2,4G,

where πi,j is the projection onto the ith and jth factors, and the tensor prod-

uct on the right-hand side of (9) is the usual tensor product of complexes

of mixed Hodge modules. If Y is a point, and F ∈ D≥,lf(MMHM(X)) and

G ∈ D≥,lf(MMHM(Y )), we will denote by F ⊗ G ∈ D≥,lf(MMHM(X)) their

external tensor product.

Proposition 3.3. The weight filtrations on MMHM(X) and MMHM(Y )

are compatible with the external tensor product, which is biexact.

The part of the proposition regarding weight filtrations is an easy conse-

quence of [KS11, Prop. 4]. We will mainly use two special cases: the external

product of mixed Hodge modules with trivial monodromy in the sense of Def-

inition 3.6, where the proposition is [Sai90a, (3.8.2)], and the case where X

and Y are a point, where the proposition is a special case of [KS11, Prop. 4].

Proof. For the biexactness statement, first note that for F ∈ BX and

G ∈ BY , as in [KS11, Lemma 1], there is an isomorphism

(idX×Y ×+)!

Ä
π∗1,3F ⊗ π∗2,4G

ä
→ (idX×Y ×+)∗

Ä
π∗1,3F ⊗ π∗2,4G

ä
considered as a morphism in Db(MMHM(X × Y )). The map (idX×Y ×+)

is affine, and so (idX×Y ×+)∗ is right exact, while (idX×Y ×+)! is left ex-

act. In addition, (idX×Y ×+)∗ increases weights, while (idX×Y ×+)! decreases

them, which gives the statement regarding the weight filtrations, as in [KS11,

Prop. 4]. �

If (X, τ : X × X → X, η : Spec(C) → X) is a monoid in the category

of locally finite type schemes, with τ of finite type and so, in particular, the

induced map π0(X)× π0(X)→ π0(X) has finite fibres, then we define tensor

products �τ for D≥,lf(MMHM(X)) and for D≤,lf(MMHM(X)) by setting

(10) F �τ G := τ∗ (F � G) .

Saito proved [Sai90a, (4.5.3), (4.5.4)] that for fixed w ∈ Z, the category of

pure weight w mixed Hodge modules on a variety X is semisimple, and if

F ∈ D(MHM(X)) is pure of weight w for some w, and f is a proper map of

varieties, then there is a noncanonical isomorphism

f∗F ∼= H(f∗F)
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into pure weight w summands. This is the version, in the framework of

Saito’s theory, of the famous decomposition theorem of Beilinson, Bernstein

and Deligne [BBD82].

Proposition 3.4. If τ is proper, the tensor product �τ takes pairs of

pure objects to pure objects. If τ is moreover finite, then �τ is biexact.

Proof. The map τ×+ defining �τ can be factorised as (τ×idA1)(idX×X×+).

By our assumption on τ, the map (τ × idA1) is proper, and so its associ-

ated direct image functor preserves purity by [Sai90a, (4.5.2), (4.5.4)], while

(idX×X ×+) is the map defining the external tensor product on the category

D(MMHM(X)), and the associated direct image functor preserves the weight

filtration by Proposition 3.3. The biexactness follows similarly from Propo-

sition 3.3, and the fact that the direct image functor for finite morphisms is

exact. �

Let X be a smooth variety, and let f be a regular function on X. We

denote by X0 the preimage of zero under f , and we set X≤0 = f−1(R≤0). We

define the underived functor

ΓX≤0
F(U) = ker (F(U)→ F(U \ (U ∩X≤0)))

and set φfF = (RΓX≤0
F)[1]|X0 . By the construction of Saito’s category

D(MHM(X)), the functor φf : D(X) → D(X), defined at the level of derived

categories of Abelian sheaves with constructible cohomology, lifts to a functor

φf : D(MHM(X))→ D(MHM(X)). As in [KS11, §7], we define the functor

φmon
f : D(MHM(X))→ D(MMHM(X))

F 7→ (X ×Gm → X × A1)!φf/u(X ×Gm → X)∗F ,

where u is a coordinate on Gm.

Proposition 3.5. The functor φmon
f takes objects of MHM(X) to objects

of MMHM(X); in other words it is exact with respect to the natural t structures

on D(MHM(X)) and D(MMHM(X)).

Proof. Exactness follows from the corresponding statement at the level of

perverse sheaves. The functors (X × Gm → X)∗[1] and φf/u[−1] are exact

[BBD82], and (X × Gm → X × A1)! is left exact, since (X × Gm → X × A1)

is affine, and right exact, since (X ×Gm → X × A1) is quasi-finite. �

For X a not necessarily smooth complex quasiprojective variety, we may

define φmon
f = i∗φmon

f
i∗, where i is a closed embedding into a smooth vari-

ety X and f is a function on X extending f . There is a natural isomorphism

Dmon
X φmon

f
∼= φmon

f DX by the main theorem of [Sai89a]. If p : X → Y is a
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proper map of varieties, and f is a regular function on Y , then there is a

natural isomorphism φmon
f p∗ ∼= p∗φ

mon
fp by [Sai90a, Th. 2.14].

Let X and Y be a pair of complex varieties, and let f and g be regu-

lar functions on them. Then by the Thom–Sebastiani theorem due to Saito

[Sai90b], proved at the level of underlying perverse sheaves by Massey [Mas01],

there is a natural equivalence of functorsÄ
φmon
f�g (F � G)

ä
|f,g=0(11)

∼= φmon
f F � φmon

g G : MHM(X)×MHM(Y )→ MMHM(X × Y ).

For further discussion of this isomorphism, as well as the compatibility of

these two versions of the Thom–Sebastiani theorem, we refer the reader to

Schürmann’s appendix to [BBD+15].

Definition 3.6. We say an object F ∈ D(MMHM(X)) has trivial mon-

odromy if it is in the essential image of the map

(X × {0} z−→ X × A1)∗ : D(MHM(X))→ D(MMHM(X)).

Let L = Hc(A1,Q); i.e., L is the pure one-dimensional Hodge struc-

ture concentrated in cohomological degree 2. The category D(MMHM(pt))

contains a square root of L; we set L1/2 := Hc(A1,φmon
x2 QA1), and we have

L1/2 ⊗ L1/2 ∼= L via the Thom–Sebastiani theorem. The monodromic mixed

Hodge module L1/2 is pure and has perverse degree 1; it is given explicitly

by j!L, where L is the rank one local system on C∗ with monodromy given by

multiplication by −1, and j : C∗ → A1 is the inclusion.

Remark 3.7. Note that L1/2 does not have trivial monodromy, and in fact

there is no square root of L considered as an object of D(MHM(pt)). It follows

that if we have a direct sum decomposition in D(MMHM(pt))

H ∼=
⊕
g∈Z

Ä
Lg/2

ä⊕cg
,

with cg ∈ N for all g, then H has trivial monodromy if and only if cg = 0 for

all odd g.

In what follows, if X is a connected irreducible algebraic variety, we set

ICX(Q) = ICX(QXreg)⊗ L−dim(X)/2;

i.e., if dim(X) is even, we shift the usual intersection complex mixed Hodge

module so that its underlying complex of perverse sheaves is in the natural

heart of D(Perv(X)), and considered as an object in D(MHM(X)), the object

ICX(Q) is pure. In the odd case we are doing the same thing, but only after

passing to the larger category of monodromic mixed Hodge modules on X. If
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X is a disjoint union of irreducible algebraic varieties, we set

ICX(Q) =
⊕

Y ∈π0(X)

ICY (Q).

We set

H(X,Q)vir := H((X → pt)∗ICX(Q)).

If X is a proper variety, then H(X,Q)vir is pure. We extend this notation by

setting

H(pt /C∗,Q)vir := H(pt /C∗,Q)⊗ L1/2.

We say a monodromic mixed Hodge module F ∈ MMHM(pt) is of Tate type

if it is obtained by taking iterated extensions of the monodromic mixed Hodge

modules Lg/2[g] for g ∈ Z. We say an object F ∈ D(MMHM(pt)) is of Tate

type if each Hp(F) is. If X is a disjoint union of points, then there is a natural

equivalence of categories

(12) D(MMHM(X)) ∼=
∏
x∈X
D(MMHM(pt)),

and we say an object F ∈ D(MMHM(X)) is of Tate type if each of its factors

under the equivalence (12) is.

3.2. Moduli spaces of quiver representations and stability conditions. Let

Q be an ice quiver. Recall that we always identify the vertices of Q with

the numbers {1, . . . , n}, and set the vertices {m + 1, . . . , n} to be the frozen

vertices, in the sense explained at the start of Section 2.1. Let d ∈ Nm be a

dimension vector, supported on the principal part of Q. We define

X(Q)d :=
∏
a∈Q1

Hom(Cdt(a) ,Cds(a))

and

X(Q) =
∐

d∈Nm
X(Q)d,

and we define

Gd :=
∏
i≤m

GLdi .

The group Gd acts on X(Q)d by change of basis of each of the spaces Cdi . We

let M(Q)d denote the stack of d-dimensional right modules of CQ. Then

M(Q)d ∼= X(Q)d/Gd,

where we take the stack-theoretic quotient. We set

M(Q) :=
∐

d∈Nm
M(Q)d.

Note that we will only ever consider moduli stacks of modules supported on

the principal parts of quivers.
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A (Bridgeland) stability condition for the quiver Q is an element ζ ∈ Hn
+,

where

H+ := {r exp(iθ)|θ ∈ [0,π), r ∈ R>0}.
Given a stability condition ζ, we define Zζ : K0(mod-CQ)→ C by

Zζ([M ]) = ζ · dim(M),

and we define the slope Ξζ(M) ∈ [0, 2π) of an object M ∈ Df .d(Mod-CQ)

satisfying Zζ([M ]) 6= 0 to be the argument of Zζ([M ]). If 0 6= M ∈ mod-CQ,

then Ξζ(M) ∈ [0,π). Similarly, for nonzero d ∈ Nn, we define Ξζ(d) ∈ [0,π)

to be the argument of Zζ(d). A CQ-module M is ζ-stable if for all proper

submodules M ′ ⊂ M , we have the inequality Ξζ(M ′) < Ξζ(M). If it is only

true that Ξζ(M ′) ≤ Ξζ(M), for all proper submodules M ′ ⊂ M , we say that

M is ζ-semistable.

Fix a dimension vector d ∈ Nm. If ζ ∈ Hn
+, we can first of all replace ζ

with a stability condition in (i+Q)n such that the sets of ζ-stable and ζ-semi-

stable d-dimensional modules are unchanged and such that Re(ζ · d) = 0, by

[DMSS15, Lemma 4.21]. Then we can pick a N ∈ N such that N Re(ζs) ∈ Z
for all s ≤ m. We linearise the Gd-action on X(Q)d via the character

χ : (gs)s≤m 7→
∏
s≤m

det(gs)
N Re(ζs)

and define X(Q)ζ -ss
d to be the scheme of semistable points with respect to this

linearisation. By [Kin94], using the geometric invariant theory constructions

of [MFK94], the GIT quotient X(Q)d//χGd provides a coarse moduli space of

ζ-semistable d-dimensional right CQ-modules. For K a field extension of C,

the K-points of this moduli space are in bijection with isomorphism classes of

direct sums of ζ-stable KQ-modules [Kin94, Prop. 3.2] of the same slope. We

denote this GIT quotient by M(Q)ζ -ss
d , and we define

M(Q)ζ -ss :=
∐

d∈Nm
M(Q)ζ -ss

d .

We denote by

(13) pζd : M(Q)ζ -ss
d →M(Q)ζ -ss

d

the map from the stack-theoretic quotient to the coarse moduli space.

We abbreviateM(Q)d :=M(Q)
ζdeg
d , where ζdeg is the degenerate stability

condition (i, . . . , i). In words: if a stability condition is missing from a coarse

moduli space, it is defined to be the coarse moduli space of semisimple modules

or, equivalently, the affinization. We denote by

(14) qζd : M(Q)ζ -ss
d →M(Q)d

the map to the affinization.
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Convention 3.8. Wherever a space, map, or monodromic mixed Hodge

module is defined with respect to a subscript d denoting a dimension vector,

and that dimension vector is replaced by a slope γ ∈ [0,π), the direct sum

over all d ∈ Nm satisfying d = 0 or Ξζ(d) = γ is intended. If the subscript is

missing altogether, then the direct sum over all d ∈ Nm is intended.

Given a stability condition ζ ∈ Hn
+, a finite-dimensional CQ-module M

admits a unique filtration (the Harder–Narasimhan filtration)

0 = M0 ⊂M1 ⊂ · · · ⊂Mh = M

such that each subquotient Mg/Mg−1 is ζ-semistable, and the slopes of the

subquotients M1,M2/M1, . . . ,Mh/Mh−1 are strictly decreasing.

For d ∈ Nm, let HNd denote the set of Harder–Narasimhan types for d,

i.e., the set of tuples of nonzero dimension vectors (d1, . . . ,dh) (for varying h)

such that
∑

1≤g≤h d
g = d and Ξζ(dg) > Ξζ(dg+1) for all g < h. We define

HN =
∐

d∈Nm
HNd .

For d ∈ HNd, we let X(Q)ζ
d
⊂ X(Q)d denote the locally closed subvariety of

points for which the Harder–Narasimhan filtration of the associated module,

with respect to the stability condition ζ, is in d. We denote by M(Q)ζ
d

the

corresponding stack. The space X(Q) admits a decomposition into locally

closed subvarieties

X(Q) =
∐

d∈HN

X(Q)ζ
d
,

and the stack M(Q) admits a decomposition into locally closed substacks

M(Q) =
∐

d∈HN

M(Q)ζ
d

by [Rei03, Prop. 3.4]. If S ⊂ [0,π) is an interval, we denote by X(Q)ζS ⊂ X(Q)

the locally closed subvariety whose points correspond to modules for which the

Harder–Narasimhan type d = (d1, . . . ,dh) satisfies Ξζ(dg) ∈ S for all g ≤ h.

We define

X(Q)ζS,d := X(Q)ζS ∩X(Q)d

and define M(Q)ζS,d likewise. We denote by

(15) pζS,d : M(Q)ζS,d →M(Q)d

the map to the coarse moduli space (equivalently, the affinization, as the target

is given the degenerate stability condition). As usual, if the dimension vector d

is missing from (15), the disjoint union over all d ∈ Nm = N(Qprinc)0 is intended,

although the moduli stack M(Q)ζS,d will be empty if d 6= 0 and Ξζ(d) /∈ S.
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Let W ∈ CQ/[CQ,CQ] be an algebraic potential. Then taking the trace

defines a function Tr(W ) on X(Q), defined by

Tr

Ñ ∑
c a cycle in Q

acc

é
: (ρ) 7→

∑
c

ac Tr(ρ(c)).

The restriction of this function toX(Q)d isGd-invariant, and so Tr(W ) induces

a function

Tr(W ) : M(Q)→ C.
We denote by

Tr(W ) : M(Q)→ C
the induced function on the coarse moduli space. As substacks of M(Q)d,

there is an equality between crit(Tr(W )d) and the stack of d-dimensional right

Jac(Q,W )-modules.

Convention 3.9. If •(Q)...... is one of the spaces defined above, for which

there is a natural map •(Q)...... →M(Q), we define

•(Q,W )...... := •(Q)...... ×M(Q) crit(Tr(W )).

Similarly, we define

•(Q)...,nilp
... := •(Q)...... ×M(Q)M(Q)nilp

where M(Q)nilp ∼= Nm is the reduced vanishing locus of the infinite set of

functions {T r(c)| c a nontrivial cycle in Q}. If •(Q)...... is a stack and not a

scheme, we denote by Dim...
... the map from •(Q)...... to Nm taking a connected

component to its dimension vector. If •(Q)...... is a scheme, we denote this map

dim...
.... When the domain of the maps Dim...

... or dim...
... are clear, we will omit the

superscripts and subscripts, to ease the notation. If F ∈ D(MMHM(•(Q)......)),

then we define

Fnilp := F|•(Q)...,nilp...
.

3.3. Categorification of the completed quantum space ÂQ. The spaceM(Q)

is a monoid in the category of schemes, with monoid map

⊕ : M(Q)×M(Q)→M(Q)

acting, at the level of points, by taking a pair of semisimple modules to their

direct sum. This map is finite by [Rei11, Lemma 2.1]. (For the sake of com-

pleteness, we reprove this as Lemma 3.20 below.) It follows that the monoidal

product �⊕ on the category D≥,lf (MMHM(M(Q))), defined in Section 3.1, is

bi-exact and preserves pure objects, by Proposition 3.4.

The map of schemes

dim: M(Q)→ Nm
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taking a CQprinc-module to its dimension vector is a map of monoids, where

the monoidal structure on Nm is provided by addition. It follows that the

functor

dim∗ : D≥,lf (MMHM(M(Q)))→ D≥,lf(MMHM(Nm))

is a monoidal functor, where the domain category carries the monoidal product

�⊕, and the target carries the monoidal product �+. The map

Dim: M(Q)→ Nm

is the composition dim ◦p, with p defined as in (15).

We next explain how to twist the above monoidal structures to form a

categorification of the completed algebra ÂQ. Given an object

F ∈ D≥,lf (MMHM(M(Q))) ,

we denote by Fd the summand supported on M(Q)d. We define the twisted

monoidal product

(16) F �tw
⊕ G :=

⊕
d′,d′′∈Nm

Fd′ �⊕ Gd′′ ⊗ L〈d
′′,d′〉Q/2.

We define the twisted monoidal product on D≥,lf(MMHM(Nm)) via equa-

tion (16) again, and so the functor dim∗ is again a monoidal functor if we

give the domain and the target categories the twisted monoidal product.

Remark 3.10. By skew-symmetry of 〈•, •〉Q and properness of ⊕, the

twisted monoidal product commutes with Verdier duality, after swapping the

arguments; i.e., there is a natural isomorphism

Dmon
M(Q)F �tw

⊕ Dmon
M(Q)G ∼= Dmon

M(Q)

Ä
G �tw

⊕ F
ä
.

We define the integration map

χQ : K0

Ä
D≥,lf(MMHM(Nm))

ä
→ ÂQ(17)

[F ] 7→
∑

d∈Nm
χq([Fd],−q1/2)Y d,(18)

where for G ∈ D≥,lf(MMHM(pt)),

χq([G], q1/2) :=
∑
i∈Z

∑
r∈Z

(−1)i dim
Ä
GrrW (Hi(G))

ä
qr/2.

We restrict to D≥,lf(MMHM(Nm)) so that the coefficients on the right-hand

side of (18) belong to Z((q1/2)).

Remark 3.11. Note that χq(L1/2, q1/2) =−q1/2 since L1/2 is pure of weight

one. The sign that appears in (18) means that L1/2 plays the role of q1/2 in

the theory of quantum cluster mutation. The “classical limit,” recovering the

theory of commutative cluster algebras from quantum cluster algebras, is given



178 BEN DAVISON

by q1/2 = 1. This is not the traditional classical limit of motivic Donaldson–

Thomas theory (see, e.g., [KS10, §7.1]), which is obtained by setting q1/2 = −1,

or equivalently, taking the Euler characteristic. This choice of signs means that

quantum cluster positivity follows directly from purity:

Proposition 3.12. Let F ∈ D≥,lf(MMHM(Nm)) be pure. Then

χQ([F ]) ∈ N((q1/2))[[Y 1s |s ≤ m]];

i.e., χQ([F ]) has only positive coefficients.

The following proposition, which is a consequence of Proposition 3.4, ex-

plains the sense in which D≥,lf(MMHM(Nm)) is a categorification of ÂQ.

Proposition 3.13. The map χQ is a homomorphism of rings, where

K0

Ä
D≥,lf(MMHM(Nm))

ä
is given the noncommutative product induced by the

twisted monoidal product �tw
⊕ .

3.4. Critical cohomology. Let X be a smooth complex variety, and let f

be a regular function on X. Furthermore, let X carry a G-action, for G an

algebraic group, such that f is invariant with respect to the G-action, inducing

a function f on the stack-theoretic quotient X/G. Let p : X → Y be a map of

varieties, which is alsoG-invariant, inducing a map p : X/G→ Y . We recall the

definition of H(p∗φ
mon
f QX/G) and H(p!φ

mon
f QX/G), which is a relative version

of the definition of the equivariant cohomology of the vanishing cycle complex

from, e.g., [KS11, §7]; see [DM16, §2.2] for a fuller discussion.

For simplicity, we will assume that X is equidimensional — if M is ob-

tained by taking the disjoint union of a number of smooth connected global

quotient stacks Xi/Gi, we define

H(p∗φ
mon
f QM) =

⊕
Xi/Gi∈π0(M)

H
(
p|Xi/Gi,∗

(
φmon
f |Xi/Gi

QXi/Gi

))
and we extend all related definitions in the same manner.

Let V1 ⊂ V2 ⊂ · · · be an ascending sequence of finite-dimensional

G-representations, which we identify with the total spaces of their underly-

ing vector spaces, considered as G-equivariant varieties. Assume that we have

a sequence U1 ⊂ U2 ⊂ · · · of G-equivariant varieties satisfying the following

conditions:

(1) UN ⊂ X × VN for all N , and UN is acted on scheme-theoretically freely

by G;

(2) codimX×VN ((X × VN ) \ UN ) 7→ ∞ as N 7→ ∞;

(3) the map πN : UN → UN/G is a principal G-bundle in the category of

schemes.



POSITIVITY FOR QUANTUM CLUSTER ALGEBRAS 179

We denote by fN : UN/G→ C the induced function, and pN : UN/G→ Y the

induced map. We define

H(p∗φ
mon
f QX/G) := lim

N 7→∞
H(pN,∗φ

mon
fN

QUN/G),

H(p!φ
mon
f QX/G) := lim

N 7→∞

Ä
H(pN,!φ

mon
fN

QUN/G)⊗ L− dim(Vi)
ä
,

H(p∗φ
mon
f ICX/G(Q)) :=H(p∗φ

mon
f QX/G)⊗ L(dim(G)−dim(X))/2,

H(p!φ
mon
f ICX/G(Q)) :=H(p!φ

mon
f QX/G)⊗ L(dim(G)−dim(X))/2.

In the first two equations, the limit exists because in each fixed cohomological

degree, the cohomology stabilises for sufficiently largeN by our codimension as-

sumption on UN ; see [DM16, §2]. Since in the first equation the right-hand side

vanishes in fixed sufficiently low degree, and by [Sai90a, Prop. 2.26], the direct

image increases weight, it follows that H(p∗φ
mon
f QX/G) ∈ D≥,lf(MMHM(Y )),

and also that H(p!φ
mon
f QX/G) ∈ D≤,lf(MMHM(X)) by commutativity of φmon

fN
with the Verdier duality functor [Sai89a].

Let Z ⊂ X be a G-equivariant subvariety. We define ZN := (Z×VN )∩UN .

Then we define

H
Å
p∗
Ä
φmon
f QX/G

ä
Z/G

ã
:= lim

N 7→∞
H
Å
pN,∗

Ä
φmon
fN

QUN/G

ä
ZN/G

ã
,

H
Å
p!

Ä
φmon
f QX/G

ä
Z/G

ã
:= lim

N 7→∞

Å
H
Å
pN,!
Ä
φmon
fN

QUN/G

ä
ZN/G

ã
⊗ L−dim(Vi)

ã
,

H
Å
p∗
Ä
φmon
f ICX/G(Q)

ä
Z/G

ã
:= H

Å
p∗
Ä
φmon
f QX/G

ä
Z/G

ã
⊗ L(dim(G)−dim(X))/2,

H
Å
p!

Ä
φmon
f ICX/G(Q)

ä
Z/G

ã
:= H

Å
p!

Ä
φmon
f QX/G

ä
Z/G

ã
⊗ L(dim(G)−dim(X))/2.

Definition 3.14. We say that the map p : X/G→ Y can be approximated

by proper maps if we can pick a system of UN , continuing the notation from

above, such that each of the maps pN : UN/G→ Y is a proper map.

For p : X/G→ Y a map to a variety, and f a regular function on X/G, we

only define the total cohomology of the pushforward of vanishing cycles to Y .

There is no a priori obvious comparison between H
Ä
τ∗H(p∗φ

mon
f QX/G)

ä
and

HG(X,φmon
f

Q) := H((τp)∗φ
mon
f QX/G),

where the equivariant cohomology of the vanishing cycle complex is defined as

in [KS11], τ : Y → pt is the structure morphism, and f is the induced function

on X. By contrast, in the case of morphisms that are approximated by proper

maps, we have the following degeneration result, which is one of the many uses

of this notion.

Lemma 3.15. Assume that the map p : X/G→ Y from the smooth stack

X/G to the variety Y is approximated by proper maps, f is a regular function
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on X/G, which can be written as f ′p for some function f ′ on Y , and τ : Y → pt

is the structure morphism. Then there is a (noncanonical) isomorphism

H((τp)∗φ
mon
f QX/G) ∼= H

Ä
τ∗H(p∗φ

mon
f QX/G)

ä
.

Proof. Fix a cohomological degree l, and fix a sufficiently large N ∈ N.

Then there is a chain of isomorphisms

Hl((τp)N,∗φmon
fN

QUN/G) =Hl((τpN )∗φ
mon
fN

QUN/G)

∼=Hl(τ∗φmon
f ′ pN,∗QUN/G) properness of pN

∼=Hl(τ∗φmon
f ′ H(pN,∗QUN/G)) decomposition theorem

∼=Hl(τ∗H(φmon
f ′ pN,∗QUN/G)) exactness of φmon

f ′

∼=Hl(τ∗H(pN,∗φ
mon
fN

QUN/G)) properness of pN ,

and then the lemma follows, since once Hl′(pN,∗φmon
fN

QUN/G) stabilises for all

l′ ≤ l + dim(Y ), the final term in the chain of isomorphisms stabilises to

Hl(τ∗H(p∗φ
mon
f QX/G)). �

We now explain how certain maps from moduli stacks of CQ-modules to

the corresponding coarse moduli spaces are approximated by proper maps.

Definition 3.16 (Framed quiver). Let Q be an ice quiver, and let f ∈ Nn
be a dimension vector. We define Qf by

• (Qf )0 = Q0
∐{∞},

• (Qf )1 = Q1
∐{βi,g|i ∈ Q0, 1 ≤ g ≤ fi},

where t(βi,g) =∞ and s(βi,g) = i. We set ∞ to be a principal vertex of Qf .

In what follows, for dimension vectors f ∈ Nn, we write f 7→ ∞ to mean

that each component of f is taken to be arbitrarily large.

Fix a dimension vector d ∈ Nm. Let

(19) Vf ,d =
∏
s≤m

Hom(Cfs ,Cds).

Then Vf ,d carries a Gd-action via the GLds-actions on the vector spaces Cds .

Define V surj
f ,d ⊂ Vf ,d by V surj

f ,d =
∏
s≤m Homsurj(Cfs ,Cds). Composition of linear

maps provides a surjection of topological spaces

Hom(Cfs ,Cds−1)×Hom(Cds−1,Cds)→
Ä
Hom(Cfs ,Cds) \Homsurj(Cfs ,Cds)

ä
for which the domain has dimension fsds − fs + d2

s − ds, and so we deduce

codimVf ,d

Ä
Vf ,d \ V surj

f ,d

ä
≥ |f | − d · d + |d| 7→ ∞ as f 7→ ∞.(20)

We write (1,d) for the dimension vector for Qf that is 1 at the framing vertex

∞, and d when restricted to the quiver Q.
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Definition 3.17. Let ζ ∈ Hn
+ be a stability condition. Fix θ ∈ [0,π) a

slope. We extend ζ to a stability condition ζ(θ) for Qf by setting the argument

of ζ
(θ)
∞ to be equal to θ+ε for 0 < ε� 1 and making |ζ(θ)

∞ | very large (possibly

depending on d).

For a (1,d)-dimensional CQf -module ρ, ζ(θ)-stability is equivalent to the

following two conditions:

(1) if ρ′ is the underlying CQ-module of ρ, then every d′ in the Harder–

Narasimhan type of ρ′ has slope less than or equal to θ;

(2) if ρ′′ ⊂ ρ is the smallest sub CQf -module of ρ satisfying dim(ρ′′)∞ = 1,

then all of the d′ in the Harder–Narasimhan type of ρ/ρ′′ have slope greater

than θ.

It follows from the first condition that ρ′ must have slope less than or equal

to θ. It follows from the indivisibility of the dimension vector (1,d) that a

(1,d)-dimensional CQf -module is ζ(θ)-stable if it is ζ(θ)-semistable. The Gd-

action on X(Qf )
ζ(θ) -ss
(1,d) is scheme-theoretically free, by the standard argument

recalled in [Efi11, Prop. 3.7]. Let N ∈ Zn be the constant dimension vector

(N, . . . , N). There are natural open inclusions

X(Q)ζ[0,θ],d × V
surj
f ,d ⊂ X(Qf )

ζ(θ) -ss
(1,d) ⊂ X(Q)ζ[0,θ],d × Vf ,d

of Gd-equivariant varieties, and therefore it follows from (20) that the spaces

X(QN )ζ
(θ) -ss

(1,d) provide a system of spaces UN fulfilling the requirements listed

at the start of this section for calculating direct images of vanishing cycles on

M(Q)ζ[0,θ],d. We define

(21) M(Q)ζ,θ -sfr
f ,d := X(Qf )

ζ(θ) -ss
(1,d) /Gd,

the scheme-theoretic quotient. We denote by

π
ζ,θ -sfr
f ,d : M(Q)ζ,θ -sfr

f ,d →M(Q)d

the natural projection, taking a stable framed CQf -module to the semisimpli-

fication of its underlying CQ-module.

By [LBP90, Th. 1], for an arbitrary finite quiver Q′ and dimension vector

d′ ∈ NQ′0 , the Gd′-invariant functions on X(Q′)d′ , are generated by the func-

tions ρ 7→ Tr(ρ(c)) for c ∈ CQ′/[CQ′,CQ′] a cycle. As Qf contains no cycles

not already contained in Q, we deduce that πζ,θ -sfr
f ,d is projective, as it is the

composition of the GIT quotient map

X(Qf )
ζ(θ) -ss
(1,d) /Gd →M(Qf )(1,d)
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and the forgetful isomorphismM(Qf )(1,d) →M(Q)d between the affinizations.

In conclusion, we may make identifications

H
Å
pζ[0,θ],d,∗φ

mon
Tr(W )ζ

[0,θ],d

ICM(Q)ζ
[0,θ],d

(Q)

ã
= lim

f 7→∞

Å
H
Å
π
ζ,θ -sfr
f ,d,∗ φ

mon
Tr(W )ζ,θ -sfr

f ,d

ICM(Q)ζ,θ -sfr
f ,d

(Q)

ã
⊗ Lf ·d/2

ã
and

H
Å
pζ[0,θ],d,!φ

mon
Tr(W )ζ

[0,θ],d

ICM(Q)ζ
[0,θ],d

(Q)

ã
= lim

f 7→∞

Å
H
Å
π
ζ,θ -sfr
f ,d,! φ

mon
Tr(W )ζ,θ -sfr

f ,d

ICM(Q)ζ,θ -sfr
f ,d

(Q)

ã
⊗ L−f ·d/2

ã
,

and we have proved the following proposition.

Proposition 3.18. For an arbitrary stability condition ζ ∈ Hn
+ slope θ ∈

[0,π) and dimension vector d ∈ Nm, the map pζ[0,θ],d : M(Q)ζ[0,θ],d → M(Q)d
is approximated by proper maps in the sense of Definition 3.14.

Corollary 3.19. The map (13),

pζ -ss
d : M(Q)ζ -ss

d →M(Q)ζ -ss
d ,

is approximated by proper maps.

Proof. Setting θ = Ξζ(d), there is a commutative diagram

M(Q)ζ -ss
d

pζ -ss
d //

=

��

M(Q)ζ -ss
d ,

M(Q)ζ[0,θ],d

pζ
[0,θ],d

88

where the vertical equality follows from the fact that if a d-dimensional CQ-

module M is not semistable, it has a Harder–Narasimhan filtration

0 = M0 ⊂ · · · ⊂Mh = M

with h ≥ 2, and Ξζ(dim(Mh/Mh−1)) > Ξζ(d). The diagonal morphism in the

commutative diagram is approximated by proper maps by Proposition 3.18,

and the corollary follows. �

By [Sai90a], (monodromic) vanishing cycle functors commute with taking

the direct image along proper maps and are exact by Proposition 3.5, and so
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we deduce from Proposition 3.18 that

H
Å
pζ[0,θ],d,∗

Å
φmon
Tr(W )ζ

[0,θ],d

ICM(Q)ζ
[0,θ],d

(Q)

ãã
(22)

∼= φmon
Tr(W )d

lim
f 7→∞

Å
H
Å
π
ζ,θ -sfr
f ,d,∗ ICM(Q)ζ,θ -sfr

f ,d
(Q)

ã
⊗ Lf ·d/2

ã
∼= φmon

Tr(W )d
H
Å
pζ[0,θ],d,∗

Å
ICM(Q)ζ

[0,θ],d
(Q)

ãã
and

H
Å
pζ[0,θ],d,!

Å
φmon
Tr(W )ζ

[0,θ],d

ICM(Q)ζ
[0,θ],d

(Q)

ãã
(23)

∼= φmon
Tr(W )d

lim
f 7→∞

Å
H
Å
π
ζ,θ -sfr
f ,d,! ICM(Q)ζ,θ -sfr

f ,d
(Q)

ã
⊗ L−f ·d/2

ã
∼= φmon

Tr(W )d
H
Å
pζ[0,θ],d,!

Å
ICM(Q)ζ

[0,θ],d
(Q)

ãã
.

We now have the notation at hand to give the promised proof of the following

lemma.

Lemma 3.20 ([Rei11, Lemma 2.1]). The map M(Q) ×M(Q)
⊕−→ M(Q)

is finite.

Proof. Quasi-finiteness is clear, since up to isomorphism, a direct sum of

simple CQ-modules can be written as a direct sum of direct sums of simple CQ-

modules in only finitely many ways. So all that remains is to prove properness.

Fix two dimension vectors d′,d′′ ∈ Nm. Setting ζ = (i, . . . , i), the moduli space

M(Q)-sfr
f ,d :=M(Q)

ζ,π/2 -sfr
f ,d

is just the usual noncommutative Hilbert scheme, i.e., the moduli space of

framed d-dimensional CQ-modules for which the framing vector generates the

CQ-module, as introduced in [Rei05]. Then for sufficiently large f ′, f ′′ (for

instance if f ′ ≥ d′ and f ′′ ≥ d′′ for the natural partial ordering), the moduli

spaces M(Q)-sfr
f ′,d′ and M(Q)-sfr

f ′′,d′′ are nonempty, and the maps M(Q)-sfr
f ′,d′ →

M(Q)d′ and M(Q)-sfr
f ′′,d′′ →M(Q)d′′ are surjective on geometric points.

We claim that the natural map M(Q)-sfr
f ′,d′ ×M(Q)-sfr

f ′′,d′′ →M(Q)-sfr
f ,d is a

closed embedding, where we have set d = d′ + d′′ and f = f ′ + f ′′. We define

ν′ : M(Q)-sfr
f ,d → Z to be the lower semicontinuous function taking a framed

representation to the dimension of the CQ-module generated by the first f ′

framing vectors, and we define ν′′ similarly, by considering the last f ′′ framing

vectors. Then ν := ν′ + ν′′ is lower semicontinuous, and the desired inclusion

is a component of the inclusion of the set ν−1(τ), where τ =
∑
s∈Q0

ds is the

minimal value of ν, thus proving the claim. The map πf ,d : M(Q)-sfr
f ,d →M(Q)d
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is proper, as noted above. So in the diagram

M(Q)-sfr
f ′,d′ ×M(Q)-sfr

f ′′,d′′

((
πf ′,d′×πf ′′,d′′

��
M(Q)d′ ×M(Q)d′′ ⊕

//M(Q)d

the diagonal map is proper, while the vertical map is surjective on points, and

⊕ is separated since M(Q)d′ and M(Q)d′′ are quasiprojective. Properness of

the horizontal map then follows via the valuative criterion of properness. �

3.5. Cohomological wall crossing. The following theorem is a categorifi-

cation of the identity in the quantum torus ÂQ induced by the existence and

uniqueness of Harder–Narasimhan filtrations. This identity is known as the

wall crossing formula in the work of Kontsevich, Soibelman, Joyce and Song.

It is this theorem that allows us to categorify the strategy for understanding

quantum cluster mutation that starts with Nagao’s quote from the introduc-

tion.

Theorem 3.21. There is an isomorphism in D≥,lf(MMHM(M(Q))),Å
H
Å
pζ[0,θ],∗

Å
φmon
Tr(W )ζ

[0,θ]

ICM(Q)ζ
[0,θ]

(Q)

ããã
nilp

∼= �tw

⊕,[θ
γ−→0]

Å
H
Å
qζγ,∗p

ζ -ss
γ,∗

Å
φmon
Tr(W )ζ -ss

γ
ICM(Q)ζ -ss

γ
(Q)

ããã
nilp

,

where the monoidal product is taken over descending slopes.

Proof. Let HN[0,θ],d be the set of all Harder–Narasimhan types

d = (d1, . . . ,dt) ∈ HNd

such that all the slopes Ξζ(dg) belong to [0, θ]. By [Rei03, Prop. 3.7] there is a

partial order ≤′ on the set HN[0,θ],d such that for all e ∈ HN[0,θ],d, the closure

of X(Q)ζe is contained in
⋃

e′≤′eX(Q)ζ
e′

. We complete ≤′ to a total order ≤ on

HN[0,θ],d. For e ∈ HN[0,θ],d, we define

X(Q)ζ≤e :=
⋃
e′≤e

X(Q)ζ
e′
,

X(Q)ζ<e :=
⋃
e′<e

X(Q)ζ
e′
.

We denote by

ie : M(Q)ζe ↪→M(Q)d,

i<e : M(Q)ζ<e ↪→M(Q)d,

i≤e : M(Q)ζ≤e ↪→M(Q)d
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the obvious inclusions. Let m ∈ HN[0,θ],d be the maximum element with

respect to ≤. The variety X(Q)ζ[0,θ],d is open in X(Q)d (see, e.g., the proof of

[DMSS15, Prop. 4.20]), and so these schemes have the same dimension, and

there is an isomorphism

H
(
pζ[0,θ],d,!i

∗
≤mICM(Q)d(Q)

)
∼= H

Å
pζ[0,θ],d,!ICM(Q)ζ

[0,θ],d
(Q)

ã
.

For all e ∈ HN[0,θ],d the inclusion Xe ⊂ X≤e is open, with complement X<e.

As such, there is a distinguished triangle

H
Ä
pd,!ie,!i

∗
eICM(Q)d(Q)

ä
→ H

Ä
pd,!i≤e,!i

∗
≤eICM(Q)d(Q)

ä
(24)

→ H
Ä
pd,!i<e,!i

∗
<eICM(Q)d(Q)

ä
→ .

On the other hand, for e = (d1, . . . ,dt), there is an isomorphism, via the usual

diagram of affine fibrations and the biexactness of �⊕ (see, e.g., the proof of

the cohomological wall crossing isomorphism in [DM16, §4.2])

H
Ä
pd,!ie,!i

∗
eICM(Q)d(Q)

ä ∼= HÅqζdt,!pζ -ss
dt,! ICM(Q)ζ -ss

dt
(Q)

ã
�tw
⊕ · · ·(25)

· · ·�tw
⊕ H

Å
qζd1,!p

ζ -ss
d1,!ICM(Q)ζ -ss

d1
(Q)

ã
.

Each of the terms on the right-hand side of (25) is pure since for each g ≤ t, the

map qζdg ,!p
ζ -ss
dg ,! is approximated by proper maps by Corollary 3.19 and proper-

ness of qζdg ,!. (It is a GIT quotient map.) It follows that the right-hand side of

(25) is pure by properness of the direct sum map (Lemma 3.20) and Proposi-

tion 3.4, and so the left-hand side of (25) is pure, and we deduce that the first

term of (24) is pure.

It follows by induction with respect to the order ≤ that all of the terms

in (24) are pure, and the associated long exact sequence breaks up into short

exact sequences (one for each cohomological degree), which are moreover split

by semisimplicity of the category of pure mixed Hodge modules on M(Q)d
[Sai90a, (4.5.3)]. It follows that there is an isomorphism

H
Å
pζ[0,θ],d,!ICM(Q)ζ

[0,θ],d
(Q)

ã
∼=

⊕
(d1,...,dt)∈(Ξζ)−1([0,θ])

Ξζ(d1)<...<Ξζ(dt)∑t
i=1

di=d

�tw

⊕,i=1,...,tH
Å
qζ
di,!
pζ -ss
di,!
ICM(Q)ζ -ss

di
(Q)

ã
.

Summing over d and rearranging we obtain the isomorphism

(26) H
Å
pζ[0,θ],!ICM(Q)ζ

[0,θ]
(Q)

ã
∼= �tw

⊕,[0
γ−→θ]H

(
qζγ,!p

ζ -ss
γ,! ICM(Q)ζ -ss

γ
(Q)

)
.
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Taking Verdier duals, we obtain the isomorphism

(27) H
Å
pζ[0,θ],∗ICM(Q)ζ

[0,θ]
(Q)

ã
∼= �tw

⊕,[θ
γ−→0]H

(
qζγ,∗p

ζ -ss
γ,∗ ICM(Q)ζ -ss

γ
(Q)

)
.

The reversal in the order of the product between (26) and (27) is as in Re-

mark 3.10. Applying the functor φmon
Tr(W ) to (27), we obtain

φmon
Tr(W )H

Å
pζ[0,θ],∗ICM(Q)ζ

[0,θ]
(Q)

ã
∼= φmon

Tr(W )�
tw

⊕,[θ
γ−→0]H

(
qζγ,∗p

ζ -ss
γ,∗ ICM(Q)ζ -ss

γ
(Q)

)
.

Since Tr(W ) is identically zero on the nilpotent locus, we may apply the Thom–

Sebastiani isomorphism (11), after restriction to the nilpotent locus, to obtain

the isomorphism

H
Å
φmon
Tr(W )p

ζ
[0,θ],∗ICM(Q)ζ

[0,θ]
(Q)

ã
nilp

∼= �tw

⊕,[θ
γ−→0]H

(
φmon
Tr(W )γ

qζγ,∗p
ζ -ss
γ,∗ ICM(Q)ζ -ss

γ
(Q)

)
nilp

,

where we have also used exactness of φmon
Tr(W )γ

(Proposition 3.5) to commute

the vanishing cycle functor past the total cohomology functor. Since all rele-

vant maps are either proper or can be approximated by proper maps, and so

commute with vanishing cycle functors, we deduce that there is an isomorphismÅ
H
Å
pζ[0,θ],∗φ

mon
Tr(W )ζ

[0,θ]

ICM(Q)ζ
[0,θ]

(Q)

ãã
nilp

∼= �tw

⊕,[θ
γ−→0]

Å
H
Å
qζγ,∗p

ζ -ss
γ,∗ φ

mon
Tr(W )ζ -ss

γ
ICM(Q)ζ -ss

γ
(Q)

ãã
nilp

,

as required. �

Definition 3.22. In the following example, we use the plethystic exponen-

tial EXP, defined as follows. If p(x1, . . . , xs, q
1/2) ∈ Z((q1/2))[[x1, . . . , xs]] is a

formal power series in commuting variables, written as

p(x1, . . . , xs, q
1/2) =

∑
g1,...,gs∈N,h∈Z

ag1,...,gs,hx
g1
1 · · ·x

gs
s (−q1/2)h

with ag1,...,gs,h = 0 if g1 = · · · = gs = 0, then we define

EXP
Ä
p(x1, . . . , xs, q

1/2)
ä

=
∏

g1,...,gs∈N,h∈Z
(1− xg11 · · ·x

gs
s (−q1/2)h)−ag1,...,gs,h .

The signs appearing next to half powers of q in the above definition are

there in order to accord with the signs in the definition of χQ; see (18).
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Example 3.23. Let Q be the ice quiver with vertices {1, 2}, with one arrow

going from 2 to 1, and no other arrows, and for which Qprinc = Q. Then

ÂQ = Z((q1/2))[[Y (1,0), Y (0,1)]],

with the commutation relation Y (1,0)Y (0,1) = qY (0,1)Y (1,0). Consider a stability

condition ζ, for which Ξζ((1, 0)) = π/4 and Ξζ((0, 1)) = π/2. We put W = 0.

(There are no nonzero potentials for this quiver, as it is acyclic.) Then the

only ζ-semistable CQ-modules are direct sums of the simple representations

S(Q)s, for s ∈ {1, 2}. Putting θ = 3π/4 in Theorem 3.21, and applying χQ to

the resulting equality in K0(D≥,lf(MMHM(N2))), we obtain the identity

(28) χQ
Ä
[Dim∗(ICM(Q)(Q))]

ä
= EXP

Ç
Y (0,1)

q−1/2 − q1/2

å
EXP

Ç
Y (1,0)

q−1/2 − q1/2

å
,

where we have used the well-known quantum dilogarithm identity

(29)
∑
g∈N

χq
Ä
H(pt /GLg,Q)⊗ Lg

2/2,−q1/2
ä
xg = EXP

Å
x

q−1/2 − q1/2

ã
,

considering x/(q−1/2 − q1/2) as a formal power series via the expansion

x

q−1/2 − q1/2
= x(q1/2 + q3/2 + · · · ).

On the other hand, picking ζ′ so that Ξζ
′
((1, 0)) = π/2 and Ξζ

′
((0, 1)) = π/4,

we obtain more semistable modules, namely, direct sums of the Jacobi algebra

CQ, considered as a module over itself. We thus obtain the identity

χq
Ä
[Dim∗(ICM(Q)(Q))]

ä(30)

= EXP

Ç
Y (1,0)

q−1/2 − q1/2

å
EXP

Ç
Y (1,1)

q−1/2 − q1/2

å
EXP

Ç
Y (0,1)

q−1/2 − q1/2

å
.

Multiplying (28) and (30) on the right by EXP
(
−Y (0,1)

q−1/2−q1/2

)
, considering the

resulting identity as an identity between formal power series in Y (1,0), and

considering just the linear coefficient, we obtain the identity

EXP

Ç
Y (0,1)

q−1/2 − q1/2

å
Y (1,0) EXP

Ç
Y (0,1)

q−1/2 − q1/2

å−1

= Y (1,0) + Y (1,1)

(31)

= Y (1,0)(1 + q−1/2Y (0,1)).

This is a purely algebraic identity, holding in any sufficiently complete Z((q1/2))-

algebra such that Y (1,0)Y (0,1) = qY (0,1)Y (1,0).
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Alternatively, multiplying (28) and (30) on the left by EXP
(
−Y (1,0)

q−1/2−q1/2

)
,

we obtain the identity

(32) EXP

Ç
Y (1,0)

q−1/2 − q1/2

å−1

Y (0,1) EXP

Ç
Y (1,0)

q−1/2 − q1/2

å
= Y (0,1) + Y (1,1).

The identity between the right-hand sides of (28) and (30) is the simplest of

the “dilogarithm identities” associated to Dynkin quivers; see [Kel11b] for more

details of the relation between these identities and quantum cluster algebras.

Remark 3.24. Note that written in terms of the Z((q1/2))-basis provided

by the monomials Y d, the right-hand sides of equations (31) and (32) do not

involve any powers of q1/2 and are, in particular, invariant under the substitu-

tion q1/2 7→ q−1/2. In the context of quantum cluster algebras, this well-known

phenomenon (see [BZ05, Prop. 6.2]) also follows from the Lefschetz property

for quantum cluster transformations, part of our main theorem.

4. Cluster mutations from derived equivalences

4.1. Categorification of cluster mutation. Let (Q,W ) be a quiver with

formal potential. We recall Ginzburg’s construction of Γ̂(Q,W ) from [Gin06].

Firstly, we form a graded quiver Q̃ from Q by setting

Q̃0 = Q0,

(Q̃1)0 = Q1,

(Q̃1)−1 = {a∗|a ∈ Q1},

(Q̃1)−2 = {ωi|i ∈ Q0}.

The numbers appearing outside of the brackets in the above expressions specify

the degrees of the arrows. For a ∈ Q1, we set s(a∗) = t(a) and t(a∗) = s(a). So

in degree -1, Q̃ is the opposite quiver of Q. For i ∈ Q0, we set s(ωi) = t(ωi) = i.

We let Γ̂(Q, 0) be the free path algebra of Q̃, completed at the two-sided ideal

generated by the degree zero arrows. We define a differential on the generators

by setting

da = 0 for a ∈ Q1,

da∗ = ∂W/∂a,

dωi = ei
∑
a∈Q1

[a, a∗]ei for i ∈ Q0

and extend d to a differential on Γ̂(Q, 0) by the Leibniz rule, linearity and

continuity. The resulting differential graded algebra is denoted Γ̂(Q,W ). Then

Ĵac(Q,W ) ∼= H0(Γ̂(Q,W )), and there is an embedding of categories

Mod-Ĵac(Q,W ) ⊂ D(Mod-Γ̂(Q,W ))
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as the heart of the natural t structure. Accordingly, we may consider S(Q)s
as the simple Γ̂(Q,W )-module concentrated in degree zero, with dimension

vector 1s, and for which all of the arrows act via the zero map. The al-

gebra Γ̂(Q,W ) is 3-Calabi–Yau in the sense defined and proved in [Kel11a],

so that there is a bifunctorial isomorphism Exti(M,N) ∼= Ext3−i(N,M)∗ on

Df .d(Mod-Γ̂(Q,W )) [Kel08, Lemma 4.1].

For a dimension vector f ∈ Nn, we define

Ĵac(Q,W )f :=
⊕
s≤n

Ä
es · Ĵac(Q,W )

ä⊕fs
.

We define Γ̂(Q,W )f and Jac(Q,W )f similarly. For s ∈ Q0, tensoring the

bimodule resolution of Γ̂(Q,W ) (see [Gin06, Prop. 5.1.9]) with S(Q)s, there is

a canonical resolution

0→ es · Γ̂(Q,W )→
⊕

a∈Q1|s(a)=s

et(a) · Γ̂(Q,W )(33)

→
⊕

a∈Q1|t(a)=s

es(a) · Γ̂(Q,W )→ es · Γ̂(Q,W )→ S(Q)s → 0.

The map

dim: K0

Ä
Df .d(Mod-Γ̂(Q,W ))

ä
→ Zn

is an isomorphism, which extends in the obvious way to morphisms

K0(mod-Jac(Q,W ))→ Zn

in the case of algebraic W , and K0(mod-CQ) → Zn, which are isomorphisms

if CQ is acyclic. We denote by Df .d
princ(Mod-Γ̂(Q,W )) the full subcategory

of D(Mod-Γ̂(Q,W )) whose objects have finite-dimensional total cohomology,

supported on the principal part of Q. We identify Zm with

K0

Ä
Df .d

princ(Mod-Γ̂(Q,W ))
ä

via the map sending 1s 7→ [S(Q)s].

Recall that we define Perf(Γ̂(Q,W )) ⊂ D(Mod-Γ̂(Q,W )) to be the small-

est strictly full subcategory, closed under shifts, cones and direct summands,

containing the modules es · Γ̂(Q,W ) for s ∈ Q0. We identify Zn with

K0(Perf(Γ̂(Q,W )))

via the map sending 1s 7→ [es · Γ̂(Q,W )]. This map is indeed an isomorphism —

this appears to be a standard fact, which one may prove2 by combining [Bon10,

Lemma 5.2.1] and [KY11, Lemma 2.17], or using the fact that under the Koszul

duality functor Hom(
⊕
i∈Q0

S(Q)i,−) the set of perfect modules ei · Γ̂(Q,W )

is sent to the set of simple modules Si for the Koszul dual quiver algebra

2Thanks to Bernhard Keller for pointing out this argument.
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[LPWZ08, Th. 5.4], and the category of iterated shifts and extensions of this set

of objects is the category of differential graded modules with nilpotent finite-

dimensional total cohomology, which is closed under taking direct summands.

The following proposition follows from compatibility of B̃ and Λ and the

existence of the resolution (33).

Proposition 4.1. There is an inclusion of triangulated categories

ν : Df .d
princ(Mod-Γ̂(Q,W )) ↪→ Perf(Γ̂(Q,W )),

and the diagram

K0

Ä
Df .d

princ(Mod-Γ̂(Q,W ))
ä

��

K0(ν)
// K0

Ä
Perf(Γ̂(Q,W ))

ä
��

Zm B̃· // Zn

commutes. Furthermore, giving Zn the bilinear form induced by Λ, and Zm
the bilinear form − 〈•, •〉Q, and K0(Df .d

princ(Mod-Γ̂(Q,W ))) the bilinear form

〈[N ], [N ′]〉 =
∑
g∈Z

(−1)g dim
(
Extg(N,N ′)

)
,

all bilinear forms are preserved in the above diagram.

We set ι = −K0(ν), a homomorphism of lattices with inner product, and

also denote by ι the induced inclusions

ι : AQ → TΛ,

ι : ÂQ → T̂Λ.

By Proposition 4.1, this definition of the map ι agrees with our previous defi-

nition (6) of ι as the map sending Y d 7→ X−B̃·d.

Remark 4.2. Via the identification Zm∼= K0

Ä
Df .d

princ(Mod-Γ̂(Q,W ))
ä
, there

are now three skew-symmetric bilinear forms on Zm, which we denote 〈•, •〉Q,

B̃(•, •), and 〈•, •〉χ, where the second is defined via the principal part of B̃,

and the third is the Euler pairing on K0

Ä
Df .d

princ(Mod-Γ̂(Q,W ))
ä
. Since this

is potentially quite confusing, we collect together the relations between these

three pairings:

(34) 〈•, •〉χ = B̃(•, •) = −〈•, •〉Q.

Remark 4.3. Given M ∈ Df .d
princ

Ä
Mod-Γ̂(Q,W )

ä
and N ∈ Perf

Ä
Γ̂(Q,W )

ä
,

there is an equality

Λ ([N ], ι([M ])) =
∑
g∈Z

(−1)g dim (Extg(N,M)) .
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To show this, we remark that it is sufficient to prove the statement for the nat-

ural generating sets of K0

Ä
Df .d

princ

Ä
Mod-Γ̂(Q,W )

ää
and K0

Ä
Perf

Ä
Γ̂(Q,W )

ää
.

If we identify Λ with the n×n matrix defining it with respect to the standard

basis, then by the compatibility of Λ and B̃, we have the equality

−ΛB̃ = ĨT ,

where Ĩ is the n ×m matrix with Im×m for the first m columns, and zeroes

elsewhere. By the definition of ι, it then follows that Λ(1s′ , ι(1s′′)) = δs′,s′′ ,

where δs′,s′′ is the Kronecker delta function. Then the claim follows from the

equation∑
g∈Z

(−1)g dim
Ä
Extg(es′ · Γ̂(Q,W ),S(Q)s′′)

ä
= dim

Ä
Hom(es′ · Γ̂(Q,W ), S(Q)s′′)

ä
= δs′,s′′ .

It follows that if

Ψ: Perf
Ä
Γ̂(Q,W )

ä
→ Perf

Ä
Γ̂(Q,W )

ä
is an autoequivalence of triangulated categories, restricting to an autoequiv-

alence Ψ: Df .d
princ

Ä
Mod-Γ̂(Q,W )

ä
→ Df .d

princ

Ä
Mod-Γ̂(Q,W )

ä
, then there is an

identity

Λ
Ä
Ψ([N ]), ιΨ([M ])

ä
= Λ([N ], [M ])

for all N,M as above, where we have used the same letter Ψ to denote the

induced automorphisms of the respective Grothendieck groups.

4.2. Nagao’s torsion pair. The following is proved in [KY11, Th. 3.2,

Rem.3.3].

Theorem 4.4. Let (Q,W ) be a QP that is nondegenerate with respect

to the sequence of principal vertices s = (s1, . . . , st), and let ε ∈ {±}t be a

sequence of signs of length t. There is a quasi-equivalence

Φs,ε : D
Ä
Mod-Γ̂(Q,W )

ä
→ D

Ä
Mod-Γ̂(µs(Q,W ))

ä
restricting to quasi-equivalences

Φs,ε : Perf
Ä
Γ̂(Q,W )

ä ∼−→ Perf
Ä
Γ̂(µs(Q,W ))

ä
and

(35) Φs,ε : Df .d
princ

Ä
Mod-Γ̂(Q,W )

ä ∼−→ Df .d
princ

Ä
Mod-Γ̂(µs(Q,W ))

ä
.

If εt = +, there is an exact triangle

Φ−1
s,ε

Ä
est · Γ̂(µs(Q,W ))

ä
→

⊕
a∈µs′ (Q)1|t(a)=st

Φ−1
s′,ε′

Ä
es(a) · Γ̂(µs′(Q,W ))

ä
(36)

→ Φ−1
s′,ε′

Ä
est · Γ̂(µs′(Q,W ))

ä
→
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while if εt = −, there is an exact triangle

Φ−1
s′,ε′

Ä
est · Γ̂(µs′(Q,W ))

ä
→

⊕
a∈µs′ (Q)1|s(a)=st

Φ−1
s′,ε′

Ä
et(a) · Γ̂(µs′(Q,W ))

ä
(37)

→ Φ−1
s,ε

Ä
est · Γ̂(µs(Q,W ))

ä
→ .

In either case, there is a quasi-isomorphism

(38) Φ−1
s,ε

Ä
ei · Γ̂(µs(Q,W ))

ä ∼= Φ−1
s′,ε′

Ä
ei · Γ̂(µs′(Q,W ))

ä
for i 6= st.

Remark 4.5. Let s = (s) be a sequence consisting of a single vertex. Then

Φs,− is the quasi-inverse to the functor F of [KY11, Th. 3.2].

Definition 4.6. A torsion structure (T ,F) on an Abelian category A is a

pair of full subcategories T ,F ⊂ A such that

(1) for all M ′ ∈ T and M ′′ ∈ F , HomA(M ′,M ′′) = 0.

(2) for every M ∈ A, there exists a short exact sequence

0→M ′ →M →M ′′ → 0

with M ′ ∈ T and M ′′ ∈ F .

Let s = (s1, . . . , st) be a sequence of principal vertices of the ice quiver Q,

and let W ∈ CQ/[CQ,CQ] be a nondegenerate algebraic potential with re-

spect to s. Following [Nag13], though with the modification discussed in

Remark 1.1, we recursively define a torsion structure (Ts,Fs) on the cate-

gory Mod-Ĵac(Q,W ), as well as a sequence of signs εs. We start by setting

T∅ = Mod-Ĵac(Q,W ) and setting F∅ to be the full subcategory containing the

zero module. This obviously provides a torsion structure for Mod-Ĵac(Q,W ).

Now assume that we have defined Ts′ , Fs′ and εs′ . We define

Ss := Φ−1
s′,εs′

(S(µs′(Q))st).

As in [Nag13, Th. 3.4] there is an isomorphism

Φ−1
s′,εs′

Ä
Mod-Ĵac(µs′(Q,W ))

ä ∼= Mod-Ĵac(Q,W )(Fs′ [1],Ts′ ),

and therefore, in particular, (Φs′,εs′
(Fs′)[1],Φs′,εs′

(Ts′)) is a torsion structure

on Mod-Ĵac(µs′(Q,W )). Since S(µs′(Q))st is simple, it follows that either

Ss ∈ Fs′ [1] or Ss ∈ Ts′ . Given two subcategories A′ and A′′ of an Abelian

category A, we define A′ ?A′′ ⊂ A to be the full subcategory containing those

objects M for which there is a short exact sequence

0→M ′ →M →M ′′ → 0
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with M ′ ∈ A′ and M ′′ ∈ A′′. Given an object M ∈ A, we let M⊕ ⊂ A be the

full subcategory containing all direct sums of M . We set

(39) Fs =

S⊕s ?Fs′ if Ss ∈ Ts′ ,

Fs′ ∩ (Ss[−1]⊥) if Ss ∈ Fs′ [1].

We then define Ts := ⊥Fs. In the first instance, we extend εs′ to a sequence εs

by adding a −. In the second instance we add a +.

Definition 4.7. If the sequence of signs εs ends with a − we call it additive.

Otherwise we call it subtractive.

The reason for this odd-looking convention is that the part of the torsion

structure we care about the most is Fs, and in the additive case, we add objects

to Fs at the final stage of its recursive definition. We will sometimes abbreviate

Φs,εs to Φs for notational convenience.

Definition 4.8. We define

Ss :=

Ss if s is additive,

Ss[−1] if s is subtractive.

In other words, we define Ss to be the shift of Ss that belongs to the heart

of the natural t structure of D(Mod-Γ̂(Q,W )). Accordingly, in both cases, we

consider Ss as a Ĵac(Q,W )-module.

The following is proved in [KY11, Lemma 3.11].

Lemma 4.9. There are isomorphisms

Φ(s),+(S(Q)s) ∼= S(µs(Q))s[1],(40)

Φ(s),−(S(Q)s) ∼= S(µs(Q))s[−1]

and distinguished triangles

Φ−1
(s),+ (S(µs(Q))j)→ Ext1 (S(Q)s, S(Q)j)⊗ S(Q)s → S(Q)j [1]→,(41)

S(Q)j [−1]→ Ext2 (S(Q)s,S(Q)j)⊗ S(Q)s → Φ−1
(s),− (S(µs(Q))j)→ .(42)

The existence of the second distinguished triangle follows from the ex-

istence of the first one, the isomorphism (40), the 3-Calabi–Yau pairing on

Df .d(Mod-Γ̂(Q,W )), and the fact, proved in [KY11, Lemma 3.11], that

Φ(s),− : D
Ä
Mod-Γ̂(Q,W )

ä
→ D

Ä
Mod-Γ̂(µs(Q,W ))

ä
is a quasi-inverse to

Φ(s),+ : D
Ä
Mod-Γ̂(µs(Q,W ))

ä
→ D

Ä
Mod-Γ̂(Q,W )

ä
.

Here the second functor is as in Theorem 4.4, considering (s) as a sequence

of vertices of the mutated quiver µs(Q). Given a sequence of vertices s and
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a sequence of signs ε, both of the same length, we define Ψs,ε to be the map

making the following diagram commute:

K0

Ä
Df .d

princ(Mod-Γ̂(Q,W ))
ä

=

��

K0(Φs,ε) // K0

Ä
Df .d

princ(Mod-Γ̂(µs(Q,W )))
ä

=

��
Zm

Ψs,ε // Zm.

Note that Ψs,ε depends on s and ε, but not on W . We abbreviate Ψs,εs to Ψs.

Proposition 4.10. For all s = (s1, . . . , st), all sequences of signs ε of

length t, and for all d ∈ Zm, we have

(Ψs,ε(d),Ψs,ε(d))µs(Q) = (d,d)Q mod 2.

Proof. For the inductive step, we can assume that

(Ψs,ε(d),Ψs,ε(d))µs(Q) = (Ψs1,ε1(d),Ψs1,ε1(d))µs1 (Q) mod 2.

For M ′ and M ′′ a pair of Ĵac(Q,W )-modules, there is an identity

([M ′], [M ′′])Q + ([M ′′], [M ′])Q = 〈[M ′], [M ′′]〉Q mod 2

=
∑
g∈Z

dim
(
Extg(M ′,M ′′)

)
mod 2,

and so, since the Euler form of a category is invariant under derived equiva-

lence, we deduce that for all dimension vectors d′,d′′, there is an equality

(Ψ−1
s,±(d′),Ψ−1

s,±(d′′))Q + (Ψ−1
s,±(d′′),Ψ−1

s,±(d′))Q

= (d′,d′′)µs(Q) + (d′′,d′)µs(Q) mod 2.

It follows that it is enough to show that

(Ψ−1
s,±(1i),Ψ

−1
s,±(1i))Q = 1 mod 2

for all i, s ≤ m. By Lemma 4.9, Ψ−1
s,±(1s) = − 1s, and so we only need to

consider the case in which i 6= s. Then we have Ψ−1
s,±(1i) = 1i−max(0,±bsi) ·1s

from (41), and so in both the additive and subtractive cases we calculate

(Ψ−1
s,±(1i),Ψ

−1
s,±(1i))Q = 1 + max(0,±2b2si). �

Given a stability condition ζ ∈ HQ0
+ on a quiver Q, an algebraic poten-

tial W for Q, and an interval S ⊂ [0,π), we denote by (mod-Jac(Q,W ))ζS
the full subcategory of mod-Jac(Q,W ) containing those modules N such that

the Harder–Narasimhan type (d1, . . . ,dt) of N only contains terms satisfy-

ing Ξζ(dg) ∈ S, and for W a formal potential, we define (mod-Ĵac(Q,W ))ζS
similarly.
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The next proposition is only a slight modification of [Nag13, Prop. 4.1],

but we offer the proof for completeness, modifying the proof of [Efi11, Th. 4.17]

for our purposes.

Proposition 4.11. Let W be a potential for Q, nondegenerate with re-

spect to the sequence of vertices s. Then there is a Bridgeland stability condition

ζs ∈ Hn
+, and an angle θs ∈ [0,π) such that

(mod-Ĵac(Q,W ))
ζs
[0,θs]

= Fs ∩mod-Ĵac(Q,W )

and

(mod-Ĵac(Q,W ))
ζs
(θs,π) = Ts ∩mod-Ĵac(Q,W ).

Furthermore, we can choose ζs and θs so that

(mod-Ĵac(Q,W ))
ζs
(θs−δ,θs+δ)

= S
⊕
s

⋂ Ä
mod-Ĵac(Q,W )

ä
for sufficiently small δ.

Proof. Let s = (s1, . . . , st). First consider the additive case. The condi-

tions on ζs and θs are implied by the conditions

(i) Im
Ä
exp(−θs

√
−1) Zζs

Ä
[Φ−1

s,εs
(S(µs(Q))j)]

ää
> 0 for all j 6= st, and

(ii) Im
Ä
exp(−θs

√
−1) Zζs([Ss])

ä
= 0 and Re

Ä
exp(−θs

√
−1) Zζs([Ss])

ä
> 0.

To see this, we first note that the conditions imply that

Fs ∩mod-Ĵac(Q,W ) ⊂ (mod-Ĵac(Q,W ))
ζs
[0,θs]

,

Ts ∩mod-Ĵac(Q,W ) ⊂ (mod-Ĵac(Q,W ))
ζs
(θs,π),

S
⊕
s

⋂ Ä
mod-Ĵac(Q,W )

ä
= (mod-Ĵac(Q,W ))

ζs
(θs−δ,θs+δ)

.

Then equality follows from the inclusions

(mod-Ĵac(Q,W ))
ζs
[0,θs]

= ((mod-Ĵac(Q,W ))
ζs
(θs,π))

⊥ ⊂ (Ts ∩mod-Ĵac(Q,W ))⊥

= Fs ∩mod-Ĵac(Q,W ),

(mod-Ĵac(Q,W ))
ζs
(θs,π) =⊥(mod-Ĵac(Q,W ))

ζs
[0,θs]

⊂⊥(Fs ∩mod-Ĵac(Q,W ))

= Ts ∩mod-Ĵac(Q,W ).

We achieve conditions (i) and (ii) by setting

(43) Im(Zζs(1s)) = 1

for all s ∈ Q0 and

Re(Zζs(Φ−1
s,εs

(S(µs(Q,W ))j))) = − 1

for j 6= st and Re(Zζs(Ss)) = 0, and setting θs = π/2. For the subtractive

case, we set Re(Zζs([Ss])) = −δ′ for 0 < δ′ � 1. �
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We denote by (D≤0
s , D≥1

s ) the t structure on D(Mod-Γ̂(Q,W )) obtained

by pulling back the standard t structure on D(Mod-Γ̂(µs(Q,W ))) along the

quasi-equivalence Φs, and we denote by Hn
s (M) the nth cohomology of M with

respect to this t structure. Let f ∈ Nn. Since this t structure is a tilt of the

usual t structure with respect to the torsion structure (Ts,Fs), it follows that

Γ̂(Q,W )f ∈ D≤1
s . On the other hand, since each simple module S(µs(Q))j is

in Φs(Fs)[1] or Φs(Ts) it follows that Γ̂(Q,W )f ∈ ⊥D≤−1
s . It follows by [Pla11,

Lemma 2.11] that there is an isomorphism

(44) Φs(Γ̂(Q,W )f ) ∼= Γ̂(µs(Q,W ))f ′ ⊕ Γ̂(µs(Q,W ))f ′′ [−1]

for some dimension vectors f ′, f ′′ ∈ Nn, where the isomorphism is in the cate-

gory of graded modules (forgetting the differential). In other words, i.e., in the

terminology of [Pla11], Φs(Γ̂(Q,W )f ) ∈ prD(Mod-̂Γ(µs(Q,W )))
Γ̂(µs(Q,W ))[−1].

Proposition 4.12. Let Q be a quiver, and let W be a potential for Q,

nondegenerate with respect to the sequence of vertices s = (s1, . . . , st). Let

f ∈ Nn be a dimension vector. Then H1
s

Ä
Γ̂(Q,W )f

ä
is represented by a finite

dimensional Ĵac(Q,W )-module.

This is basically [Efi11, Cor. 4.11], but our proof is a little different, in

part because our setup is different, by Remark 1.1.

Proof. It is sufficient to consider the case f = 1s for some s ∈ Q0. By

isomorphism (44), Φs(Γ̂(Q,W )1s) is concentrated in degrees 1 and below, and

so there is a natural map h : Ĵac(Q,W )1s → Rs,s, where we define

Rs,s = H1
s (Γ̂(Q,W )1s).

The map h is just the map from Ĵac(Q,W )1s to its torsion-free part with

respect to the torsion structure (Ts,Fs) and so, in particular, h is a surjec-

tion onto a Ĵac(Q,W )-module. Recall that the top of a module is its largest

semisimple quotient. The map h induces a surjection

S(Q)s = top
Ä
Ĵac(Q,W )1s

ä
→ top (Rs,s)

from which we deduce that there is an isomorphism top(Rs,s) ∼= S(Q)s, and

Rs,s is indecomposable. Now the proof is by induction. First, assume that s

is subtractive. Then the surjection h factors through a map Rs′,s → Rs,s and

the finite-dimensionality of Rs,s follows from the finite-dimensionality of Rs′,s.

On the other hand, if s is additive, then since Rs,s ∈ Fs, there is a short exact

sequence

0→
⊕
P

Ss → Rs,s → Rs′,s → 0

where P is some indexing set, by the construction of the torsion structure (39).

Since Rs,s is indecomposable, it follows that |P | ≤ dim(Ext1(Rs′,s, Ss)), which
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is finite by finite dimensionality of Rs′,s, and so Rs,s is an extension of two

finite-dimensional modules. �

Proposition 4.13. Let Q be a quiver, and let W be an algebraic potential

for Q, nondegenerate with respect to the sequence of principal vertices s. Let

θs and ζs be as in Proposition 4.11, and let d ∈ Nm be a dimension vector with

Ξζs(d) ≤ θs. Then there is an isomorphism of schemes

(45) Gr−Ψs(d)

Ä
H1(Φs(Γ̂(Q,W )f ))

ä ∼=M(Q,W )
ζs,θs -sfr,nilp
f ,d ,

and the right-hand side of (45) is a union of connected components of the

moduli space of stable framed modules M(Q,W )
ζs,θs -sfr
f ,d .

The right-hand side of (45) is introduced in equation (21), which uses

the stability condition introduced just above (21). The notation on the right-

hand side of (45) uses Convention 3.9. On the left-hand side of (45), the first

subscript −Ψs(d) is as defined before Proposition 4.10.

Proof. This is almost the result stated in [Efi11, Prop. 6.3] and carefully

proved as [DMSS15, Prop. 4.35]. The proof of [DMSS15, Prop. 4.35] gives the

isomorphism (45) without modification. The second statement is a consequence

of [Efi11, Prop. 3.1] for the case of generic W , and is given by the proof of

[DMSS15, Prop. 4.28] for general nondegenerate W . �

Corollary 4.14. If W ∈ CQ/[CQ,CQ] is a nondegenerate algebraic

potential with respect to the sequence of mutations s, and d ∈ Nm satisfies

Ξζs(d) ≤ θs, then the stack crit(Tr(W )
ζs
[0,θs],d

) ∩ M(Q)
ζs,nilp
[0,θs],d

is a union of

connected components of crit(Tr(W )
ζs
[0,θs],d

).

For generic W , this is a direct consequence of [Efi11, Prop. 3.1].

Proof. The claim is equivalent to the claim that crit(Tr(W )
ζs
[0,θs],d

) ∩
X(Q)

ζs,nilp
[0,θs],d

is a union of connected components of crit(Tr(W )
ζs
[0,θs],d

). Pick

f ∈ Nm satisfying f ≥ d. Let f be the function induced by Tr(W )d on the

stack (
X(Q)

ζs
[0,θs],d

× V surj
f ,d

)
/Gd,

where V surj
f ,d is as introduced after (19). This stack is a scheme by [EG98,

Prop. 23]. It is sufficient to prove that

crit(f) ∩
(
X(Q)

ζs,nilp
[0,θs],d

× V surj
f ,d

)
/Gd

is a union of connected components of crit(f). This follows from the fact that(
X(Q)

ζs
[0,θs],d

× V surj
f ,d

)
/Gd ⊂M(Q)

ζs,θs -sfr
f ,d

is an open inclusion of schemes, along with the last part of Proposition 4.13. �
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Let d ∈ Nm satisfy Ξζs(d) ≤ θs. Following our conventions, we define

H

Ñ
p
ζs
[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

Q
M(Q)

ζs
[0,θs],d

)
nilp

é
:= lim

f 7→∞

(
H
(
π
ζs,θs -sfr
f ,d,∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

å
nilp

))

and

H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs],d

Q
M(Q)

ζs
[0,θs],d

)
nilp

é
:= lim

f 7→∞

(
H
(

dim∗ π
ζs,θs -sfr
f ,d,∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

å
nilp

))
.

By Corollary 4.14,

M(Q)
ζs,θs -sfr,nilp
f ,d ∩ supp

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

å
= (π

ζs,θs -sfr
f ,d )−1(0) ∩ supp

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

å
is a union of connected components of supp(φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

), and

so there are natural isomorphisms

H
(
π
ζs,θs -sfr
f ,d,∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

å
nilp

)

∼=
Ç
H
Ç
π
ζs,θs -sfr
f ,d,∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

ååå
nilp

and

H

Ñ
p
ζs
[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)
nilp

é
(46)

∼=
(
H
(
p
ζs
[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)))
nilp

.

There is a natural inclusion of monoids Nm → M(Q) sending d to the

point representing the direct sum
⊕

s≤m S(Q)ds , which is an isomorphism onto

M(Q)nilp and has left inverse dim: M(Q) → Nm. We deduce from (46) that
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there is an isomorphism

H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)
nilp

é
(47)

∼= dim∗

Ñ(
H
(
p
ζs
[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)))
nilp

é
,

and by the same argument, there is an isomorphism

H
Ç

Dim∗

Å
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

ã
nilp

å
(48)

∼= dim∗

ÇÅ
H
Å
p
ζs -ss
d,∗

Å
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

ããã
nilp

å
.

4.3. Cluster mutation from torsion pairs.

Proposition 4.15. Let Q be a quiver, and let W ∈ CQ/[CQ,CQ] be

an algebraic potential, nondegenerate with respect to the sequence of principal

vertices s = (s1, . . . , st). Let ζs be as in Proposition 4.11, and set γ = Ξζs(Ss).

Then

(49) H
Ç

Dim∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

å
is pure, of Tate type. Furthermore, the pure monodromic mixed Hodge module

(50) H
Ç

Dim∗

Å
φmon

Tr(W )
ζs -ss
γ

Q
M(Q)

ζs -ss
γ

ã
nilp

å
has trivial monodromy in the sense of Definition 3.6.

Proof. By the construction of ζs (see Proposition 4.11), the only semistable

nilpotent Jac(Q,W )-modules of dimension vector d, where Ξζs(d) = γ, are

direct sums of Ss. Fix d = k dim(Ss). Then by Corollary 4.14, M(Q,W )
ζs -ss,nilp
d

is a connected component of M(Q,W )
ζs -ss
d and is furthermore isomorphic to

the smooth stack pt /GLk, since it is isomorphic to the stack of nilpotent

d-dimensional representations of Jac(Q,W ), and so by the above comment, is

isomorphic to the classifying stack of Aut(S
⊕k
s ).

Since Ξζs(d) = γ, there is an equality M(Q)
ζs -ss
d = M(Q)

ζs
[0,γ],d. By (22),

there is an isomorphism

H
Ç

Dim∗

Å
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

ã
nilp

å
(51)

∼= lim
f 7→∞

H
(

dim∗

Ç
φmon

Tr(W )
ζs,γ -sfr

f ,d

IC
M(Q)

ζs,γ -sfr

f ,d

(Q)

å
nilp

⊗ Lf ·d/2
)
.
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By Proposition 4.13, there is an isomorphism of schemes

M(Q,W )
ζs,γ -sfr,nilp
f ,d

∼= Grk·1st

Ä
H1
Ä
Φs(Γ̂(Q,W )f )

ää
(52)

taking points of the left-hand side to surjections

H1
Ä
Φs

Ä
Γ̂(Q,W )f

ää
→ S (µs(Q))⊕kst .

We write

top
Ä
H1
Ä
Φs(Γ̂(Q,W )f )

ää
=
⊕
s≤n

S(µs(Q))⊕css

for some integers cs. Then

Grk·1st

Ä
H1
Ä
Φs(Γ̂(Q,W )f )

ää ∼= Gr(k, cst).(53)

In particular, we deduce that Grk·1st(H
1(Φs(Γ̂(Q,W )f ))) is scheme-theoretically

smooth and has a trivial fundamental group. Since M(Q,W )
ζs,γ -sfr,nilp
f ,d is a

scheme-theoretically smooth component of the critical locus of Tr(W )
ζs,γ -sfr
f ,d ,

we deduce from the holomorphic Bott–Morse lemma (proved as in [Mil63,

Lemma 2.2]) that for any x ∈ M(Q,W )
ζs,γ -sfr,nilp
f ,d , there is an analytic open

neighbourhood U of x in M(Q)
ζs,γ -sfr
f ,d , where Tr(W )

ζs,γ -sfr
f ,d is written, after

complex analytic change of coordinates, as
∑t
i=1 x

2
i , with x1, . . . , xt local defin-

ing equations for the variety M(Q,W )
ζs,γ -sfr,nilp
f ,d , and t its codimension inside

M(Q,W )
ζs,γ -sfr
f ,d . By the Thom–Sebastiani isomorphism, and the fact that the

dimension of Hc(A1,φx2) is one, the complex of perverse sheaves

φ
Tr(W )

ζs,γ -sfr

f ,d

Q
M(Q)

ζs,γ -sfr

f ,d

[dim(M(Q)
ζs,γ -sfr
f ,d )− 1],

restricted to M(Q,W )
ζs,γ -sfr,nilp
f ,d , is a rank one local system, and a perverse

sheaf, since φ
Tr(W )

ζs,γ -sfr

f ,d

[−1] preserves the perverse t structure [BBD82]. By

triviality of the fundamental group of its support, this local system is globally

trivial, and soÇ
φmon

Tr(W )
ζs,γ -sfr

f ,d

IC
M(Q)

ζs,γ -sfr

f ,d

(Q)

å
nilp

(54)

∼= Q
M(Q)

ζs,γ -sfr,nilp

f ,d

⊗ Lt/2 ⊗ L− dim(M(Q)
ζs,γ -sfr

f ,d
)/2

∼= ICM(Q)
ζs,γ -sfr,nilp

f ,d

(Q).

It then follows from (52) and (53) that

(55) H
(

dim∗

Ç
φmon

Tr(W )
ζs,γ -sfr

f ,d

IC
M(Q)

ζs,γ -sfr

f ,d

(Q)

å
nilp

)
∼= H(Gr(k, cst),Q)vir,

and so both sides of (51) are pure.
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We tensor both sides of (55) with Ldim(M(Q)
ζs,γ -sfr

f ,d
)/2 to obtain

(56) H
(

dim∗

Ç
φmon

Tr(W )
ζs,γ -sfr

f ,d

Q
M(Q)

ζs,γ -sfr

f ,d

å
nilp

)
∼= H(Gr(k, cst),Q)⊗ Lt/2,

where t is the codimension of M(Q,W )
ζs -ss,nilp
d inside M(Q)

ζs -ss
d . By definition,

the monodromic mixed Hodge module (50) is given by (56) as we let f 7→ ∞.

The number t is equal to the difference

(Ψ−1
s (k · 1st),Ψ−1

s (k · 1st))Q − (k · 1st , k · 1st)µs(Q),

where the notation is as in Proposition 4.10. By Proposition 4.10 this number is

even, and so the right-hand side of (56) has trivial monodromy by Remark 3.7.

�

In the course of the proof we have shown that for γ = Ξζs(Ss), the mon-

odromic mixed Hodge module

H
Ç

Dim∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

å
is isomorphic to

H
Å

Dim∗ IC
M(Q,W )

ζs -ss,nilp
γ

(Q)

ã
.

Loosely3 speaking, this means that for d of slope γ, we can replace the restric-

tion to the nilpotent locus of the vanishing cycle monodromic mixed Hodge

module on M(Q)
ζs -ss
d by (a twist of) the constant monodromic mixed Hodge

module supported on the smooth connected component of the critical locus

of Tr(W )
ζs -ss
d corresponding to nilpotent modules. More explicitly, the proof

shows that there are isomorphisms

H
Ç

Dim∗

Å
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

ã
nilp

å
(57)

∼= H
Å

Dim∗ IC
M(Q,W )

ζs -ss,nilp

d

(Q)

ã
∼= H(pt /GLk)vir,

where d = k dim(Ss).

The following proposition is a consequence of Theorem 3.21 (the wall-

crossing isomorphism) and isomorphisms (47) and (48). It gives a recursive

formula for the vanishing cycle cohomology of the stack of all finite-dimensional

modules in Fs.

3Loose, because we do not actually define these mixed Hodge modules, but work with

approximations to them on algebraic varieties.
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Proposition 4.16. Let Q be an ice quiver, let s = (s1, . . . , st) be a se-

quence of principal vertices of Q, and let W be an algebraic potential for Q,

nondegenerate with respect to s. Let θs and ζs be as in Proposition 4.11. Let

γ = Ξζs(Ss). If s is additive, then there is an isomorphism of monodromic

mixed Hodge modules

H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
(58)

∼= H
Å

Dim∗ IC
M(Q,W )

ζs -ss,nilp
γ

(Q)

ã
�tw

+ H

Ö
Dim∗

Ñ
φmon

Tr(W )
ζ
s′

[0,θ
s′ ]

IC
M(Q)

ζ
s′

[0,θ
s′ ]

(Q)

é
nilp

è
,

while if s is subtractive, there is an isomorphism

H

Ö
Dim∗

Ñ
φmon

Tr(W )
ζ
s′

[0,θ
s′ ]

IC
M(Q)

ζ
s′

[0,θ
s′ ]

(Q)

é
nilp

è
(59)

∼= H
Å

Dim∗ IC
M(Q,W )

ζs -ss,nilp
γ

(Q)

ã
�tw

+ H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
.

Remark 4.17. For future reference, we write down the untwisted versions

of isomorphisms (58) and (59). Tensoring both sides of the component of (58)

supported at d by L−(d,d)/2, the isomorphism becomes

H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

Q
M(Q)

ζs
[0,θs]

)
nilp

é
(60)

∼=
⊕

d′′∈Nm|Ξζs (d′′)≤θs
d′∈N dim(Ss)

H
Å

Dim∗Q
M(Q,W )

ζs -ss,nilp

d′

ã
�+ H

Ö
Dim∗

Ñ
φmon

Tr(W )
ζ
s′

[0,θ
s′ ],d

′′
Q

M(Q)
ζ
s′

[0,θ
s′ ],d

′′

é
nilp

è
⊗ L−(d′,d′′),
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while (59) becomes

H

Ö
Dim∗

Ñ
φmon

Tr(W )
ζ
s′

[0,θ
s′ ]

Q
M(Q)

ζ
s′

[0,θ
s′ ]

é
nilp

è
(61)

∼=
⊕

d′′∈Nm|Ξζs (d′′)≤θs
d′∈N dim(Ss)

H
Å

Dim∗Q
M(Q,W )

ζs -ss,nilp

d′

ã
�+ H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs],d

′′
Q

M(Q)
ζs
[0,θs],d

′′

)
nilp

é
⊗ L−(d′,d′′).

We deduce the following corollary by applying χQ to the equalities in the

Grothendieck group of D≥,lf(MMHM(NQ0)) induced by the isomorphisms (58)

and (59) respectively.

Corollary 4.18. In the ring ÂQ, there is an equality

χQ

ÑDim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
= EXP

Ç
Y ± dim(Ss)

q−1/2 − q1/2

å±1

χQ

ÖDim∗

Ñ
φmon

Tr(W )
ζ
s′

[0,θ
s′ ]

IC
M(Q)

ζ
s′

[0,θ
s′ ]

(Q)

é
nilp


è
,

where the sign is positive in the additive case and negative in the subtractive

case.

In the above corollary, we have used equations (29) and (57) to write

χQ

Å
H
Å

Dim∗ IC
M(Q,W )

ζs -ss,nilp
γ

(Q)

ãã
= EXP

(
Y dim(Ss)

q−1/2 − q1/2

)
,

where Ss is as in Definition 4.8.

Theorem 4.19 ([Efi11, Th. 5.11]). Let Q be an ice quiver, let s be a se-

quence of vertices of Qprinc, and let W be an algebraic potential, nondegenerate

with respect to s. Then there is an identity in T̂Λ

µs(M)(f) = ιχQ

ÑHÑDim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

ééX [̂Γ(Q,W )f ]

(62)

Ñ
ιχQ

ÑHÑDim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

ééé−1

.
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Proof. Let s = (s1, . . . , st). As ever, the proof is by induction on the

length of s. There is an equality

EXP

Ç
ι(Y ±[Ss])

q−1/2 − q1/2

å±1

X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] EXP

Ç
ι(Y ±[Ss])

q−1/2 − q1/2

å∓1

(63)

= X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))]

if st 6= s, since then ι(Y ±[Ss]) and X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] commute by Remark 4.3.

In the additive case, we set the first sign to be positive, and in the subtractive

case we set it to be negative. By the last statement of Theorem 4.4, if s 6= st,

we have the equality

X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] = X [Φ−1

s
(es ·̂Γ(µs(Q,W )))].

This demonstrates the inductive step, for s additive or subtractive, and for

st 6= s.

Now say st = s. Firstly, assume that s is additive. Then

X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))]ι(Y [Ss]) = qι(Y [Ss])X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))]

by Remark 4.3. By Example 3.23, the left-hand side of (63) is equal to

X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] +X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))]+ι[Ss].

By (37), we have the identity

[Φ−1
s (est · Γ̂(µs(Q,W )))] =

∑
a∈µs′ (Q)1|s(a)=st

[Φ−1
s′

(et(a) · Γ̂(µs′(Q,W )))]

− [Φ−1
s′

(est · Γ̂(µs′(Q,W )))],

while Proposition 4.1 and (33) give the identity

ι[Ss] := −K0(ν)([Ss])(64)

= −

Ñ ∑
a∈µs′ (Q)1|s(a)=st

[Φ−1
s (et(a) · Γ̂(µs(Q,W ))]

é
+

Ñ ∑
a∈µs′ (Q)1|t(a)=st

[Φ−1
s (es(a) · Γ̂(µs(Q,W ))]

é
.

We have again used that [Φ−1
s′

(es · Γ̂(µs′(Q,W )))] = [Φ−1
s (es · Γ̂(µs(Q,W )))]

for s 6= st. Finally, we deduce that in the case s = st, with s additive, the
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left-hand side of (63) is equal to

EXP

Ç
ι(Y [Ss])

q−1/2 − q1/2

å
X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] EXP

Ç
−ι(Y [Ss])

q−1/2 − q1/2

å
(65)

= X

∑
a∈µ

s′ (Q)1|s(a)=s
[Φ−1

s
(et(a) ·̂Γ(µs(Q,W )))]−[Φ−1

s
(es ·̂Γ(µs(Q,W )))]

+X

∑
a∈µ

s′ (Q)1|t(a)=s
[Φ−1

s
(es(a) ·̂Γ(µs(Q,W )))]−[Φ−1

s
(es ·̂Γ(µs(Q,W )))]

as required.

By (36), in the subtractive case, we have the identity

[Φ−1
s (est · Γ̂(µs(Q,W )))] =

∑
a∈µs′ (Q)1|t(a)=st

[Φ−1
s′

(es(a) · Γ̂(µs′(Q,W )))](66)

− [Φ−1
s′

(est · Γ̂(µs′(Q,W )))].

By Remark 4.3, we have the commutation relation

X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))]ι(Y [Ss[−1]]) = q−1ι(Y [Ss[−1]])X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))].

By (32), there is an identity

EXP

Ç
ι(Y −[Ss])

q−1/2 − q1/2

å−1

X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] EXP

Ç
ι(Y −[Ss])

q−1/2 − q1/2

å
(67)

= X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))] +X [Φ−1

s′
(es ·̂Γ(µs′ (Q,W )))]+ι([Ss[−1]])

= X

∑
a∈µ

s′ (Q)1|t(a)=s
[Φ−1

s
(es(a) ·̂Γ(µs(Q,W )))]−[Φ−1

s
(es ·̂Γ(µs(Q,W )))]

+X

∑
a∈µ

s′ (Q)1|s(a)=s
[Φ−1

s
(et(a) ·̂Γ(µs(Q,W )))]−[Φ−1

s
(es ·̂Γ(µs(Q,W )))]

,

where the final identity is given by (64) and (66).

�

It follows that the right-hand side of (62) is in TΛ, as opposed to the

completion T̂Λ, by [BZ05, Cor. 5.2]. We will see how to derive that result

within the present framework in Section 6.

5. Proof of the purity conjecture

The goal of this section is to prove Theorem 5.2, which is a purity re-

sult for the monodromic mixed Hodge module categorifying quantum cluster

coefficients.

Proposition 5.1. Let Q be an ice quiver. Let s = (s1, . . . , st) be a se-

quence of principal vertices of Q, let W be an algebraic potential for Q, non-

degenerate with respect to s, and let ζs and θs be as in Proposition 4.11. Then
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the monodromic mixed Hodge module

(68) H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
is pure, of Tate type. Furthermore, the monodromic mixed Hodge module

(69) H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

Q
M(Q)

ζs
[0,θs]

)
nilp

é
has trivial monodromy.

Proof. We prove the proposition by induction on the length of s. The

result is clearly true for s = ∅, since then Fs contains only the zero module, and

(68) and (69) are isomorphic to Q{0}, the constant pure mixed Hodge module

supported at the origin 0 ∈ Nm. As in Proposition 4.15 we set γ = Ξζs(Ss).

By the proof of Proposition 4.15 (see isomorphism (57)),

H
Å

Dim∗ IC
M(Q,W )

ζs -ss,nilp
γ

(Q)

ã
is pure. So if s is additive, purity follows from the isomorphism (58) and

the inductive hypothesis, since �tw
+ preserves purity, by Proposition 3.4 and

Lemma 3.20. On the other hand, if s is subtractive, then impurity of

(70) H

Ö
Dim∗

Ñ
φmon

Tr(W )
ζ
s′

[0,θ
s′ ]

IC
M(Q)

ζ
s′

[0,θ
s′ ]

(Q)

é
nilp

è
or its failure to be of Tate type is implied by impurity of

(71) H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
or its failure to be of Tate type, since there is an inclusion of the monoidal unit

Q{0} ⊂ H
Å

Dimζs -ss
γ,∗ ICM(Q,W )

ζs -ss,nilp
γ

(Q)

ã
as a direct summand, and so (59) implies there is an inclusion (71) ⊂ (70) as

a direct summand. So purity, of Tate type, follows again from the inductive

hypothesis. The monodromy statement is proved in exactly the same way,

using the monodromy statement of Proposition 4.15 in the inductive step,

and the modified isomorphisms of Remark 4.17 (in which no half Tate twists

appear). �

The next theorem is a modification, in the sense elaborated upon in Re-

mark 1.1, of a conjecture of Kontsevich and Efimov, stated as Conjecture 6.8

of [Efi11]. In addition to proving the conjecture, we prove that the relevant
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monodromic mixed Hodge module is of Tate type, and after a half Tate twist

determined by d, it has trivial monodromy.

Theorem 5.2. Let f ∈ Nn be a framing vector, and let d ∈ Nm be a

dimension vector satisfying Ξζs(d) ∈ [0, θs]. The monodromic mixed Hodge

module

H = H
(

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
is pure, of Tate type, and admits a Lefschetz operator l : H → H[−2] such that

for all k ∈ N, lk : H−k → Hk is an isomorphism. Furthermore, the monodromic

mixed Hodge module

H
(

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

Q
M(Q)

ζs,θs -sfr

f ,d

å
nilp

)
has trivial monodromy.

Proof. We write N(Qf ,princ)0 = Nm+1, where the identification is via the or-

dering (∞, 1, . . . ,m) of the principal vertices of Qf . Let ξ = ζ
(θs)
s be as in Def-

inition 3.17. Set κ = Ξξ(1∞). Recall that, by construction, κ is slightly larger

than θs. By Theorem 3.21, there is an isomorphism in D≥,lf(MMHM(Nm+1))

H
Ç

Dim∗

Å
φmon
Tr(W )ξ

[0,κ]

ICM(Qf )ξ
[0,κ]

(Q)

ã
nilp

å
(72)

∼= �tw

+,[κ
γ−→0]H

Ç
Dim∗

Å
φmon
Tr(W )ξ -ss

γ
ICM(Qf )ξ -ss

γ
(Q)

ã
nilp

å
,

where we have again commuted the operations of passing to total cohomology

and restricting to the nilpotent locus via Corollary 4.14. Since

H
Å

Dim∗φ
mon
Tr(W )ξ -ss

0
ICM(Qf )ξ -ss

0
(Q)

ã
∼= Q{0},

the constant pure mixed Hodge module on the point 0, we deduce that for

each γ ∈ [0, κ],

(73) H
Ç

Dim∗

Å
φmon
Tr(W )ξ -ss

γ
ICM(Qf )ξ -ss

γ
(Q)

ã
nilp

å
is a direct summand of the left-hand side of (72), since there is an isomorphism

H
Ç

Dim∗

Å
φmon
Tr(W )ξ -ss

γ
ICM(Qf )ξ -ss

γ
(Q)

ã
nilp

å
∼=
Å
�tw

+,[κ
γ′−→γ)

Q{0}
ã
�tw

+ H
Ç

Dim∗

Å
φmon
Tr(W )ξ -ss

γ
ICM(Qf )ξ -ss

γ
(Q)

ã
nilp

å
�tw

+

Å
�tw

+,(γ
γ′−→0]

Q{0}
ã
.
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So purity of (73) is implied by the purity of the left-hand side of (72), which

we now demonstrate.

Define a new stability condition ξ′ ∈ HQf
+ by setting ξ′|Q0 = ζs = ξ|Q0 and

ξ′∞ = 1. Note that, by construction of ζs (in particular, (43)), the imaginary

part of ζs · d is greater than zero for all d ∈ NQ0 \ {0}, and so with respect to

the stability condition ξ′, any CQf -module that is not entirely supported at

the vertex ∞ has strictly greater slope than a CQf -module supported entirely

at ∞. In particular, any CQf -module that is supported both at the vertex ∞
and on the original quiver Q is destabilised by its underlying CQ-module.

There is an equality

H
Ç

Dim∗

Å
φmon
Tr(W )ξ

[0,κ]

ICM(Qf )ξ
[0,κ]

(Q)

ã
nilp

å
(74)

= H
(

Dim∗

Ç
φmon

Tr(W )ξ
′

[0,κ]

IC
M(Qf )ξ

′
[0,κ]

(Q)

å
nilp

)

since a CQf -module belongs to (mod-CQf )
ξ
[0,κ], equivalently (mod-CQf )

ξ′

[0,κ], if

and only if the underlying CQ-module belongs to (mod-CQ)
ζs
[0,θs]

. Applying

Theorem 3.21, there are isomorphisms in the category D≥,lf(MMHM(Nm+1))

H
(

Dim∗

Ç
φmon

Tr(W )ξ
′

[0,κ]

IC
M(Qf )ξ

′
[0,κ]

(Q)

å
nilp

)
(75)

∼= �tw

+,[κ
γ−→0]H

Ç
Dim∗

Å
φmon

Tr(W )ξ
′ -ss

γ

IC
M(Qf )ξ

′ -ss
γ

(Q)

ã
nilp

å
∼= �tw

+,[θs
γ−→0]H

Ç
Dim∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

å
�tw

+ H
Ä
Dim∗ ICM(Qf )(N,0,...,0)(Q)

ä
∼=H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
�tw

+ H
Ä
Dim∗ ICM(Qf )(N,0,...,0)(Q)

ä
.

Here the term M(Qf )(N,0,...,0) is the stack of finite-dimensional CQf -modules

having dimension vector 0 when restricted to CQ. This, in turn, is the moduli

stack ∐
r≥0

(pt /GLr),

which has pure cohomology, of Tate type. As such, the term

H
Ä
Dim∗ ICM(Qf )(N,0...,0)(Q)

ä
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is pure, of Tate type, as is

H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
by Proposition 5.1. Since �tw

+ takes pairs of pure objects to pure objects by

Proposition 3.4, we finally deduce that (75) is pure, of Tate type. It then follows

that the left-hand side of (72) is pure, of Tate type, via the equality (74).

Now fix d satisfying Ξζs(d) ∈ [0, θs]. We have shown that

H
Ç

Dim∗

Å
φmon
Tr(W )ξ -ss

(1,d)

ICM(Qf )ξ -ss
(1,d)

(Q)

ã
nilp

å
(76)

∼= H
(

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
⊗H(pt /C∗,Q)vir

is pure, of Tate type, which gives the purity (of Tate type) of

(77) H
(

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
.

The monodromy statement is proved in exactly the same way, using the mon-

odromy statement of Proposition 5.1.

By Proposition 4.13, the cohomology of (77) is the cohomology of a re-

striction of

φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

to a proper union of connected components of its support. As explained in

[DMSS15, Th. 2.3], using the machinery of [Sai88] and the fact that this is an

example of case (c) of [DMSS15, Th. 2.1], we deduce that

H
(

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
carries a Lefschetz operator, as required. �

6. Proof of the main theorem

We recall from [Efi11] the passage from Kontsevich’s conjecture to the

quantum cluster positivity conjecture. From now on we leave out the symbols

H(. . .); we now have purity of all relevant mixed Hodge modules, and so all

mixed Hodge modules that are well defined before passing to total cohomology

are nonetheless isomorphic to their total cohomology.

Proof of Theorem 2.4. As in the proof of Theorem 5.2, we use Defini-

tion 3.17 and set ξ = ζ
(θs)
s . Define

R := {d ∈ Nm|Ξζs(d) ∈ [0, θs]}.
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Combining isomorphisms (72), (74), and (75) from the proof of Theorem 5.2,

and restricting to {1} ×R, there is an isomorphism

Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

�tw
+ Dim∗ ICM(Qf )(1,0,...,0)(Q)(78)

∼= Dim∗

Å
φmon
Tr(W )ξ -ss

{1}×R
ICM(Qf )ξ -ss

{1}×R
(Q)

ã
nilp

�tw
+ Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

.

There is an equality

Dim∗ ICM(Qf )(1,0,...,0)(Q) = (q−1/2 − q1/2)−1Y 1∞

arising from the identity

χq
Ä
H(pt /C∗,Q)vir, q

1/2
ä

= −(q−1/2 − q1/2)−1.

(Recall from (17) the sign change in the definition of χQf
.) Applying χQf

to

the identity in K0(D≥,lf(MMHM(Nm+1))) resulting from (78), and multiplying

both sides on the right byÄ
q−1/2 − q1/2

ä
χQf

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é−1

,

we obtain the identity

χQf

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
Y 1∞(79)

χQf

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é−1

=
∑
d∈R

χQf

(
dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
.

Here we have used the identity

∑
d∈R

χQf

(
dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
(q−1/2 − q1/2)−1

= χQf

Ç
H
Ç

Dim∗

Å
φmon
Tr(W )ξ -ss

(1,d)

ICM(Qf )ξ -ss
(1,d)

(Q)

ã
nilp

åå
arising from (76).
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We extend the homomorphism ι : ÂQ → T̂Λ to a homomorphism ιf : ÂQf

→ T̂Λ by sending Y 1∞ to Xf . The map ιf is indeed a ring homomorphism, as

can be verified via the relations (34) and the calculation

〈1∞,d〉Qf
= −d · f

= Λ(−B̃d, f),

where the second equality follows from (4). The following identity, expressing

mutated cluster variables in terms of vanishing cycle cohomology, then follows

from (79) and Theorem 4.19:

(80) µs(M)(f) =
∑
d∈R

ιfχQf

(
dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d

IC
M(Q)

ζs,θs -sfr

f ,d

(Q)

å
nilp

)
.

By Theorem 5.2, the mixed Hodge module on the right-hand side of (80) is

pure and carries a Lefschetz operator. Positivity, and the Lefschetz property

then follow.

Finally, note that each of the nonzero polynomials ad(q1/2) appearing in

the theorem is given by the weight polynomial of the single monodromic mixed

Hodge structure

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d′
IC
M(Q)

ζs,θs -sfr

f ,d′
(Q)

å
nilp

for d′ satisfying ι(d′)+ f = d, since ι is injective by (4). Since the monodromic

mixed Hodge structure

dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d′
Q
M(Q)

ζs,θs -sfr

f ,d′

å
nilp

is pure, of Tate type, with trivial monodromy by Theorem 5.2, we deduce that

χq

(
dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d′
IC
M(Q)

ζs,θs -sfr

f ,d′
(Q)

å
nilp

, q1/2

)

= χq

Ç
L−dim(M(Q)

ζs,θs -sfr

f ,d′ )
, q1/2

å
· χq

(
dim∗

Ç
φmon

Tr(W )
ζs,θs -sfr

f ,d′
Q
M(Q)

ζs,θs -sfr

f ,d′

å
nilp

, q1/2

)

= (−q1/2)
− dim(M(Q)

ζs,θs -sfr

f ,d′ )
h(q)

for h(q) ∈ N[q]. The sign before the half power of q in the final line is as in

Remark 3.11 and is cancelled by definition of the map χQf
(see (18)). Com-

bining this statement with the Lefschetz property finishes the proof of Theo-

rem 2.4. �
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By combining Theorem 2.4 and Remark 2.1, we recover the following

corollary, which is the classical positivity theorem, due to Lee and Schiffler.

Theorem 6.1. [LS15] Let Q be a quiver. Then the classical positivity

conjecture holds for the cluster algebra AQ.

Appendix A. No exotics property for

motivic Donaldson–Thomas invariants

In this appendix we prove a theorem related to the quantum cluster posi-

tivity theorem, regarding Donaldson–Thomas invariants for cluster collections.

Let Q be a quiver without loops and 2-cycles, and let W ∈ CQ/[CQ,CQ] be

an algebraic potential. For the purposes of this section, we assume that Q has

no frozen vertices; i.e., we identify the vertices of the quiver with the numbers

{1, . . . ,m} and place no restrictions apart from finiteness on the dimension

vector d of our CQ-modules. The bilinear form Λ plays no role in this section

and so, in particular, we do not require that the coefficients of B̃−1 are integral,

or indeed that B̃−1 exists. Let ζs ∈ Hm
+ be a stability condition, and let θs

be a slope, satisfying the conditions of Proposition 4.11, though without the

stipulation on the slope Ξζs(Ss) of Ss.

We assume that ζs is generic, in the sense that if d and d′ are two di-

mension vectors satisfying Ξζs(d) = Ξζs(d′) ≤ θs, then 〈d,d′〉Q = 0. For an

arbitrary stability condition satisfying the conditions of Proposition 4.11, this

can be achieved, for example, by perturbing ζs within the space of stability con-

ditions satisfying the conditions of Proposition 4.11, so that Ξζs(d) = Ξζs(d′)

if and only if d = rd′ for some r ∈ R>0. For γ ∈ [0,π) we define

Λζsγ = {d ∈ Nm \ {0}|Ξζs(d) = γ} ∪ {0},

i.e., Λ
ζs
γ is the monoid of dimension vectors of slope γ with respect to the

stability condition ζs. Then for γ ∈ [0, θs], restricting the twisted product �tw
+

to D≥,lf(MMHM(Λ
ζs
γ )), it becomes a symmetric monoidal product, as the Tate

twist L〈d′,d′′〉Q/2 is trivial for d′,d′′ ∈ Λζsγ . We define

Λζs,+γ := Λζsγ \ {0}.

Given F ∈ D≥,lf(MMHM(Λ
ζs,+
γ )), we define Sym�+

(F) ∈ D≥,lf(MMHM(Λ
ζs
γ ))

to be the free symmetric unital algebra generated by F in the category

D≥,lf(MMHM(Λζsγ )).

We define the plethystic exponential

EXPHodge : K0(D≥,lf(MMHM(Λζs,+γ )))→K0(D≥,lf(MMHM(Λζsγ )))

[F ] 7→[Sym�+
(F)].
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The map EXPHodge is an isomorphism onto its image, which is

1 + K0(D≥,lf(MMHM(Λζs,+γ ))).

It is also a lift of the map EXP of Definition 3.22, in the sense that

EXP ◦χQ|K0(D≥,lf(MMHM(Λ
ζs,+
γ )))

= χQ ◦ EXPHodge .

We define Â
Hodge
Q to be the free K0(D≥,lf(MMHM(pt)))-module generated by

symbols Y e, with e ∈ Nm, and with multiplication defined by

[G]Y e · [G′]Y d = [L〈d,e〉Q/2 ⊗ G ⊗ G′]Y e+d,

completed with respect to the ideal generated by Y e for e ∈ Nm \ {0}. We

define the isomorphism

χ
Hodge
Q : K0

Ä
D≥,lf(MMHM(Nm))

ä
→Â

Hodge
Q

[F ] 7→
∑

d∈Nm
[Fd]Y d.

Let γ ∈ [0, θs]. The Hodge-theoretic Donaldson–Thomas invariants Ω
ζs
d ∈

K0(D≥,lf(MMHM(pt))) for the category of ζs-semistable Jac(Q,W )-modules

of slope γ are defined to be the classes satisfying

χ
Hodge
Q

Åï
H
Å

Dimζs -ss
γ,∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ããòã
(81)

= EXPHodge

Ö∑
d∈Λζs,+

γ

Ω
ζs
d Y

d

[L−1/2]− [L1/2]

è
,

where we define the right-hand side via the identification

K0(D≥,lf(MMHM(Λζsγ ))) = K0(D≥,lf(MMHM(pt)))[[Y e|e ∈ Λζsγ ]],

induced by χHodge
Q , and the expansion

1/([L−1/2]− [L1/2]) = [L1/2] + [L3/2] + · · · .

Similarly, the DT invariants Ω
ζs,nilp
d are defined by the equation

χ
Hodge
Q

Çñ
H
Ç

Dimζs -ss
γ,∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

åôå
(82)

= EXPHodge

Ö∑
d∈Λζs,+

γ

Ω
ζs,nilp
d Y d

[L−1/2]− [L1/2]

è
.
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Remark A.1. Strictly speaking, the correct formulation of the second def-

inition is

χ
Hodge
Q

Çñ
Dmon

Λ
ζs
γ

H
Ç

Dim
ζs -ss
γ,!

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

åôå
(83)

= EXPHodge

Ö∑
d∈Λζs,+

γ

Ω
ζs,nilp
d Y d

[L−1/2]− [L1/2]

è
instead of (82). However, the left-hand sides of (82) and (83) are equal, by

self-duality of the vanishing cycle complex and Corollary 4.14.

In the language of motivic Donaldson–Thomas theory [KS10], the classes

Ω
ζs
d and Ω

ζs,nilp
d are the Hodge-theoretic realisations of the respective motivic

Donaldson–Thomas invariants, as explained in [KS11]. As in [DM15] and

[DM16], we define

DTζsγ ∈ Db(MMHM(Λζs,+γ ))

by the condition that, for d ∈ Λζs,+γ ,

DT
ζs
d =

H
Ç
τ∗φ

mon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

å
if M(Q)

ζs -st
d 6= ∅,

0 otherwise,

where τ :M(Q)
ζs -ss
d → pt is the map to a point. Similarly, we define

DT
ζs,nilp
d =


H
(
τ∗

Ç
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

å
nilp

)
if M(Q)

ζs -st
d 6= ∅,

0 otherwise.

Then by [DM16, Th. A], there are isomorphisms

H
Å

Dimζs -ss
γ,∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ãã
(84)

∼= Sym�+

Ä
DTζsγ ⊗H(pt /C∗,Q)vir

ä
H
Ç

Dimζs -ss
γ,∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

å
(85)

∼= Sym�+

Ä
DTζs,nilp

γ ⊗H(pt /C∗,Q)vir

ä
,

from which we deduce that

Ω
ζs
d = [DT

ζs
d ],

Ω
ζs,nilp
d = [DT

ζs,nilp
d ].

We now state our main results regarding Donaldson–Thomas invariants.
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Theorem A.2. For ζs and θs as above, and d ∈ Nm of slope less than or

equal to θs, the Hodge-theoretic Donaldson–Thomas invariants Ω
ζs,nilp
d can be

written as hd(L1/2), for hd(q1/2) = hd(q−1/2) equal to bd(q)q−deg(bd(q))/2, for

some polynomial bd(q) ∈ N[q] with unimodal coefficients.

This theorem is in turn a consequence of the following one.

Theorem A.3. For ζs, θs,d as above, the monodromic mixed Hodge mod-

ule H = DT
ζs,nilp
d is pure, of Tate type, and carries a Lefschetz operator

l : H• → H•+2 such that lk : H−k → Hk is an isomorphism for all k. Moreover,

either H or H⊗ L1/2 has trivial monodromy.

Proof. By Theorem 3.21 we may write

H

Ñ
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)
nilp

é
(86)

∼= �tw

+,[θs
γ−→0]H

Ç
Dim∗

Å
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

ã
nilp

å
(87)

and by Proposition 5.1 we moreover deduce that (86) is pure, of Tate type. It

follows as in the proof of Theorem 5.2 that each of the terms in the product

(87) is pure, of Tate type. As each DT
ζs,nilp
d is a summand of (87), we deduce

that all of the monodromic mixed Hodge structures DT
ζs,nilp
d are pure, of Tate

type.

In addition, from Corollary 4.14 it follows thatÅ
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

ã
nilp

is the restriction of

φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

to a proper union of components of its support, i.e., the preimage of the origin

under the proper map q
ζs
d : M(Q)

ζs -ss
d →M(Q)d, and so its cohomology carries

a Lefschetz operator, as in the proof of [DMSS15, Th. 2.3]. Moreover, since

by Proposition 5.1, (86) has trivial monodromy (possibly after tensoring by

a half Tate twist, depending on d), we deduce that the same is true of each

DT
ζs,nilp
d . �

Remark A.4. The above is a kind of categorified “no exotics” statement

for the BPS/DT invariants associated to cluster collections — compare with

[CDM+14], where in the physics context the no exotics property of refined DT

invariants is explained by the principal that the cohomology of the spaces of

BPS states that they derive from carry a Lefschetz operator, as representations

of sl2. We use the word “categorified” here to mean that for cohomological
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DT invariants coming from cluster collections, we can construct the Lefschetz

action itself, in addition to deducing the no exotics property on the underlying

refined DT invariants, which in our context is the Tate type property.

Corollary A.5. Let (Q,W ) be an algebraic QP, such that there is a

sequence of vertices s, for which W is nondegenerate, and for which Fs ∩
mod-Ĵac(Q,W ) = mod-Ĵac(Q,W ). Then for a generic stability condition ζ,

the Hodge-theoretic Donaldson–Thomas invariants Ω
ζs,nilp
d can be written as

hd(L1/2), for hd(q1/2) = hd(q−1/2) equal to bd(q)q−deg(bd(q))/2, for bd(q) ∈ N[q]

with unimodal coefficients.

As a special case, we recover the following result from [Rei11]; note how-

ever that this is not a new proof, as the proof of [DM16, Th. A] uses the results

of [Rei11] in an essential way. For an example of a QP satisfying the conditions

of Corollary A.5, and for which Q is not acyclic, see the example worked out

after Conjecture 6.8 of [Efi11].

Corollary A.6 ([Rei11, Cor. 1.2]). Let Q be acyclic. Then for a generic

stability condition ζ, the Hodge-theoretic Donaldson–Thomas invariants Ω
ζs,nilp
d

can be written as hd([L1/2]), for hd(q1/2)=hd(q−1/2) equal to bd(q)q
−deg(bd(q))/2,

for some polynomial bd(q) ∈ N[q] with unimodal coefficients.

References

[BZ05] A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Adv.

Math. 195 no. 2 (2005), 405–455. MR 2146350. Zbl 1124.20028. https:

//doi.org/10.1016/j.aim.2004.08.003.
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