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Global smooth and topological rigidity
of hyperbolic lattice actions

By Aaron Brown, Federico Rodriguez Hertz, and Zhiren Wang

Abstract

In this article we prove global rigidity results for hyperbolic actions of

higher-rank lattices.

Suppose Γ is a lattice in a semisimple Lie group, all of whose factors have

rank 2 or higher. Let α be a smooth Γ-action on a compact nilmanifold

M that lifts to an action on the universal cover. If the linear data ρ of

α contains a hyperbolic element, then there is a continuous semiconjugacy

intertwining the actions of α and ρ on a finite-index subgroup of Γ. If α is

a C∞ action and contains an Anosov element, then the semiconjugacy is a

C∞ conjugacy.

As a corollary, we obtain C∞ global rigidity for Anosov actions by co-

compact lattices in semisimple Lie groups with all factors rank 2 or higher.

We also obtain global rigidity of Anosov actions of SL(n,Z) on Tn for n ≥ 5

and probability-preserving Anosov actions of arbitrary higher-rank lattices

on nilmanifolds.
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1. Introduction and statement of main results

1.1. Background and motivation. Let G be a connected, semisimple Lie

group with finite center, no compact factors, and all almost-simple factors of

real-rank at least 2. Let Γ ⊂ G be a lattice; that is, Γ is a discrete subgroup

of G such that G/Γ has finite Haar volume. The celebrated superrigidity

theorem of Margulis states that, for G and Γ as above, any linear representation
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ψ : Γ → PSL(d,R) is of algebraic nature; that is, ψ extends to a continuous

representation ψ′ : G → PSL(d,R) up to a compact error. See Theorem 6.2

and Proposition 6.3 below for more formal statements.

Shortly after, based on the analogy between linear groups and diffeomor-

phism groups Diff∞(M) of compact manifolds, Zimmer proposed a number of

conjectures for representations of Γ into Diff∞(M). These and related conjec-

tures are referred to as the Zimmer program, which aims to understand and

classify smooth actions by higher-rank lattices. We refer the reader to the ex-

cellent survey [Fis11] by Fisher for a detailed account of the Zimmer program.

A major direction of research in the Zimmer program is the classification

of actions containing some degree of hyperbolicity; see [Hur94] and [Fis11, §7]

for further discussion. For instance, the following conjecture is motivated by

works of Feres-Labourie [FL98] and Goetze-Spatzier [GS99].

Conjecture 1.1 ([Fis11, Conj. 1.3]). If Γ is a lattice in SL(n,R) where

n ≥ 3, then all C∞ actions by Γ on a compact manifold that both preserves a

volume form and contains an Anosov diffeomorphism are algebraically defined.

Here, being algebraically defined means the action is smoothly conjugate

to an action on an infranilmanifold by affine automorphisms. See also [Hur94,

Conj. 1.1] and [KL96, Conj. 1.1] for related conjectures. We recall that it is

conjectured that infranilmanifolds are the only manifolds supporting Anosov

diffeomorphisms.

The assumption in Conjecture 1.1 that the action preserves a volume is

a standard assumption in results on the rigidity of group actions. The ma-

jority of advances in the Zimmer program, including most predecessors of the

results discussed in this paper ([KLZ96], [GS99], [MQ01]), assume the action

Γ→ Diff∞(M) preserves a Borel probability measure on M . In such settings,

Zimmer’s superrigidity theorem for cocycles (generalizing Margulis’s super-

rigidity theorem for linear representations; see [Zim84], [FM03]) gives that the

derivative cocycle is measurably cohomologous to a linear representation of G

up to a compact correction. This provides evidence for the conjectures behind

the Zimmer program and is the starting point for many of the local and global

rigidity results preceding this paper.

For the remainder, we consider representations α : Γ→Diff∞(M) whereM

is either a torus Td or a compact nilmanifold N/Λ. If M is a torus (or if M

is a nilmanifold and the action α lifts to an action α̃ : Γ → Diff∞(N)), one

can define a linear representation ρ : Γ → GL(d,Z) (or ρ : Γ → Aut(Λ)) asso-

ciated to the action α called the linear data of α. We then obtain an action

ρ : Γ→ Aut(Td) (or ρ : Γ→ Aut(N/Λ).) See Section 2.1 for more details. We

assume throughout that ρ is hyperbolic, that is, that ρ(γ) is a hyperbolic linear

transformation for some γ ∈ Γ.
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As a primary example of such an action consider any homomorphism

ρ : Γ → Aut(Λ) where Λ is a lattice in a nilpotent, simply connected Lie

group N . Then N/Λ is compact, and ρ induces an action by automorphisms

ρ : Γ→ Diff∞(N/Λ) and hence coincides with its linear data. Similarly, one can

build model algebraic actions of Γ by affine transformations ofN/Λ; see [Hur93]

for constructions and discussion. Early rigidity results in this setting focused

on various notions of rigidity for nonlinear perturbations of affine actions. For

instance, in [Hur92] Hurder proved a number of deformation rigidity results for

certain standard affine actions; that is, under certain hypotheses, a 1-parameter

family of perturbations of an affine action ρ are smoothly conjugate to ρ. A

related rigidity phenomenon, the infinitesimal rigidity, has been studied for

affine actions in [Hur92], [Hur95], [Lew91], [Qia96].

The primary rigidity phenomenon studied for perturbations is local rigid-

ity ; that is, given an affine action ρ : Γ→ Diff∞(N/Λ) and α : Γ→ Diff∞(N/Λ)

with α(γi) sufficiently C1-close to ρ(γi) for a finite generating set {γi} ⊂ Γ,

one wishes to find a C∞ change of coordinates h : N/Λ→ N/Λ with h◦α(γ) =

ρ(γ) ◦ h for all γ ∈ Γ. For isometric actions, local rigidity has been shown

to hold for cocompact lattices considered above [Ben00] and for property (T)

groups [FM05]. For hyperbolic affine actions on tori and nilmanifolds, local

rigidity has been established for a number of specific actions or under additional

dynamical hypotheses in [Hur92], [QY98], [KL91], [KLZ96], [GS99], [Qia95].

For the general case of actions by higher-rank lattices on nilmanifolds,

the local rigidity problem for affine Anosov actions was settled by Katok and

Spatzier in [KS97]. In [MQ01] Margulis and Qian extended local rigidity to

weakly hyperbolic affine actions. Fisher and Margulis [FM09] established local

rigidity in full generality for quasi-affine actions by higher-rank lattices which,

in particular, includes actions by nilmanifold automorphisms without assuming

any hyperbolicity. We note that the local rigidity results discussed above

require property (T); in particular, they do not hold for irreducible lattices in

products of rank-oneLie groups.

We turn our attention for the remainder to the question of global rigidity of

actions on tori and nilmanifolds. That is, given an action α : Γ→ Diff∞(N/Λ)

with linear data ρ : Γ→ Aut(N/Λ), we ask

(1) topological rigidity : is there a continuous h : N/Λ→ N/Λ with h ◦ α(γ) =

ρ(γ) ◦ h for all γ in a finite-index subgroup?

(2) smooth rigidity : if so, is h a C∞ diffeomorphism?

Note that for a general finitely generated discrete group Γ and an action

α : Γ → Diff∞(N/Λ), there is no expectation that such an h would exist. In-

deed when Γ is a finitely generated free group, examples of actions α (including

actions containing Anosov elements) exist for which no h as above exists. On

the other hand, for C∞ actions on nilmanifolds of higher-rank lattices Γ as
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introduced above, one may expect such a continuous h to exist. However,

examples constructed in [KL96] by blowing up fixed points show that (even

when α is real analytic, volume preserving, and ergodic) such h need not be

invertible. However, if the nonlinear action possess an Anosov element α(γ0),

then any h as above is necessarily invertible. In this setting, one may expect

such h to be C∞.

Global rigidity results under strong dynamical hypotheses appear already

in [Hur92]. Global rigidity for Anosov actions by SL(n,Z) on Tn, n ≥ 3, were

obtained in [KL96], [KLZ96]. Other global rigidity results appear in [Qia97].

We also remark that Feres-Labourie [FL98] and Goetze-Spatzier [GS99] estab-

lished very strong global rigidity properties for Anosov actions, in which no

assumptions on the topology of M are made. In both works, under strong dy-

namical hypotheses including that the dimension of M is small relative to G,

it is shown that M is necessarily an infranilmanifold and the action is alge-

braically defined.

Global topological rigidity results for Anosov actions by higher-rank lat-

tices on general nilmanifolds were proven in [MQ01, Th. 1.3]. Here, a C0-

conjugacy is obtained assuming the existence of a fully supported invariant

measure for the nonlinear action. Topological conjugacies between actions on

more general manifolds M whose action on π1(M) factors through an action of

a finitely-generated, torsion-free, nilpotent group are studied in [FW01]. (See

Section 2.3 and Theorem 3.2 for related results in this direction.)

In this paper we study the global rigidity problem for actions of higher-

rank lattices on nilmanifolds with hyperbolic linear data. See Theorems 1.3

and 1.7 below. We provide complete solutions to the global rigidity questions

above under the mild assumption that the action lifts to an action on the

universal cover. (See Remark 1.5 and Section 9 for discussion on when the

lifting is guaranteed to hold.) In particular, for such actions α with hyper-

bolic linear data, we construct a continuous semiconjugacy to the linear data

when restricted to a finite-index subgroup. Moreover, if the action contains

an Anosov element, we show that the semiconjugacy (which is necessarily a

homeomorphism in this case) is, in fact, a C∞ diffeomorphism.

We remark that the majority of global rigidity results discussed above

assume the existence of an (often smooth or fully supported) invariant measure

for the action. We emphasize that we do not assume the existence of an

invariant measure in Theorems 1.3 and 1.7.

1.2. Topological rigidity for maps. Consider a homeomorphism f : Tn
→ Tn. Recall that there exists a unique A ∈ GL(n,Z) such that any lift

f̃ : Rn → Rn is of the form

(1.1) f̃(x) = Ax+ u(x),
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where u : Rn → Rn is Zn-periodic (see [KH95, p. 87]). We call A the linear

data of f . As A preserves the lattice Zn in Rn, we have an induced map

LA : Tn → Tn. It follows that f is homotopic to LA. A similar construction

holds for diffeomorphisms of nilmanifolds.

The starting point for the global rigidity problem we study is the following

classical theorem of Franks.

Franks’ Theorem [Fra70]. Assume A has no eigenvalues of modulus 1.

Then there is a continuous h : Td → Td, homotopic to the identity, such that

(1.2) LA ◦ h = h ◦ f.

Moreover, fixing a lift f̃ of f , the map h : Tn → Tn is unique among the

continuous maps having a lift h̃ : Rn → Rn satisfying h̃ ◦ f̃ = A ◦ h̃.

A map h satisfying (1.2) is called a semiconjugacy between f and LA.

Recall that a diffeomorphism f of a manifold M is Anosov if TM admits

a continuous decomposition Eu ⊕ Es that is preserved by Df such that Eu

and Es are, respectively, uniformly expanded and contracted by Df . The

fundamental examples of Anosov diffeomorphisms are affine automorphisms of

nilmanifolds and tori — that is, diffeomorphisms of the form x 7→ b · A(x) on

a nilmanifold M = N/Λ where b ∈ N and A ∈ Aut(M) such that DA�TeN is

a hyperbolic linear transformation of the Lie algebra n of N . It is conjectured

that the only manifolds admitting Anosov diffeomorphisms are finite quotients

of tori or nilmanifolds.

In the case that f is an Anosov diffeomorphism of a torus or nilmanifold, it

is well known that the linear data of f is hyperbolic. Moreover, it follows from

the work of Franks [Fra70] and Manning [Man74] that the map h satisfying

(1.2) is a homeomorphism; in this case we call such an h a conjugacy between f

and LA. Moreover, one can show in this case that h is bi-Hölder. However, in

general one cannot obtain any additional regularity of h even when f is Anosov.

1.3. Setting for main results. Let Γ be a discrete group and α an action of

Γ by homeomorphisms on a compact nilmanifold N/Λ. In Section 2.1 we define

the linear data ρ : Γ→ Aut(N/Λ) for such actions under the assumption either

that N is abelian or that the action α lifts to an action by homeomorphisms

of N . We assume for the time being that the linear data ρ associated to α is

defined. For individual elements α(γ) of the action such that ρ(γ) is hyperbolic,

one can build a semiconjugacy between the elements α(γ) and ρ(γ). However,

even assuming the action α lifts, one rarely expects to be able to build a single

map h : N/Λ→ N/Λ such that

ρ(γ) ◦ h = h ◦ α(γ)

holds for every element of Γ, or even for every element in a finite-index subgroup

of Γ.
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We focus in this paper on discrete groups Γ exhibiting certain rigidity

properties — namely, lattices in higher-rank, semisimple Lie groups. For

such Γ, we can exploit certain properties of Γ to study the rigidity of actions

of Γ. For most results, we will assume the following hypothesis.

Hypothesis 1.2. Suppose G is a connected semisimple Lie group with

finite center, all of whose noncompact almost-simple factors have R-rank 2 or

higher, and suppose Γ is a lattice in G.

We allow G to have compact factors for full generality. In general, the

quotient of G by the maximal compact group of G is a new semisimple Lie

group G′ without compact factors and contains a finite quotient Γ′ of Γ as a

lattice. However, an action by Γ typically does not factor through an action

of Γ′ if Γ′ does not coincide with Γ.

1.4. Topological rigidity for actions with hyperbolic linear data. Our first

main theorem is a solution to the topological global rigidity problem assuming

the action lifts and the linear data ρ(γ0) is hyperbolic for some γ0 ∈ Γ.

Theorem 1.3. Let G and Γ be as in Hypothesis 1.2. Let α be a C0 action

of Γ on a compact nilmanifold M = N/Λ. Suppose α can be lifted to an action

on the universal cover N of M , and let ρ be the associated linear data of α.

If Dρ(γ) is hyperbolic for some element γ ∈ Γ, then there are a finite-index

subgroup Γ1 < Γ and a surjective continuous map h : M → M , homotopic to

identity, such that ρ(γ) ◦ h = h ◦ α(γ) for all γ ∈ Γ1. If α acts by Lipschitz

homeomorphisms, then h is Hölder continuous.

For the definition of the linear data ρ, see Section 2.1.2 below.

Remark 1.4. It is known that genuinely affine actions exist, i.e., actions by

Γ that act by affine automorphisms, but cannot be conjugated to a Γ action

by linear automorphisms. Such actions can still be conjugated to a linear

action after restricting to a finite-index subgroup. This is demonstrated by

an example of Hurder [Hur93, Th. 2]. Hence the restriction to a finite-index

subgroup Γ1 is necessary.

In the case that N = Rd and M = Td, the obstruction to lifting the action

α of Γ on Td to an action of Γ on Rd is represented by an element in the

group cohomology H2
ρ (Γ,Zd). If this element vanishes in H2

ρ (Γ,Rd), then it

vanishes in H2
ρ (Γ,Zd) after possibly passing to a finite-index subgroup of Γ and

the lifting of the action is automatic. For actions on nilmanifolds, the action

lifts assuming the vanishing of certain obstructions in the group cohomology

associated to a finite number of induced representations. Sufficient conditions

for the vanishing of the cohomological obstructions are given by [GH68, Th. 3.1]
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and [Bor81, Th. 4.4]. In particular, the lifting hypotheses can be verified using

only knowledge about the linear data ρ (in the case M = Td) or the induced

α# : Γ→ Out(Λ) (in the case M = N/Λ). See Section 9 for more details.

In particular,

Remark 1.5. The restriction of α to a finite-index subgroup of Γ lifts to

an action on N assuming any of the following condition holds:

(1) Γ = SL(d,Z) acting on Td, d ≥ 5;

(2) Γ is a cocompact lattice in G;

(3) α is an action of Γ on a torus Td that preserves a probability measure µ;

(4) Γ is as in Hypothesis 1.2, α is an action of Γ on a compact nilmanifold N/Λ

that preserves a probability measure µ, and α(γ0) is Anosov for some γ0.

Note that the lifting property is easy to verify when the Γ-action has a

finite orbit; criteria (3) above is a generalization of this fact in the torus case.

This property will be proved as Proposition 9.7.

The main advantage of our method of proof is that, unlike the majority of

previous results discussed above, we do not assume the existence of an invariant

measure for the action α in order to construct a semiconjugacy. Note that

given a conjugacy between the linear and nonlinear actions, one can obtain

a Γ-invariant measure for the nonlinear action. However, in the case of a

semiconjugacy, the existence of an invariant measure for the nonlinear actions is

more subtle. As a corollary of Theorem 1.3, we present certain conditions under

which a nonlinear non-Anosov action of Γ has a “large” invariant measure.

Theorem 1.6. Let Γ ⊂ SL(n + 1,Z), n ≥ 2 be of finite index, and let α

be an action of Γ on Tn+1 by C1+β diffeomorphisms. Suppose the action α lifts

to an action on Rn+1, and let h denote the semiconjugating map guaranteed

by Theorem 3.1. Moreover, suppose that the linear data ρ : Γ → GL(n + 1,Z)

is the identity representation ρ(γ) = γ.

Then there exists a unique, α-invariant, absolutely continuous probability

measure µ on Tn+1 such that h∗µ is the Haar measure on Tn+1. Moreover, µ

is the unique ergodic α-invariant measure on Tn such that h∗µ is not atomic.

We remark that, up to restricting to finite-index subgroups and conju-

gating by an element of GL(n + 1,Q), the only nontrivial representations

ρ : Γ → GL(n + 1,Z) are the identity ρ(γ) = γ and the inverse transpose

ρ(γ) = (γt)−1. Moreover, replacing Γ with its image under γ 7→ (γt)−1 if

necessary, we may assume ρ is the identity. In particular, the conclusion of The-

orem 1.6 holds for any action α such that the linear data ρ : Γ→ GL(n+ 1,Z)

has infinite image.

Proof of Theorem 1.6. We may find a copy of Zn inside Γ so that, in

the terminology of [KK07], the corresponding linear action ρ�Zn is a linear



GLOBAL RIGIDITY OF HYPERBOLIC LATTICE ACTIONS 921

Cartan action. It follows from the results of [KS96] that any ergodic, ρ�Zn-

invariant measure with positive Hausdorff dimension is Haar measure. As Zd is

amenable, there exists an ergodic, α�Zn-invariant, measure on Tn+1 projecting

to the Haar measure under h. From the main theorem [KK07], it follows that

any such µ is absolutely continuous.

Moreover, from the main result of [KRH07], it follows that there is a

unique measure µ on Tn+1 such that h∗µ is the Haar measure. It follows from

this uniqueness criterion that µ is invariant under the entire action α. Finally,

if ν is α-invariant and if h∗ν is not atomic then, as h∗ν is ρ-invariant, a Fourier

analysis argument shows it must be Haar measure. �

1.5. Smooth rigidity for Anosov actions. The main result of the paper is

the following solution to the global smooth rigidity problem. We show that,

in the setting of Theorem 1.3, if α is an action by C∞ diffeomorphisms and if

α(γ) is Anosov for some element γ of Γ, then the semiconjugacy h (which is

necessarily invertible) is a diffeomorphism.

Theorem 1.7. Let G and Γ be as in Hypothesis 1.2. Let α be a C∞

action of Γ on a compact nilmanifold M = N/Λ. Suppose α can be lifted to an

action on the universal cover N of M , and let ρ be the associated linear data

of α. If α(γ) is Anosov for some element γ ∈ Γ, then there are a finite-index

subgroup Γ′ < Γ and a C∞ diffeomorphism h : M →M , homotopic to identity,

such that h ◦ α(γ) = ρ(γ) ◦ h for all γ ∈ Γ′.

The analogue of Theorem 1.7 for Zr-actions without rank-one factors is

part of a conjecture of Katok and Spatzier that has been established in the

works of Fisher-Kalinin-Spatzier [FKS13] and Rodriguez Hertz-Wang

[RHW14]. Our proof of Theorem 1.7 works by finding a large abelian sub-

group of Γ on which the restriction of α has no rank-one factors; we then

apply the aforementioned analogous theorem for Zr-actions to this subgroup.

Remark 1.8. In Theorem 1.7, the map h actually conjugates the entire

action by Γ to an action by affine nilmanifold automorphisms. This can be

easily deduced from the well-known fact that the centralizer of an hyperbolic

automorphism is affine; see, e.g., [Wit94].

In light of Remark 1.5, from Theorem 1.7 we immediately obtain the

following.

Corollary 1.9. Suppose any one of the following holds :

(1) n ≥ 5, and α is a C∞ action by Γ = SL(n,Z) on M = Tn.

(2) G is as in Hypothesis 1.2, Γ is a cocompact lattice in G, and α is a C∞

action by Γ on any nilmanifold M .

(3) Γ is as in Hypothesis 1.2 and α is an action of Γ on a compact nilmanifold

N/Λ that preserves a probability measure µ.
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(4) Γ is as in Hypothesis 1.2, ρ is a linear action by Γ on a compact nilmanifold

N/Λ by linear automorphisms, and α is a C∞ action Γ on N/Λ. Suppose

α is sufficiently close to ρ in C1-norm ; namely, dC1(α(γ), ρ(γ)) < ε for

all elements γ from a set of generators S ⊂ Γ, where the constant ε > 0

depends on Γ, ρ, and S.

If α(γ) is Anosov for some γ∈Γ, then there is a finite-index subgroup Γ′<Γ,

a Γ′-action ρ on M by linear automorphisms and a C∞ diffeomorphism h : M

→M , homotopic to identity, such that h ◦ α(γ) = ρ(γ) ◦ h for all γ ∈ Γ′.

We remark that in case (4), the subgroup Γ′ is actually Γ. This case

recovers all previously known C∞ local rigidity results for affine Anosov actions

including [Hur92], [QY98], [KL91], [KLZ96], [GS99], [Qia95].

1.6. Organization of paper. In Section 2 we present the major technical

background and definitions for the paper. In Section 3, we present the main

technical theorems, Theorems 3.1 and 3.2, which assert the existence of a

semiconjugacy between a nonlinear action and its linear data under a number

of technical hypotheses. In Section 4 we introduce suspension spaces that

convert the problem of building a semiconjugacy between Γ-actions into a

problem of building a semiconjugacy between G-actions. In Section 5, we

obtain this semiconjugacy for G-actions by first constructing it for a single

element of a Cartan subgroup in G, and then extending to a semiconjugacy

between entire G-actions. In Section 6 we present a number of classical results

that will be used in the following sections. In Section 7, we show that the

technical assumptions required by Theorem 3.1 are satisfied in the setting of

Theorem 1.3. In Section 8, we prove Theorem 1.7 by finding a large abelian

subgroup of Γ whose action contains an Anosov diffeomorphism. Finally, the

lifting hypothesis and Remark 1.5 are discussed in Section 9.
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2. Preliminaries

In this section we present the main definitions and constructions that will

be used for our main technical theorems in Section 3. We also recall and

prove some related facts. A key technical observation that is new in this paper

appears in Section 2.5.
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2.1. Linear data associated to torus and nilmanifold actions. To extend

Franks’ Theorem to continuous actions of discrete groups on tori and nilman-

ifolds we need an appropriate notion of the linearization of such an action.

2.1.1. Linear data associated to torus actions. Given B ∈ GL(d,Z), we

write LB : Td→ Td for the map on Td induced by B. Given f ∈ Homeo(Td),
recall the unique Af ∈ GL(d,Z) as in (1.1) with f homotopic to LAf . For

f, g ∈ Homeo(Td), we verify from the characterization (1.1) that Af◦g = AfAg.

Consider a discrete group Γ and an action α : Γ→ Homeo(Td). It follows

that there exists an induced homomorphism

(2.1) ρ : Γ→ GL(d,R), ρ : γ → Aα(γ).

Moreover, for each γ ∈ Γ, α(γ) is homotopic to Lρ(γ). Below, we abandon the

notation Lρ(γ) and simply write ρ(γ) : Td → Td; whether ρ(γ) is an element

of GL(d,R) or Homeo(Td) will be clear from context. The representation

ρ : Γ→ GL(d,R) is called the linear data of α.

2.1.2. Linear data associated to nilmanifold actions. In the case of ac-

tions on nilmanifolds, the above situation is more complicated. Indeed, let

M = N/Λ, where N is a simply connected, nilpotent Lie group and Λ is

a finite volume discrete subgroup. Consider an action α : Γ → Homeo(M).

Then for each base point x ∈ M , every γ induces an automorphism α(γ)∗
of π1(M,x) ∼= Λ. (Here, for every other point x′ − α(γ)(x) ∈ M , we fix a

path from x′ to x in order to identify π1(M,x′) with π1(M,x).) As the map

α(γ) : N/Λ → N/Λ need not fix a base point, the map Γ → Aut(Λ) send-

ing γ to α(γ)∗ is defined only up to conjugation. Thus, one has an induced

homomorphism α# : Γ→ Out(Λ) = Aut(Λ)/Inn(Λ).

However, under the additional assumption that α : Γ → Homeo(M) lifts

to an action α̃ : Γ → Homeo(N) by the canonical identification of Λ with the

group of deck transformations for the cover N → N/Λ, we obtain a well-defined

action ρ : Γ→ Aut(Λ). As it is necessary in our method of proof to assume the

lift α̃ of the action exists, this is not a very restrictive assumption. By [Mal51,

Th. 5], every element of Aut(Λ) extends uniquely to an element of Aut(N); in

particular, we may extend ρ to a homomorphism ρ : Γ → Aut(N). Moreover,

for each γ ∈ Γ, we have that α(γ) is homotopic to ρ(γ) : N/Λ → N/Λ. Here,

as above, we use ρ(γ) to indicate both an element of Aut(N) and the induced

element of Aut(N/Λ).

Definition 2.1. If α : Γ→ Homeo(N/Λ) either acts on a torus or lifts to the

universal cover N , we call ρ : Γ→ Aut(N) (or the induced ρ : Γ→ Aut(N/Λ))

the linear data associated to α.

We remark that in [RHW14] the linear data was referred to as the “ho-

motopy data.”
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2.2. Structure of compact nilmanifolds. We collect some standard facts

about nilpotent Lie groups and their lattices. A standard reference is [Rag72].

Let N be a simply connected, nilpotent Lie group, and let Λ ⊂ N be a

lattice. Write M = N/Λ for the quotient nilmanifold. We have that M is

compact. The set exp−1(Λ) generates a lattice in the Lie algebra n. This,

together with the coordinate system exp: n → N , determines a Q-structure

on N . For a connected closed normal subgroup N ′ C N , the following are

equivalent:

(1) N ′ is defined over Q;

(2) N ′ ∩ Λ is a lattice in N ′;

(3) Λ/(N ′ ∩ Λ) is a lattice in N/N ′;

(4) N/N ′Λ = (N/N ′)
/Ä

Λ/(N ′ ∩ Λ)
ä

defines a compact nilmanifold that is

naturally a quotient of N/Λ.

In any of the above cases, we say N ′ is rational and M ′ = N/N ′Λ is an algebraic

factor of M .

Recall that for an automorphism f ∈ Aut(N), Def is an automorphism

of n, and f ◦ exp = exp ◦Def . Moreover, f preserves Λ if and only if Def

preserves exp−1(Λ). In this case, f descends to an automorphism of M . Hence

Aut(M) = Aut(N) can be regarded as a subgroup of GL(d,Z) if we identify

the subgroup generated by exp−1(Λ) ⊂ n with Zd ⊂ Rd.
If, in addition, f preserves a rational normal subgroup N ′, then it further

descends an automorphism of M ′.

Let Z(N) denote the center of N . Then

(1) Z(N) is normal and rational;

(2) any element in Aut(M) preserves Z(N) and thus descends to an element

of Aut(N/Z(N)Λ).

It follows that we have a series of central extensions

(2.2) N = N0 → N1 → N2 → · · · → Nr−1 → Nr = {e}.

Here r is the degree of nilpotency. Each Ni is a simply connected, nilpotent

Lie group, and the kernel of the map Ni → Ni+1 is the center of Ni. We have

a corresponding series of central extensions

(2.3) Λ = Λ0 → Λ1 → Λ2 → · · · → Λr = {e},

where Λi+1 = Λi/(Λi ∩ Z(Ni)) and Λi is a lattice in Ni. As automorphisms

preserve the center of a group, an automorphism f of N preserving Λ descends

inductively to an automorphism of Mi = Ni/Λi for each i.

Suppose Γ is a discrete group, and suppose we have an action ρ : Γ →
Aut(Λ). ρ extends uniquely to an action ρ : Γ → Aut(N) and induces an
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action by homeomorphisms on N/Λ. Moreover, ρ descends to a Λi-preserving

action ρi : Γ→ Aut(Ni) for every element of the central series (2.2) and (2.3).

As above, we write ρi(γ) to denote both an element of Aut(Ni) and the induced

element of Aut(Mi).

2.3. π1-factors. In the sequel, we construct a semiconjugacy between ac-

tions in a more general setting than in the introduction. This follows [FW01].

Consider M to be any connected finite CW-complex. Let M̃ be any normal

covering of M , and let ΛM denote the corresponding group of deck transfor-

mations. We denote the action of ΛM on M̃ on the right. Let Γ be a discrete

group and α : Γ → Homeo(M) an action. We assume α lifts to an action

α̃ : Γ → Homeo(M̃); we then obtain an induced action α∗ : Γ → Aut(ΛM )

defined by

α̃(γ)(xλ) = α̃(γ)(x)α∗(γ)(λ).

Let N be a simply connected, nilpotent Lie group and let Λ ⊂ N be

a lattice. Suppose there is a surjective homomorphism P∗ : ΛM → Λ. We

moreover assume that α∗(γ)(kerP∗) = kerP∗ for all γ ∈ Γ. Then α∗ induces

an action

ρ : Γ→ Aut(Λ), ρ(γ)(P∗(λ)) = P∗α∗(γ)(λ).

We extend ρ to ρ : Γ → Aut(N). As N/Λ is a K(Λ, 1), there is a continuous

P : M → N/Λ such that P lifts to P̃ : M̃ → N and the map between deck

transformation groups ΛM and Λ induced by P̃ coincides with P∗; that is,

P̃ (xλ) = P̃ (x) · P∗(λ). (See [FW01, Th. 3.2]). In particular, for each γ ∈ Γ,

we have P ◦ α(γ) : M → N/Λ is homotopic to ρ(γ) ◦ P : M → N/Λ.

Definition 2.2. Under the above hypotheses, we say that the action ρ : Γ→
Aut(Λ) (or ρ : Γ→ Aut(N/Λ)) is a π1-factor of α induced by the map P∗.

Let P0 = P , and let Pi be the composition of P with the natural map

N/Λ→ Ni/Λi, where Ni and Λi are as in (2.2) and (2.3). We similarly obtain

maps P̃i : M̃ → Ni and P∗,i : ΛM → Λi. Let ρi be the action of Γ on Ni induced

by ρ.

We have the following.

Claim 2.3. If ρ is a π1-factor of α induced by P∗, then for every i, ρi is

a π1-factor of α induced by P∗,i.

Remark 2.4. The requirement that P∗ is surjective is not very restrictive.

In fact, if the image of P∗ is a proper subgroup Λ′ of Λ, then Λ′ will be a lattice

in its Zariski closure N ′ ([Rag72, Th. II.2.3]). After replacing N and Λ with

N ′ and Λ′, we have a π1-factor.

2.4. Coarse geometry of lattices. Let G be a connected semisimple Lie

group equipped with a right-invariant metric, and let Γ ⊂ G be a finitely
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generated discrete subgroup. We may equip Γ with two metrics: the word

metric dword induced by a fixed choice of generators and a right-invariant metric

dG on Γ inherited as a subset of G from a right-invariant Riemannian metric

on G.

We say these two metrics are quasi-isometric (or that Γ is quasi-isometri-

cally embedded in G) if there are A > 1 and B > 0 such that for any γ1, γ2 ∈ Γ,

we have

(2.4) A−1 · dword(γ1, γ2)−B ≤ dG(γ1, γ2) ≤ A · dword(γ1, γ2) +B.

Note that all word metrics are quasi-isometric. For the remainder we fix a

finite generating set F = {γ`} for Γ with induced word metric dword(·, ·).
Note that if Γ ⊂ G is a cocompact lattice, then Γ is automatically quasi-

isometrically embedded in G. For nonuniform lattices, we have the following

result.

Theorem 2.5 (Lubotzky-Mozes-Raghunathan [LMR00]). A lattice Γ is

quasi-isometrically embedded in G if the projection of Γ to any R-rank 1 factor

is dense. In particular, Γ is quasi-isometrically embedded in G under Hypoth-

esis 1.2.

2.5. Nonresonant linear representations. In this section, we introduce the

main new technical idea in this paper. Let G be a semisimple Lie group. Let g

be the Lie algebra of G. We fix a Cartan involution θ of g and write k and p,

respectively, for the +1 and −1 eigenspaces of θ. Denote by a the maximal

abelian subalgebra of p and by m the centralizer of a in k. Recall that dimR(a)

is the R-rank of G.

Consider a linear representation τ : G → GL(n,R) of G. Then τ induces

a representation dτ : g → gl(n,R). Let {χi} denote the restricted weights of

dτ relative to a, and let Σ := {ζj} denote the restricted roots of g relative

to a; that is, Σ is the restricted weights of the adjoint representation. Given a

simple factor g′ ⊂ g we denote by Σ(g′) the irreducible restricted root system.

Recall that each χi and ζj is a real linear functional on a. Given ζ ∈ Σ, let gζ

denote the corresponding subspace. Recall that g0 = m⊕ a.

Definition 2.6. Let ψ : g → gl(n,R) be a linear representation. We say a

restricted root ζj of g is resonant (with ψ) if there is a c > 0 and a restricted

weight χi of ψ such that ζj = cχi; otherwise we say ζj is nonresonant. Let

ΣNR denote the set of nonresonant restricted roots.

We say the representation ψ is strongly nonresonant (with respect to

Ad) if every nonzero restricted root of g is nonresonant with ψ. We say the

representation ψ is weakly nonresonant (with respect to Ad) if the set

g0 ∪
⋃

ζ∈ΣNR

gζ
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generates g as a Lie algebra.

If ψ = dτ for τ : G → GL(n,R), we say τ is weakly nonresonant if dτ is.

Note (if ψ is nontrivial) that the existence of a nonresonant root implies that

the R-rank of G is at least 2.

Nonresonance of roots will be used later in Section 5.3.

In the remainder, we will be interested only in representations with all

weights nontrivial — that is, representations for which the weight space corre-

sponding to the zero weight is trivial. We note that for many classical simple

Lie groups, particularly for G = SL(n,R), there are infinitely many irreducible

representations with all weights nontrivial.

Given a semisimple Lie algebra g containing rank-one factors, a represen-

tation ψ : g → gl(n,R) with all weights nontrivial may or may not be weakly

nonresonant. However, if all noncompact factors have R-rank at least 2, the

following lemma guarantees that all representations we consider in the sequel

are weakly nonresonant. Note, however, that there are representations with

all weights nontrivial for which there are resonant restricted roots.

The following lemma is a crucial new observation introduced in this article.

Lemma 2.7. Suppose g is a semisimple real Lie algebra such that every

noncompact factor has R-rank 2 or higher. Let ψ be a finite-dimensional, real

representation of g such that all restricted weights of ψ are nontrivial. Then ψ

is weakly nonresonant.

Moreover, if no noncompact simple factors of g have restricted root system

of type C`, then ψ is strongly nonresonant.

As an example showing that we must consider weakly nonresonant repre-

sentations, consider the standard action of Sp(4,R) on R4. The Lie algebra g

of Sp(4,R) is of type C2 (and is moreover a split real form). Relative to a cer-

tain basis {e1, e2} of a, the restricted roots of g are {±ε1± ε2} ∪ {±2ε1,±2ε2}
where εi(ej) = δij . Take a representation whose highest weight is given by

λ = ε1. Then the weights of the representation are {±ε1,±ε2}, and hence are

all nontrivial. The resonant restricted roots are {±2ε1,±2ε2}; however, the

Lie algebra is generated by g0 and the root spaces corresponding to the set of

nonresonant roots {±ε1 ± ε2}.

Proof of Lemma 2.7. We recall some facts from the representation theory

of semisimple Lie algebras that can be found, for instance, in the book [Kna02].

Though usually stated for complex representations of complex Lie algebras, all

facts used here hold for real representations of real Lie algebras. Consider first

the case that ψ is irreducible. Then there is a restricted weight λ, called the
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highest weight, such that every other weight χ of ψ is of the form

χ = λ−
∑

niβi,

where {βi} is a set of simple positive roots and ni are positive integers. We

have that every weight χ is algebraically integral : that is, 2 〈χ,ξ〉〈ξ,ξ〉 ∈ Z for every

root ξ ∈ Σ, where 〈·, ·〉 is the inner product on a∗ induced from the Killing

form. Given a simple positive root βj , there is a distinguished fundamental

weight $j defined by 2
〈$i,βj〉
〈βj ,βj〉 = δij . We have that every highest weight λ is a

positive integer combination of the fundamental weights $i.

If g is simple and the root system Σ(g) is reduced with Cartan matrix

C = [Cij ], then the simple roots and fundamental weights are related by βi =∑
Cij$j . The only simple nonreduced root system is of type BC`; the roots

of BC` are the union of the roots of B` and C`, and the fundamental weights

are those from C`.

We proceed with the proof of the lemma. Suppose that a weight χ and a

root ξ are positively proportional. We can assume χ is a weight of an irreducible

component of ψ and that ξ is a root of a noncompact simple factor gk of

g = ⊕gk. Moreover, as the fundamental weights for distinct simple factors of g

are linearly independent, we may assume χ = λ−∑niβi, where βi are simple

roots for Σ(gk), and λ =
∑
kj$j , where $j are the fundamental weights of

the root system Σ(gk) and kj are nonnegative integers. We may also take ξ

so that 1
2ξ is not a root. Then there is an element of the Weyl group of gk

that sends ξ to a simple root βi0 of Σ(gk) [Kna02, Prop. 2.62]. Moreover, the

Weyl group preserves weights of ψ, hence we may assume that χ is positively

proportional to a simple positive root βi0 of gk.

First consider the case that Σ(gk) is not of type B`, C` or BC`. Suppose

χ = tβi0 . We have χ =
∑
jmj$j for some integers mj . Since the functionals

$j are linearly independent, it follows that mj = tCi0j for every j. Then t is

rational and t = p
q where q ∈ N is smaller than the greatest common factor

of all entries in the i0-th row of [Cij ]. For Σ(gk) not of type B`, C` or BC`,

the entries of every row of the corresponding Cartan matrix [Cij ] have greatest

common factor of 1. Thus t is an integer. Then, the restricted weights of ψ

include the chain −tβi0 ,−(t− 1)βi0 , . . . , (t− 1)βi0 , tβi0 . (This is deduced from

the fact that the simple root βi0 appears in a sl(2) triple and the representation

theory of sl(2,R).) As we assume 0 is not a (nontrivial) weight, it follows that

no such positively proportional pair χ and βi0 exists. It follows that if all simple

factors gk are not of type B`, C` or BC`, then ψ is strongly nonresonant.

In the case that Σ(gk) is of type C`, the Cartan matrix contains one row

whose entries have greatest common factor 2; all other rows have greatest com-

mon factor 1. Then there is at most one simple root that is resonant with ψ.

The orbits of the remaining simple roots under the Weyl group generate all
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of gk. In the case that Σ(gk) is of type B`, from the tables of root and fun-

damental weight data (cf. [Kna02, App. C]), the only root system of type

B` admitting a representation with resonant roots and all weights nontrivial

occurs for B2. However, B2 is isomorphic to C2.

Finally, if Σ(gk) is of type BC`, then the fundamental weights of Σ(gk)

coincide with those of type C` and, comparing tables of root data (cf. [Kna02,

App. C]), it follows that the fundamental weights of Σ(gk) are linear combina-

tions of restricted roots of Σ(gk). In particular, if χ is resonant with a root of

gk of type BC`, then χ = kβi for some positive integer k. It follows that 0 is

a nontrivial weight of ψ.

In the case that ψ = ⊕ψi is reducible, the above shows that all restricted

roots corresponding to simple factors gk of g are nonresonant with ψ for all gk
with root systems of type other than C`. If gk is of type C`, the above shows

that all roots of gk that are resonant with ψ are long roots. As the short roots

generate gk, the result follows. �

3. The main technical theorems

To state the main technical theorems, fix G to be a connected semisimple

Lie group with finite center.

3.1. Main theorem : actions on nilmanifolds.

Theorem 3.1. Let Γ ⊂ G be a lattice. Let N be a simply connected,

nilpotent Lie group with Lie algebra n, and let Λ ⊂ N be a lattice. Let M =

N/Λ, and let α : Γ → Homeo(M) be an action. Assume α : Γ → Homeo(M)

lifts to an action α̃ : Γ → Homeo(N), and let ρ : Γ → Aut(N) denote the

associated linear data.

Assume the following technical hypotheses are satisfied :

(1) the linear data ρ : Γ → Aut(N) is the restriction to Γ of a continuous

morphism ρ : G→ Aut(N);

(2) Γ is quasi-isometrically embedded in G;

(3) the representation Dρ : G→ Aut(n) is weakly nonresonant with Ad: G→
Aut(g);

(4) all restricted weights of the representation Dρ with respect to a are non-

trivial, where a is as in Section 2.5.

Then there exists a surjective continuous map h : M → M , homotopic to the

identity, such that

h ◦ α(γ) = ρ(γ) ◦ h
for every γ ∈ Γ.

The surjectivity of the map h in Theorem 3.1 follows from elementary

degree arguments.
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3.2. Main theorem : π1-factors. Under the setup introduced in Section 2.3,

we have the following generalization of Theorem 3.1.

Theorem 3.2. Let Γ ⊂ G be a lattice. Let M be a connected finite CW-

complex and α : Γ→ Homeo(M) an action. Suppose for some normal cover M̃

of M with deck group ΛM , we have that α lifts to an action α̃ : Γ→ Homeo(M̃).

Let N be a nilmanifold and Λ ⊂ N a lattice. Assume there is a surjective

homomorphism P∗ : ΛM → Λ inducing a π1-factor ρ : Γ → Aut(N). Assume

the following technical hypotheses are satisfied :

(1) the linear representation ρ : Γ → Aut(N) is the restriction to Γ of a con-

tinuous morphism ρ : G→ Aut(N);

(2) Γ is quasi-isometrically embedded in G;

(3) the representation Dρ : G→ Aut(n) is weakly nonresonant with Ad: G→
Aut(g);

(4) all restricted weights of the representation Dρ with respect to a are non-

trivial, where a is as in Section 2.5.

Then there exists a continuous map h : M → N/Λ, homotopic to P : M →
N/Λ, such that

h ◦ α(γ) = ρ(γ) ◦ h

for every γ ∈ Γ.

The map P in Theorem 3.2 was defined in Section 2.3. Theorem 3.1 follows

immediately from Theorem 3.2 taking P∗ and P to be the identity maps.

We prove Theorem 3.2 inductively on the step of nilpotency. As in Sec-

tion 2.3, given ρ : G→ Aut(N), let ρi : G→ Aut(Ni) denote the induced action

on the factor Ni of (2.2). Recall that for 0 ≤ i ≤ r, we let Pi : M → Ni/Λi,

P̃i : M̃ → Ni, and P∗,i : ΛM → Λi be the compositions of P , P̃ , and P∗ followed

by the natural projections N/Λ → Ni/Λi, N → Ni, and Λ → Λi. Note that

P̃i(x · λ) = P̃i(x) · P∗,i(λ). If h : M → Ni/Λi is homotopic to Pi, we say a lift

h̃ : M̃i → Ni is ΛM -equivariantly homotopic to P̃i if there is a homotopy from

h̃ to P̃i that factors over a homotopy from h to Pi. If h̃ is ΛM -equivariantly

homotopic to P̃i, we have h̃(x · λ) = h̃(x) · P∗,i(λ).

Note that Ni/Λi has a natural structure of a fiber bundle over Ni+1/Λi+1.

Note that if conditions (1), (3), and (4) of Theorem 3.2 hold, then they hold

for the action ρi : G→ Aut(Ni).

Theorem 3.3. Let M , G, Γ, α and ρ be as in Theorem 3.2. Let Ni/Λi
be one of the factors appearing in (2.2) and (2.3). Assume there exists a map

hi+1 : M → Ni+1/Λi+1, homotopic to Pi+1 : M → Ni+1/Λi+1, such that

hi+1 ◦ α(γ) = ρi+1(γ) ◦ hi+1
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for all γ ∈ Γ. Moreover, assume hi+1 : M → Ni+1/Λi+1 lifts to h̃i+1 : M̃ →
Ni+1 with h̃i+1 ◦ α̃(γ) = ρi+1(γ) ◦ h̃i+1 and h̃i+1 ΛM -equivariantly homotopic

to P̃i+1.

Then there exists a continuous map hi : M → Ni/Λi such that hi is ho-

motopic to Pi : M → Ni/Λi, hi : M → Ni/Λi lifts hi+1, and

hi ◦ α(γ) = ρi(γ) ◦ hi

for all γ ∈ Γ. Moreover, hi is the unique map having a lift h̃i : M̃ → Ni with

h̃i ◦ α̃(γ) = ρi(γ) ◦ h̃i and h̃i ΛM -equivariantly homotopic to P̃i.

Theorem 3.2 follows immediately from backwards induction by Theo-

rem 3.3 (with base case i = r and Nr = {e}).

4. Preparatory constructions for the proof of Theorem 3.3

4.1. Lifting property. We retain all notation appearing in Theorem 3.3.

Recall that Ni/Λi has the structure of a fiber bundle over Ni+1/Λi+1 (with fiber

Zi/(Λi ∩ Zi) isomorphic to Tdi). By construction, Pi+1 : M → Ni+1/Λi+1 lifts

to Pi : M → Ni/Λi. Write pi,i+1 : Ni/Λi → Ni+1/Λi+1 and p̃i,i+1 : Ni → Ni+1

for the natural projection maps. As we assume hi+1 is homotopic to Pi+1, by

the lifting property of fiber bundles we may find a continuous φ : M → Ni/Λi
such that

(1) φ is homotopic to Pi;

(2) φ is a lift of hi+1;

(3) the homotopy from φ to Pi factors through pi,i+1 to the homotopy from

hi+1 to Pi+1.

In particular, as hi+1 intertwines the linear and nonlinear Γ-actions, we have

equality of maps from M → Ni+1/Λi+1,

(4.1) pi,i+1(φ(α(γ)(x))) = ρi+1(γ)(pi,i+1 ◦ φ(x))

for all γ ∈ Γ. Our goal in proving Theorem 3.3 will be to correct φ so that

(4.1) remains valid without the projection factor pi,i+1.

Applying the homotopy lifting property to the bundle M̃ → M we may

select a distinguished lift φ̃ : M → Ni such that φ̃ is ΛM -equivariantly homo-

topic to P̃i. Note that p̃i,i+1 ◦ φ̃ is a lift pi,i+1 ◦ φ = hi+1. Moreover, the image

of the homotopy from φ̃ to P̃i under p̃i,i+1 is a lift of the homotopy from hi+1

to Pi+1. Since p̃i,i+1 ◦ P̃i = P̃i+1, it follows that p̃i,i+1 ◦ φ̃ = h̃i+1. In particular,

for φ̃, we have

(4.2) p̃i,i+1 ◦ φ̃ ◦ α̃(γ) = ρi+1(γ) ◦ p̃i,i+1 ◦ φ̃

and φ̃(x · λ) = φ̃(x) · P∗,i(λ).
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4.2. Suspension spaces. Recall that, as α is assumed to lift to α̃ : Γ →
Homeo(M̃), we have an action α∗ : Γ→ Aut(ΛM ). We define the (right) semi-

direct product Γ nα∗ ΛM by

(γ, λ) · (γ̄, λ̄) = (γγ̄, α∗(γ̄
−1)(λ)λ̄).

We let Γ nα∗ ΛM act on G× M̃ on the right by

(g, x) · (γ, λ) = (gγ, [α(γ−1)(x)]λ).

We similarly define the (right) semi-direct product Γ nρ Λi by

(γ, λ) · (γ̄, λ̄) = (γγ̄, ρi(γ̄
−1)(λ)λ̄)

acting on G×Ni by

(g, n) · (γ, λ) = (gγ, nρi(gγ)(λ)).

We remark that the asymmetry in the actions is intentional.

We have right Γ- and ΛM -actions (respectively Γ- and Λi-actions) on

G× M̃ (resp. G × Ni) induced by the natural embeddings of Γ and ΛM into

Γ nα∗ ΛM (resp. Γ and Λi into Γ nρ Λi).

P∗,i : ΛM → Λi can be extended to

Ψ: Γ nα∗ ΛM → Γ nρ Λi

by

(4.3) Ψ(γ, λ) = (γ, P∗,i(λ)).

We check that Ψ defines a homomorphism.

Recall that we have a continuous representation ρ : G → Aut(N) that in

turn descends to ρi : G → Aut(Ni). We define left G-actions on G × M̃ and

G×Ni by

a · (g, x) = (ag, x), a · (g, n) = (ag, ρi(a)n)

for all a ∈ G, g ∈ G, x ∈ M and n ∈ Ni. (Again the asymmetry in the

definitions is intentional.)

As the left and right actions defined above commute, we obtain left

G-actions on the quotient spaces:

(1) Mα := G×M/Γ nα∗ ΛM ;

(2) (Ni/Λi)ρ := G×Ni/Γ nρ Λi.

Here, the upper subscript denotes the standard suspension space construction.

The lower subscript denotes a twisted Lyapunov suspension space.

Remark 4.1. We use the twisted Lyapunov suspension (Ni/Λi)ρ in this

and the next section as the hyperbolicity of the left G-action on the fibers is

best observed through this construction.
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However, the standard suspension of ρ acting on Ni/Λi has the advantage

that it can be viewed as a homogeneous space, which we will use in Proposi-

tion 6.5 below. Indeed, consider the semi-direct product Gnρ Ni given by

(g, n) · (ḡ, n̄) = (gḡ, ρi(ḡ
−1)(n)n̄).

Then Γ nρ Λi is a subgroup of Gnρ Ni and acts on the right as

(g, n) · (γ, λ) = (gγ, ρi(γ
−1)(n)λ).

For a ∈ G, we have

(a, e) · (g, n) = (ag, n)

inducing a left G-action that commutes with the right action of Γ nρ Λi. We

then obtain a natural G-action on the homogeneous space (Ni/Λi)
ρ := (Gnρ

Ni)/(Γ nρ Λi).

Let Υ̃ : Gnρ Ni → G×Ni be given by

Υ̃(g, n) = (g, ρi(g)(n)).

We claim that Υ intertwines left G-actions and right (Γ nρ Λi)-actions and

hence induces a continuous

Υ: (Ni/Λi)
ρ → (Ni/Λi)ρ

intertwining G-actions. Thus the two suspension spaces are equivalent.

We remark that the use of suspension spaces and the equivalence between

them has a long history; see, e.g., [Zim84].

4.3. Approximate conjugacy. We extend the map φ̃ constructed above to

a Ψ-equivariant map Φ: G × M̃ → G × Ni that intertwines the G-actions up

to a defect that we will later correct. This will in turn induce a semiconjugacy

between the G-actions on Mα and (Ni/Λi)ρ.

Fix a right-invariant Riemannian metric dG on G. This induces a metric

dG/Γ on G/Γ. For the remainder, we fix a Dirichlet fundamental domain for

Γ; that is, let D ⊂ G be a fundamental domain for Γ such that

(1) D contains an open neighborhood of the identity e;

(2) D contains an open dense subset of full Haar measure;

(3) if g ∈ D, then d(g, e) = minγ∈Γ d(g,Γ) = dG/Γ(gΓ,Γ).

We will frequently use the following standard fact.

Lemma 4.2. If Γ is a lattice in a semisimple Lie group G, then

dG/Γ(gΓ,Γ) ∈ L1(G/Γ,mG).

Note that this is equivalent to saying that d(g, e) is in L1(D,mG). Indeed,

this can be achieved by choosing a fundamental domain D that is contained

in a Siegel set. See, for instance, [FM09, Prop. 3.17].
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Let D be the Dirichlet fundamental domain fixed above. Given g ∈ G, let

γg ∈ Γ be the unique element with gγ−1
g ∈ D; that is, g ∈ Dγg. For g ∈ G,

define φ̃g : M̃ → Ni by

(4.4) φ̃g(x) = ρi(gγ
−1
g )φ̃(α̃(γg)(x)).

Define Φ: G × M̃ → G × Ni by Φ(g, x) = (g, φ̃g(x)). Note that the kernel of

p̃i,i+1 is the center of Ni and is necessarily preserved by ρi(g) for every g. It

follows that

ρi+1(g) ◦ p̃i,i+1 = p̃i,i+1 ◦ ρi(g).

In particular, for g ∈ G, we have

(4.5) p̃i,i+1 ◦ φ̃g = ρi+1(g) ◦ h̃i+1.

Indeed,

p̃i,i+1 ◦ φ̃g(x) = p̃i,i+1 ◦ ρi(gγ−1
g )φ̃(α̃(γg)(x))

= ρi+1(gγ−1
g )h̃i+1(α̃(γg)(x))

= ρi+1(gγ−1
g )ρi+1(γg)h̃i+1(x)

= ρi+1(g) ◦ h̃i+1(x).

We then have for any a ∈ G that

(4.6) p̃i,i+1 ◦ φ̃ag(x) = ρi+1(a)(p̃i,i+1 ◦ φ̃g(x))

as

p̃i,i+1 ◦ φ̃ag = ρi+1(a)ρi+1(g) ◦ h̃i+1 = ρi+1(a)(p̃i,i+1 ◦ φ̃g).
Our goal below will be to modify the family φ̃g so that (4.6) holds without

the projection term.

We claim that, for the map Ψ defined in (4.3),

Lemma 4.3. Φ is Ψ-equivariant :

Φ((g, x) · (γ, λ)) = Φ(g, x) ·Ψ(γ, λ).

In particular,

(1) φ̃gγ(α̃(γ−1)(x)) = φ̃g(x);

(2) φ̃g(xλ) = φ̃g(x)ρi(g)(P∗,i(λ)).

Proof. Note that γgγ = γgγ. We then have

Φ ((g, x) · (γ, λ)) =
Ä
gγ, φ̃gγ

Ä
α̃(γ−1)(x)λ

ää
=
Ä
gγ, ρi((gγ)γ−1

gγ )φ̃
Ä
α̃(γgγ)

Ä
α̃(γ−1)(x)λ

äää
=
Ä
gγ, ρi(gγ

−1
g )φ̃

Ä
α̃(γgγ)(α̃(γ−1)(x))α∗(γgγ)(λ)

ää
=
Ä
gγ,
î
ρi(gγ

−1
g )φ̃

Ä
α̃(γg)(x)

äó
ρi(gγ

−1
g )P∗,i (α∗(γgγ)(λ))

ä
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=
Ä
gγ,
î
ρi(gγ

−1
g )φ̃

Ä
α̃(γg)(x)

äó
ρi(gγ

−1
g )ρi(γgγ) (P∗,i(λ)))

ä
=
Ä
gγ,
î
ρi(gγ

−1
g )φ̃

Ä
α̃(γg)(x)

äó
ρi(gγ) (P∗,i(λ))

ä
=
Ä
g, φ̃g(x)

ä
·Ψ(γ, λ). �

Note that Φ is only a Borel measurable function. However, φ̃g : M̃ → Ni

is defined and continuous for every g ∈ G. Moreover, from Lemma 4.3, for

each g ∈ G the map φ̃g factors to a map φg : M → Ni/ (ρi(g)Λ). In particular,

φ̃g is uniformly continuous for each g ∈ G.

4.3.1. Central defect. Recall that the center Zi of Ni is the kernel of

p̃i,i+1 : Ni → Ni+1. Let zi denote the Lie algebra of Zi.

Recall the Cartan subalgebra a ⊂ g defined in Section 2.5, and let A be

the analytic subgroup of G associated with a. By condition (4) of Theorem 3.2,

for some a ∈ A, S = Dρ(a)�TeN ∈ Aut(ni) is a hyperbolic matrix. Therefore,

the restriction of S to zi is hyperbolic.

We fix such a distinguished element a from now on. Let Es and Eu be

the stable and unstable subspaces for the restriction of S to zi.

From (4.6) it follows that, given g ∈ G and x ∈ M̃ , there are unique

vectors ψs(g, x) ∈ Es and ψu(g, x) ∈ Eu such that

(4.7) ρi(a)φ̃g(x) = φ̃ag(x) exp(ψs(g, x)) exp(ψu(g, x)),

where exp: ni → Ni is the Lie-exponential map.

Lemma 4.4. For σ = s, u, the map G × M̃ → Eσ , given by (g, x) →
ψσ(g, x), is Γ nα∗ ΛM -invariant.

Proof. We have

a · Φ(g, x) = (ag, ρi(a)φ̃g(x)) = (ag, φ̃ag(x) exp(ψs(g, x)) exp(ψu(g, x))).

Moreover, since the left and right actions commute, repeatedly using

Lemma 4.3 we have

a · Φ
Ä
gγ, α̃(γ−1)(x)λ)

ä
= a · (Φ(g, x) ·Ψ(γ, λ))

=
Ä
ag, φ̃ag(x) exp(ψs(g, x)) exp(ψu(g, x))

ä
·Ψ(γ, λ)

=
Ä
agγ, φ̃ag(x) exp(ψs(g, x)) exp(ψu(g, x)))ρi(agγ)(P∗,i(λ))

ä
=
Ä
agγ, φ̃ag(x)ρi(agγ)(P∗,i(λ)) exp(ψs(g, x)) exp(ψu(g, x)))

ä
=
Ä
agγ, φ̃ag(x)ρi(ag)(P∗,i(α∗(γ)(λ))) exp(ψs(g, x)) exp(ψu(g, x)))

ä
=
Ä
agγ, φ̃ag(xα∗(γ)(λ)) exp(ψs(g, x)) exp(ψu(g, x)))

ä
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=
Ä
agγ, φ̃agγ(α̃(γ−1)(xα∗(γ)(λ))) exp(ψs(g, x)) exp(ψu(g, x)))

ä
=
Ä
agγ, φ̃agγ([α̃(γ−1)(x)]λ) exp(ψs(g, x)) exp(ψu(g, x))

ä
.

It follows that

ρi(a)φ̃gγ([α̃(γ−1)(x)]λ) = φ̃agγ([α̃(γ−1)(x)]λ) exp(ψs(g, x)) exp(ψu(g, x)). �

4.3.2. Subexponential growth of central defects. In this part we overcome

the possible nonboundedness of the functions ψσ near the cusp of G/Γ, where

σ = s, u, by showing they grow subexponentially along orbits which is sufficient

for our construction. Readers who primarily think of cocompact lattices may

ignore the technical discussion below.

Fix any norm on n. By the invariance in Lemma 4.4, the maps (g, x) →
ψσ(g, x) descend to maps on the suspension space Mα → Eσ. In particular,

as M = M̃/ΛM is compact, for every g ∈ G, the functions ‖ψσ(g, x)‖ are

bounded in x . The main technical obstruction to building the conjugacy is

that (as G/Γ is not assumed compact) the functions ‖ψσ(g, x)‖ need not be

bounded in (g, x).

Let

Cσ(g) := max
x∈M̃
‖ψσ(g, x)‖.

For γ ∈ Γ, the above invariance gives Cσ(g) = Cσ(gγ). In particular, the

functions Cσ(g) descend to functions on G/Γ.

Lemma 4.5. For σ ∈ {s, u}. we have∫
G/Γ

log+(Cσ(gΓ)) d(gΓ) <∞.

Proof. Recall our fundamental domainD. We show
∫
D log+(Cσ(g)) dg<∞.

Let ψ(g, x) = ψs(g, x) + ψu(g, x). For g ∈ D, we have γg = e and

exp(−ψ(g, x)) : = (ρi(a)(φ̃g(x)))−1(φ̃ag(x))

= ρi(a)(ρi(gγ
−1
g )φ̃(α(γg)(x))−1(ρi(agγ

−1
ag )φ̃(α̃(γag)(x)))

= ρi(ag)
Ä
ρi(γ

−1
g )(φ̃(α(γg)(x))−1)(ρi(γ

−1
ag )φ̃(α̃(γag)(x)))

ä
= ρi(ag)

Ä
φ̃(x)−1(ρi(γ

−1
ag )φ̃(α̃(γag)(x)))

ä
.

Let F = {γ`} be a the finite set of generators for Γ fixed above, and write

γag = γ`(1)γ`(2) · · · γ`(n(g)),

where n(g) is the word-length of γag relative to the generators {γ`}. From (4.2),

for each x ∈ M̃ , we have

ρi(γ`)
−1φ̃(α̃(γ`)(x))) = φ̃(x)z
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for some z = zγ`(x) ∈ Zi. Moreover, the function zγ` is ΛM -invariant, hence

there is a uniform constant D` > 0 such that

‖ exp−1(zγ`)‖ ≤ D`.

Then for each x, we have a sequence zj ∈ Zi for 1 ≤ j ≤ n(g) with ‖ exp−1(zj)‖
≤ D`(j) and

ρi(γ
−1
ag )φ̃(α̃(γag)(x)))

: = ρi(γ`(n(g)))
−1ρi(γ`(n(g)−1))

−1 · · · ρi(γ`(1))
−1
Ä
φ̃(α̃(γ`(1)) · · · α̃(γ`(n(g)))(x))

ä
= ρi(γ`(n(g)))

−1ρi(γ`(n(g)−1))
−1 · · · ρi(γ`(2))

−1
Ä
φ̃(α̃(γ`(2)) · · · α̃(γ`(n(g)))(x))z1

ä
= ρi(γ`(n(g)))

−1ρi(γ`(n(g)−1))
−1 · · · ρi(γ`(3))

−1Ä
φ̃(α̃(γ`(3)) · · · α̃(γ`(n(g)))(x))ρi(γ`(2))

−1(z1)z2

ä
...

= φ̃(x)

n(g)∏
j=1

ρi(γ`(n(g)))
−1ρi(γ`(n(g)−1))

−1 · · · ρi(γ`(j+1))
−1(zj).

Let

• S` = Dρi(γ`)�TeNi ;
• S = Dρi(a)�TeNi ;
• Sg = Dρi(g)�TeNi ;
• C = max ‖S`‖;
• D = maxD`.

Then, as

exp(−ψ(g, x)) = ρi(ag)
Ä
φ̃(x)−1(ρi(γ

−1
ag )φ̃(α̃(γag)(x)))

ä
= ρi(ag)

Ñ
n(g)∏
j=1

ρi(γ`(n(g)))
−1ρi(γ`(n(g)−1))

−1 · · · ρi(γ`(j+1))
−1(zj)

é
,

we have

‖ψ(g, x)‖ ≤ ‖S‖‖Sg‖n(g)Cn(g)D.

Note that (as Dρ : G→ Aut(n) is a continuous representation) there is a

constant C1 with

log ‖Dρ(g)‖ ≤ C1d(g, e),

hence we have ∫
D

log ‖Sg‖ ≤ C1

∫
D
dG(gΓ,Γ) dgΓ.

By Lemma 4.2,
∫
D log ‖Sg‖ <∞.
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Moreover, from (2.4),∫
D
n(g) dg ≤

∫
D
AdG(e, γag) +B dg(4.8)

≤
∫
D
A [dG(e, g) + dG(g, ag) + dG(ag, γag)] +B dg

≤
∫
D
A
î
dG(e, g) + dG(e, a) + dG(agγ−1

ag , e)
ó

+B dg.

From the choice of fundamental domain, we have

dG(e, g) = dG(Γ, gΓ)

and

dG(agγ−1
ag , e) = dG(agγ−1

ag Γ,Γ) ≤ dG(gΓ,Γ) + dG(agΓ, gΓ),

hence ∫
D
n(g) dg ≤

∫
D

2A [dG(gΓ,Γ) + dG(agΓ, gΓ)] +B dg,

and it follows that again from Lemma 4.2 that
∫
D n(g) dg is finite. The claim

then follows. �

From Lemma 4.5 and standard tempering kernel arguments ([BP07, Lemma

3.5.7]) we immediately obtain the following.

Proposition 4.6. For any ε > 0, there is a measurable, Γ-invariant

function L = Lε : G→ [0,∞) so that for almost every g ∈ G and every k ∈ Z,

(1) Cσ(g) ≤ L(g);

(2) L(akg) ≤ eε|k|L(g).

5. Construction of semiconjugacy: proof of Theorem 3.3

In this section, we build a continuous semiconjugacy H between the left

G-actions on G×M̃ and G×Ni. Moreover, the conjugacy will be Ψ-equivariant

and hence descend to a semiconjugacy between left G-actions on Mα and

(Ni/Λi)ρ.

We first construct a measurable (with respect to Haar) function H inter-

twining the action of our distinguished a ∈ A. We then extend H to intertwine

the actions of the centralizer of a and finally all of G. That H agrees almost

everywhere with a continuous function will follow from construction and the

fact that H intertwines the left G-actions.

5.1. Semiconjugating the action of a. In this section we first construct a

measurable semiconjugacy for the action of a. The proof follows the same ideas

as that of Franks’ Theorem on Anosov diffeomorphism on tori. Readers who

wish to get a quick understanding of the main idea without considering the

more complicated setting we are dealing with may refer to Theorem 2.6.1 and

the discussion on page 588 of [KH95] for a discussion of Franks’ Theorem.
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Recall that we write S ∈ Aut(n) for Dρi(a), where a is the distinguished

element of A fixed in 4.3.1. Given g ∈ G, define a formal conjugacy by adding

(central) correction terms to the family φ̃g:

(5.1)

hg(x) := φ̃g(x) exp

( ∞∑
k=1

Sk−1
(
ψs(a−kg, x)

))
exp

(
−
∞∑
k=0

S−k−1
(
ψu(akg, x)

))
.

We check formally that

ρi(a)(hg(x)) = hag(x).

Indeed,

ρi(a)(hg(x))

=ρi(a)

[
φ̃g(x) exp

( ∞∑
k=1

Sk−1
(
ψs(a−kg, x)

))
exp

(
−
∞∑
k=0

S−k−1
(
ψu(akg, x)

))]
=φ̃ag(x) exp(ψs(g, x)) exp(ψu(g, x))

· exp

( ∞∑
k=1

Sk
(
ψs(s−kg, x)

))
exp

(
−
∞∑
k=0

S−k
(
ψu(akg, x)

))

=φ̃ag(x) exp

( ∞∑
k=0

Sk
(
ψs(a−kg, x)

))
exp

(
−
∞∑
k=1

S−k
(
ψu(akg, x)

))

=φ̃ag(x) exp

( ∞∑
`=1

S`−1
(
ψs(a−`(ag), x)

))
exp

(
−
∞∑
`=0

S−`−1
(
ψu(a`(ag), x)

))
=hag(x).

We say a family of maps g → hg : M̃ → Ni parametrized by g ∈ G is

Ψ-equivariant if the map G × M̃ → G × Ni defined by (g, x) → (g, hg(x)) is

Ψ-equivariant.

Lemma 5.1. There is a full measure set of g ∈ G such that hg : M̃ → Ni

is well defined, continuous, and Ψ-equivariant. Moreover, for such g,

p̃i,i+1 ◦ hg = ρi+1(g)h̃i+1.

Proof. Note that S has no eigenvalues of modulus 1. Taking 0 < ε <

minλ
| log |λ||

100 where λ runs over all eigenvalues of S, the claim holds for all g

such that Proposition 4.6 holds. �

Define H : G × M̃ → G × Ni by H(g, x) = (g, hg(x)). Then H defines a

measurable conjugacy between the actions of a: for almost every g ∈ G,

H(a · (g, x)) = a ·H(g, x).

Here the action on the left-hand side is the one on G × M̃ and the action on

the right-hand side is the one on G×Ni.
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Lemma 5.2. The family of maps g → hg is unique among the measurable

family of Ψ-equivariant, continuous functions M̃ → Ni with the property that

hag(x) = ρi(a)hg(x) and p̃i,i+1 ◦ hg = ρi+1(g)h̃i+1.

Proof. Suppose g → h̄g is another such family. As p̃i,i+1 ◦ h̄g = p̃i,i+1 ◦ hg,
it follows that h̄g(x) = hg(x) exp(ψ̂(g, x)) for some ψ̂ : G × M̃ → zi. Write

ψ̂(g, x) = ψ̂s(g, x) + ψ̂u(g, x).

By the Ψ-equivariance of hg and h̄g and as ψ̂s(g, x) ∈ zi it follows that

ψ̂s((g, x) · (γ, λ)) = ψ̂s(g, x).

Similarly, ψ̂u((g, x) · (γ, λ)) = ψ̂u(g, x). In particular, for almost every g ∈ G,

the function ψ̂σ descends to a continuous function from M to zi. It follow that

‖ψ̂σ(g, x)‖ is bounded uniformly in x for almost every g.

As the families hg and h̄g intertwine the dynamics we have, moreover, that

• ψ̂s(g, x) = Skψ̂s
Ä
a−k · (g, x)

ä
,

• ψ̂u(g, x) = S−kψ̂u
Ä
ak · (g, x)

ä
.

By Poincarè recurrence to sets on which g 7→ maxx∈M̃ ‖ψ̂
σ(g, x)‖ is uniformly

bounded, it follows that ψ̂s(g, x) = 0 = ψ̂u(g, x) for almost every g and every

x ∈M . Hence hg = h̄g almost everywhere. �

5.2. Extending the semiconjugacy to the centralizer of a. Recall our dis-

tinguished a ∈ A where A ⊂ G is a maximal split Cartan subgroup. Let

CG(a) ⊂ G denote the centralizer of a in G. Note, in particular, that A ⊂
CG(a). Moreover, every compact almost-simple factor of G is contained in

CG(a).

Proposition 5.3. Let ā ∈ CG(a). Then for mG-almost every g ∈ G,

hāg = ρi(ā)hg.

Proof. Let ā ∈ CG(a). For g ∈ G, define h̄g := ρi(ā
−1)hāg. We check that

g → h̄g defines a measurable family of Ψ-equivariant, continuous functions

M̃ → Ni with the property that p̃i,i+1(h̄g) = ρi(g)h̃i+1. Moreover,

h̄ag(x) : = ρi(ā
−1)hāag = ρi(ā

−1)haāg = ρi(ā
−1)ρi(a)hāg

= ρi(a)ρi(ā
−1)hāg = ρi(a)h̄g(x).

By Lemma 5.2, h̄g = hg for almost every g. �

It follows from standard ergodic theoretic constructions that there is a full

measure subset X0 of G such that — after modifying the family g → hg on a

set of measure zero — we have

ρi(a
′)hg = ha′(g)
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for all g ∈ X0 and all a′ ∈ CG(a). In particular, the map H : G× M̃ → G×Ni

defines a measurable conjugacy between the left actions of CG(a) on G × M̃
and on G×Ni.

5.3. Extension of the semiconjugacy to G. Using that there are sufficiently

many nonresonant roots (as defined in Definition 2.6), we show that H inter-

twines the full G-actions on G× M̃ and G×Ni via the following proposition.

Proposition 5.4. Let ζ be a restricted root of g that is nonresonant with

the representation Dρi. Let X ∈ gζ , and let v = exp(X). Then for almost

every g ∈ G,

hvg = ρi(v)hg.

Proof. As ζ is not positively proportional to any weight of ρi, we may find

a1, a2 ∈ A and a splitting zi = E × F so that writing Sj = Dρ(aj),

(1) ζ(a1) = ζ(a2) = 0,

(2) ‖S1�E‖ < 1,

(3) ‖S2�F ‖ < 1.

Note then that a−1
i vai = v for i ∈ {1, 2}.

Recall that for almost every g and any x ∈ M̃ , we have

p̃i,i+1 ◦ ρi(v)hg(x) = p̃i,i+1hvg(x).

Thus, given almost every g ∈ G and any x ∈ M̃ , there is a unique η(g, x) ∈ zi
with

ρi(v)hg(x) = hvg(x) exp(η(g, x)).

For almost every g ∈ G, hg is continuous and descends to a function defined

on M . It follows that ‖η(g, x)‖ is bounded uniformly in x for almost every g.

As the family hg is Ψ-equivariant, we have η(g, x) = η(gγ, α̃(γ−1)(x)), and

hence the function g 7→ maxx∈M̃ ‖η(g, x)‖ is Γ-invariant. Fix C > 0, and let

B ⊂ X0 ⊂ G/Γ be such that for g ∈ B, ‖η(g, x)‖ < C for all x. Taking C

sufficiently large we may ensure B has measure arbitrarily close to 1.

Now, consider g ∈ B such that a−kj gΓ ∈ B for j = {1, 2} and infinitely

many k ∈ N. Note that as

ρi(v)hajg(x) = ρi(v)ρi(aj)hg(x)

= ρi(aj) (ρi(v)hg(x))

= ρi(aj) (hvg(x) exp(η(g, x)))

= hajvg(x) exp(Sjη(g, x))

= hvajg(x) exp(Sjη(g, x)),
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we have η(ajg, x) = Sjη(g, x). Write η(g, x) = ηE(g, x) + ηF (g, x). We then

have

ηE(g, x) = Sk1 (ηE(a−k1 g, x)), ηF (g, x) = Sk2 (ηF (a−k2 g, x)).

It then follows that

ηE(g, x) = ηF (g, x) = 0,

proving the proposition. �

Recall that we assume that the representation Dρ : G→ Aut(n) is weakly

nonresonant with the adjoint representation. In particular, every g ∈ G can

be written as

g = exp(X1) exp(X2) · · · exp(X`),

where each Xj is either a vector in g0, or a vector in gξ for some restricted root

ξ that is nonresonant with the representation Dρi. Recall that for Xj ∈ g0,

exp(Xj) lies in CG(s).

It follows from Propositions 5.3 and 5.4 that, after modifying H on a set

of measure zero, we have

g′ ·H(g, x) = H(g′ · (g, x))

for almost every g ∈ G, every x ∈ M̃ and every g′ ∈ G. As G acts transitively

on itself,

g′ ·H(g, x) = H(g′ · (g, x))

holds for every g ∈ G, every x ∈ M̃ , and every a ∈ G. Now, fix g so that

hg : M̃ → Ni is continuous. As hg′g = ρ(g′)hg, it follows that hg is continuous

for every g ∈ G and, moreover, the family g → hg varies continuously in the

parameter g whence H : G× M̃ → G×Ni is continuous.

Finally, recall that the family hg is Ψ-equivariant (whence the map H : G×
M̃ → G × Ni is Ψ-equivariant) and p̃i,i+1 ◦ hg = ρi+1(g)h̃i+1. Indeed, these

properties hold for almost every g and extend to every g by continuity. In

particular, this shows

Corollary 5.5. There is a continuous, Ψ-equivariant function H : G×
M̃ → G×Ni of the form H(g, x) = (g, hg(x)) with g′ ·H(g, x) = H(g′ · (g, x))

for any g′ ∈ G.

To complete the proof of Theorem 3.3 define h̃i : M̃ → Ni by

h̃i := he.

Then, h̃i satisfies

(1) h̃i(xλ) = h̃i(x)P∗,i(λ) for λ ∈ ΛM ;

(2) p̃i,i+1 ◦ h̃i = h̃i+1;

(3) h̃i(α(γ)(x)) = he(α(γ)(x)) = hγ(x) = ρ(γ)he(x) = ρ(γ)h̃i(x) for all γ ∈ Γ.
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Moreover, writing h̃i = ρ(g−1)hg for some g ∈ G such that hg coincides with

the family defined by (5.1), it follows that h̃i is ΛM -equivariantly homotopic

to φ̃. Consequently, h̃i : M̃ → Ni descends to a function hi : M → Ni/Λi
satisfying the conclusions of the theorem.

Moreover, if h : M → Ni/Λi is any continuous function having a lift

h̃ : M̃ → Ni as in the conclusion of the theorem, it follows that h̃(xλ) =

h̃(x)P∗,i(λ) and p̃i,i+1h̃ = h̃i+1. That h = hi then follows from the uniqueness

given in Lemma 5.2.

6. Superrigidity, arithmeticity, and orbit closures

In this section we collect a number of classical facts that will be used in

the sequel to prove Theorems 1.3 and 1.7.

Theorem 1.3 follows from verification of the hypotheses of Theorem 3.1.

To show (1) of Theorem 3.1, we use the superrigidity theorem of Margulis.

Note that for a lattice Γ as in Hypothesis 1.2 and a linear representation ψ

of Γ, the standard superrigidity theorem of Margulis ([Mar91, Th. IX.6.16], see

also [Mor15, 16.1.4]) guarantees (if G is a simply connected real semisimple

algebraic group or if the Zariski closure of ρ(Γ) is center-free) that the lin-

ear representation ρ : Γ → GL(d,R) extends on a finite-index subgroup to a

continuous representation ρ : G → GL(d,R) up to a compact correction. We

use the arithmeticity theorem of Margulis and the arithmetic lattice version

of superrigidity below to ignore the compact correction by replacing G with a

compact extension.

The proof of Theorem 1.7 will require two additional facts that we also

present here: the superrigidity theorem for cocycles due to Zimmer and the

classification of orbit closures for the action of the linear data ρ associated to

an action α. Such classification follows from the orbit closure classification

theorem of Ratner.

6.1. Arithmeticity and superrigidity. Let G be a connected, semisimple

Lie group with finite center, and let Γ ⊂ G be a lattice. For this section, we

make the following standing assumption:

(6.1) Γ has dense image in every R-rank 1, almost-simple factor of G.

In particular, (6.1) holds under Hypothesis 1.2.

LetG′ denote the quotient ofG by the maximal compact normal subgroup,

and let Γ′ be the image of Γ in G′. Then the projection to Γ′ has finite kernel

in Γ. Moreover, (G′,Γ′) still satisfies (6.1).

Let g′ denote the Lie algebra of G′. Note that G′ acts on g′ via the

adjoint representation. Let G∗ = AdG′ ⊂ GL(g′) denote the image of G′. Let

Γ∗ denote the image of Γ′ in G∗. Γ∗ is a lattice in G∗.
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Let ψ : Γ → GL(d,Q) be a linear representation. As ψ(Γ) is a finitely

generated subgroup of GL(d,R), it contains a finite-index, torsion-free, normal

subgroup ([Rag72, Th. 6.11]). Restricting to a finite-index subgroup of Γ, we

may assume ψ(Γ) has no torsion. On the other hand, note that the kernel of

Γ→ Γ∗ is finite. It then follows that ψ(γ) is a torsion element for every γ in the

kernel of Γ → Γ∗. Thus we may assume the representation ψ : Γ → GL(d,Q)

factors through a representation ψ∗ : Γ∗ → GL(d,Q).

Note that G∗ is a semisimple Lie group without compact factors and with

trivial center. In this case G∗ = G∗(R)◦ for a semisimple algebraic group G∗.

Moreover, Γ∗ ⊂ G∗ is a lattice whose projection to every rank-one factor is

dense.

Theorem 6.1 (Margulis Arithmeticity Theorem [Mar91]). Let G∗ be a

semisimple algebraic Lie group defined over R and Γ∗ a lattice in G∗ = G∗(R)◦

that satisfies hypothesis (6.1). Then Γ∗ is arithmetic: there exist a connected

semisimple algebraic group H defined over Q and a surjective algebraic mor-

phism φ : H→ G∗ defined over R, such that

(1) φ is a quotient morphism between algebraic groups, and the surjective mor-

phism φ : H(R)◦ → G∗ is continuous with compact kernel ;

(2) φ(H(Z) ∩H(R)◦) is commensurable with Γ∗.

The case where Γ∗ is irreducible follows from [Mar91, introduction, The-

orem 1′], where irreducible lattices is defined as in [Mar91, p. 133]. In general,

G decomposes as an almost direct product
∏
iG
∗
i of normal subgroups defined

over R, and there are irreducible lattices Γ∗i < G∗i = G∗i (R)◦ such that
∏

Γi
has finite index in Γ. Then each pair (Gi,Γi) satisfies (6.1). This reduces to

the irreducible case.

By passing to a finite cover we may assume the group H in Theorem 6.1 is

simply connected as an algebraic group. Let H = H(R)◦. Let ∆ = φ−1(Γ∗) ∩
H(Z). Then ∆ is commensurable with H(Z) ∩H and hence H(Z). The map

φ induces a linear representation ψ̄ : ∆→ GL(d,Q) given by ψ̄ = ψ ◦ φ.

As we assume H is simply connected, H decomposes uniquely as the

direct product of simply connected almost Q-simple, Q-groups H =
∏

Hi.

Moreover, since φ has compact kernel and G∗ has no compact simple factors,

our assumption (6.1) implies every Q-simple factor Hi has R-rank at least 2.

We have the following version of Margulis Superrigidity.

Theorem 6.2 (Margulis Superrigidity Theorem; arithmetic lattice case

[Mar91]). Let H be a simply connected semisimple algebraic group defined over

Q, all of whose almost Q-simple factors have R-rank 2 or higher, and let

∆ ⊂ H(R) be a subgroup commensurable to H(Z). Suppose k is a field of

characteristic 0, J is an algebraic group defined over k, and ψ : ∆ → J(k) is
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a group morphism. Then there are a k-rational morphism ψ′ : H → J and a

finite-index normal subgroup ∆′ C∆ such that ψ(δ) = ψ′(δ) for all δ ∈ ∆′.

When H is almost Q-simple, this is a direct consequence of [Mar91, VIII,

Th. B]. See also [Mor15, Cor. 16.4.1]. In general, H is the direct product of

its almost Q-simple factors H =
∏

Hi and
∏

∆i has finite index in ∆ where

each ∆i is defined by ∆i = ∆ ∩ Hi(R) and is commensurable with Hi(Z).

On each ∆i, ψ coincides with a Q-representation ψ′i of Hi on a finite-index

subgroup. Via projection to Q-simple factors, the ψ′i assemble into a coherent

representation ψ′; moreover, ψ′ coincides with ψ on a finite-index subgroup

of ∆.

Replace ∆ with ∆′ coming from Theorem 6.2. Recall that we have pro-

jections p1 : G→ G∗ and p2 : H → G∗. Consider the Lie group

L̄ := {(g, h) ∈ G×H : p1(g) = p2(h)}.

Let L be the identity component of L̄, and let Γ̂ ⊂ L be

Γ̂ := {(γ, δ) ∈ Γ×∆ : p1(γ) = p2(δ)} ∩ L.

We have natural maps L→ G and L→ H given by coordinate projections.

Because G → G∗ and H → G∗ are surjective, so are L → G and L → H.

Moreover, the kernel of L→ G is the set {(e, h) : p2(h) = e}. As the kernel of

p2 is compact, L is a compact extension of G. Moreover, the image of Γ̂ in G

has finite index in Γ. Thus Γ̂ is a lattice in L. Restricting to a finite-index

subgroup, we may assume Γ̂ maps into Γ and ∆.

Summarizing the above we have the following.

Proposition 6.3. For G a connected, semisimple Lie group with finite

center, Γ ⊂ G a lattice satisfying (6.1), an algebraic group J defined over a

field k with char(k) = 0, and any group morphism ψ : Γ→ J(k), there are

(1) semisimple Lie groups G∗, H and L, such that G∗ has trivial center, and

H = H(R)◦ for some simply connected semisimple algebraic group H de-

fined over Q;

(2) a finite-index subgroup Γ̄ ⊂ Γ;

(3) lattices Γ̂ ⊂ L,∆ ⊂ H, and Γ∗ ⊂ G∗;
(4) surjective homomorphisms π1 : L → G, π2 : L → H, p1 : G → G∗, and

p2 : H → G∗, all of which have compact kernels ;

(5) a representation ψ∗ : Γ∗ → J(k) such that ψ�Γ̄ = ψ∗ ◦ p1;

(6) a k-rational morphism ψ′ : H→ J

such that the following diagrams commute:
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L

π1
��

π2 // H

p2
��

ψ′ // J

G
p1
// G∗

Γ̂

π1
��

π2 // ∆

p2

��

ψ′ // J(k).

Γ̄
p1
// Γ∗

ψ∗

==

6.2. Cocycle superrigidity. The superrigidity theorem (with compact error)

for representations admits a generalization due to Zimmer for linear cocycles

over measure-preserving actions of higher-rank groups. We state here a version

that will be sufficient for our later purposes.

Theorem 6.4 (Zimmer Cocycle Superrigidity Theorem [Zim84], [FM03]).

Let G be a simply connected semisimple algebraic group defined over R all of

whose almost-simple factors have R-rank 2 or higher. Let G = G(R)◦, and

let Γ ⊂ G be a lattice. Let (X,µ) be a standard probability space and let

α : Γ → Aut(X,µ) be an ergodic action by measure-preserving transforma-

tions. Let ψ : Γ × X → GL(d,R) be a measurable cocycle over α such that

for any γ, log+ ‖ψ(γ, x)‖ is in L1(X,µ). Then there exist a representation

ψ′ : G → GL(d,R), a cocycle β : Γ × X → SO(d), and a measurable map

θ : X → GL(d,R) such that

(1) ψ(γ, x) = θ(α(γ)(x))ψ′(γ)β(γ, x)(θ(x))−1 for every γ and µ-almost every x;

(2) for all g ∈ G, γ ∈ Γ and µ-almost every x, ψ′(g) and β(γ, x) commute.

The version of Zimmer Cocycle Superrigidity given in Theorem 6.4 was

proved by Fisher and Margulis in [FM03, Th. 1.4]. Note that in the statement

of Theorem 1.7, we do not assume that the action α preserves a measure.

However, because in this setting the semiconjugacy h between α and the linear

data ρ is a conjugacy, we are able to induce α-invariant measures from ρ-

invariant measures.

6.3. Orbit closures for linear data. We present here a fact that will be

important in Section 8.3. We assume that G and Γ are as in Hypothesis 1.2,

M = N/Λ is a compact nilmanifold, α : Γ→ Homeo(M) is an action that lifts

to an action on N , and ρ : Γ → Aut(N/Λ) is the linear data. We recall all of

the notation from Proposition 6.3. In particular, there are a Lie group L, a

lattice Γ̂ ⊂ L, a surjective homomorphism π : L→ G with π(Γ̂) ⊂ Γ with finite

index, and a continuous representation ψ : L→ Aut(n) with Dρ(π(γ̂)) = ψ(γ̂)

for all γ̂ ∈ Γ. Then ψ extends to a representation ρ̂ : L → Aut(N) such that

ρ̂(γ̂) = ρ(π(γ̂)) for γ̂ ∈ Γ̂.

Let M ρ̂ denote the suspension space (Lnρ̂ N)/(Γ̂ nρ̂ Λ) discussed in Re-

mark 4.1 of in Section 4.2. As remarked there, Γ̂nρ̂Λ is a lattice in Lnρ̂N . Let
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L′ ⊂ L be the connected subgroup generated by all noncompact, almost-simple

factors. Note that L′ is generated by unipotent elements of L. Moreover, if

u ∈ L is a unipotent element of L, then (u, e) is unipotent in (L nρ̂ N). It

follows that the natural embedding L′ ⊂ (L nρ̂ N) is generated by unipotent

elements.

From the orbit classification theorem of Ratner [Rat95, Th. 11], it follows

that the L′-orbit closure of any point in M ρ̂ is a homogeneous submanifold.

As L is a compact extension of L′, it similarly follows that the L-orbit closure

of any point in M ρ̂ is a homogeneous submanifold. Note that the closures of

L-orbits on M ρ̂ are in one-to-one correspondence with closures of ρ̂(Γ̂)-orbits

on N/Λ. It follows that all ρ̂(Γ̂)-orbit closures on N/Λ are ρ̂(Γ̂)-invariant, ho-

mogeneous submanifolds. Note that the Haar measure on every ρ̂(Γ̂)-invariant,

homogeneous submanifold is ρ̂(Γ̂)-invariant. Moreover, if ρ̂(γ̂0) is hyperbolic

for some γ̂0, then each of these measures are ergodic.

Since π(Γ̂) is of finite index in Γ, we have the following.

Proposition 6.5. For Γ and ρ as above and any x ∈ N/Λ, the orbit clo-

sure ρ(Γ)(x) is the finite union of homogeneous sub-nilmanifolds of the same

dimension. In particular, every orbit closure ρ(Γ)(x) coincides with the sup-

port of a ρ-invariant probability measure µx on N/Λ. Moreover, if ρ(γ0) is

hyperbolic for some γ0, then the measures µx are ergodic.

7. Topological rigidity for actions with hyperbolic linear data

In this section we prove Theorem 1.3 by verifying the hypotheses of The-

orem 3.1. Note that the Hölder continuity of h in Theorem 1.3 follows from

standard arguments once the action α is by Lipschitz homomorphisms and the

linear data is hyperbolic ([KH95, §19.1]).

7.1. Verification of (1) of Theorem 3.1. Let G and Γ be as in Hypothe-

sis 1.2. Given a nilmanifold M = N/Λ, let α : Γ → Homeo(M) be an action.

We assume α lifts to an action α̃ : Γ→ Homeo(N) and let ρ : Γ→ Aut(M) ⊂
Aut(N) be the induced linear data. Identifying n with Rd, the derivative of ρ

induces a linear representation ψ = Dρ : Γ→ Aut(n) ⊂ GL(d,R). We remark

that Aut(n) is a real algebraic group.

Let Γ̄, L, Γ̂,∆, π1, π2, ψ
′, ψ∗ be as in Proposition 6.3, with k = R and

J = Aut(n). As π1(Γ̂) ⊂ Γ̄, we have an induced action α̂ : Γ̂→ Homeo(M), by

α̂(γ̂) = α(π1(γ̂)). The action α̂ lifts to an action on N , and the induced linear

data is ψ̂(γ̂) = ψ∗(p1(π1(γ̂))) = ψ′(π2(γ̂)). It follows that the linear data ψ̂

of α̂ extends to a continuous representation ψ̂′ : L→ Aut(n) given by ψ̂′(`) =

ψ′(π2(`)). Via the exponential map, we have that ρ̂ : Γ̂ → Aut(N) extends to

ρ̂ : L → Aut(N) by ρ̂(`) = exp(ψ̂′(`)). Thus, after replacing (G,Γ, α, ρ) with

(L, Γ̂, α̂, ρ̂), (1) of Theorem 3.1 holds.
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7.2. All weights are nontrivial. Since, in the previous section, the linear

data ρ̂ : Γ̂ → Aut(N) extends to a continuous ρ̂′ : L → Aut(N) and ρ̂′ factors

through a ρ′ : H → Aut(N), to establish (4) of Theorem 3.1 for (L, ρ̂), it is

sufficient to show nontriviality of the weights of Dρ′ = ψ′.

As H = H(R)◦ is real algebraic, the Lie subalgebra a is the lie algebra of

a maximal R-split torus, so the result follows from the following basic fact.

Lemma 7.1. Suppose G = H(R)◦ for a semisimple algebraic group H

defined over R and ψ : H→ GL(d) is a R-rational representation. Let A be a

maximal R-split torus in H. Suppose ψ(g) is hyperbolic for some g ∈ G. Then

all restricted weights of χ of ψ with respect to A are nontrivial.

Proof. The element g has a unique Jordan decomposition g = gsgu = gugs,

where gs is semisimple and gu is unipotent, and gs, gu ∈ H(R). Then ψ(g) =

ψ(gs)ψ(gu) is the Jordan decomposition of ψ(g). Since ψ(g) and ψ(gs) have

the same eigenvalues, ψ(gs) is a hyperbolic matrix.

The semisimple element gs ∈ H(R) belongs to a R-torus T. It follows that

for all weights λ ∈ X∗(T) of ψ, |λ(gs)| 6= 1, where X∗(T) denotes the group of

characters of T.

There is a unique decomposition T = TsTa into an R-split torus Ts

and an R-anisotropic torus Ta. We further decompose gs = gs,sgs,a with

gs,s ∈ Ts(R) and gs,a ∈ Ta(R).

Write λ̃(t) = λ(t)λ(t); then λ̃ is a character of T defined over R and is

hence trivial on Ta. Then λ̃(gs,s) = λ̃(gs) = |λ(gs)|2 6= 1. Moreover, λ|Ts
is defined over R because Ts is split, and thus λ̃(gs,s) = λ2(gs,s). So λ(gs,s),

which is real, is not equal to ±1. This shows ψ(gs,s) is a hyperbolic matrix.

On the other hand, Ts is contained in some maximal R-split torus A′.

It follows that all restricted weights χ of A′ are nontrivial. As all maximal

R-split tori are H(R)-conjugate, the lemma follows. �

7.3. Proof of Theorem 1.3. As discussed above, (1) and (4) of Theorem 3.1

hold for (L, Γ̂, α̂, ρ̂). (2) of Theorem 3.1 follows immediately from Theorem 2.5.

Once we know that all weights of the representation given by the linear data

are nontrivial, (3) of Theorem 3.1 follows immediately from Lemma 2.7. Theo-

rem 3.1 then gives that a map h intertwining the actions α̂ and ρ̂. Since α̂ and ρ̂

factor through the restriction of the actions α and ρ to a finite-index subgroup

Γ̄ ⊂ Γ ⊂ G, the same h intertwines α�Γ̄ and ρ�Γ̄, and Theorem 1.3 follows.

8. Smooth rigidity for Anosov actions

In this section we prove Theorem 1.7. Our approach uses many of the

same ideas as [KLZ96].
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8.1. Reductions and proof of Theorem 1.7. Let G and Γ satisfy Hypoth-

esis 1.2, and let α be as in Theorem 1.7. Let ρ be the linear data of α. Note

that if α(γ) is Anosov, then Dρ(γ) is hyperbolic. Replacing Γ with a finite-

index subgroup Γ1 ⊂ Γ, we may assume from Theorem 1.3 that there is a

(Hölder) continuous h : M →M intertwining the actions α and ρ. Recall that

we assume α(γ0) is Anosov for some γ0 ∈ Γ. Taking a power, it follows that

α(γ1) is Anosov for some γ1 ∈ Γ1. By Manning’s Theorem [Man74], h is a bi-

Hölder homeomorphism (see also [KH95, §18.6]); in particular, from the linear

data ρ and h, we recover the nonlinear action α of Γ1.

We recall the notation and constructions from Section 7.1. In particular,

there are a center-free, semisimple Lie group G∗ without compact factors, a

continuous surjective morphism p1 : G → G∗, finite-index subgroup Γ̄ ⊂ Γ1,

and representation ρ∗ : Γ∗ → Aut(N) where Γ∗ = p1(Γ̄) such that ρ�Γ̄ = ρ∗◦p1.

Since the linear data ρ�Γ̄ uniquely determines the nonlinear action α�Γ̄, it

follows that α factors through an action α̃∗ of Γ∗: α̃∗(γ∗) = α(p−1
1 (γ∗)).

Recall that the Lie group G∗ is a real algebraic group; that is, G∗ =

G∗(R)◦ for a semisimple algebraic group G∗ defined over R. Let G̃ be the

algebraically simply connected cover of G∗. Then G̃ = G̃(R)◦ is a finite cover

of G∗, whence G̃ has finite center and no compact factors. Let Γ̃ be the lift of Γ∗

to G̃. The projection Γ̃→ Γ∗ induces an action α̃ of Γ̃ by C∞ diffeomorphisms

of M ; moreover, the action α̃ lifts to an action by diffeomorphisms of N and

induces linear data ρ̃ that factors through ρ∗.

Note that the map h guaranteed by Theorem 1.3 intertwining the actions

of α and ρ also intertwines the actions ρ̃ and α̃. It is therefore sufficient to

prove Theorem 1.7 under the following stronger hypotheses.

Hypothesis 8.1. Suppose G is a simply connected semisimple algebraic

group defined over R, all of whose R-simple factors have R-rank 2 or higher,

G = G(R)◦, and Γ ⊂ G is a lattice. Suppose α is an action of Γ by C∞

diffeomorphisms of a nilmanifold M = N/Λ that lifts to an action by diffeo-

morphisms of N , and ρ : Γ → Aut(M) is the associated linear data. Suppose

h : M →M is a homeomorphism such that h ◦ α(γ) = ρ(γ) ◦ h for all γ ∈ Γ.

Assuming Hypothesis 8.1, the proof of Theorem 1.7 proceeds by studying

the restriction of α and ρ to an appropriately chosen finitely generated discrete

higher-rank abelian subgroup Σ ⊂ Γ.

We recall the following definition.

Definition 8.2. For an abelian group Σ and two actions ρ : Σ→ Aut(M),

ρ′ : Σ → Aut(M ′) by nilmanifold automorphisms, we say ρ′ is an algebraic

factor action of ρ, if there is an algebraic factor map π : M → M ′ such that

π ◦ ρ(g) = ρ′(g) ◦ π for all g ∈ Σ. We further say ρ′ is a rank-one algebraic
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factor action of ρ if in addition there is a finite-index subgroup Σ′ < Σ such

that the image group ρ′(Σ′) < Aut(M ′) is cyclic.

We remark that it follows from [RHW14, Lemma 2.9] that if there exists

a finite-index subgroup Σ′ ⊂ Σ such that ρ�Σ′ has a rank-one algebraic factor,

then ρ has a rank-one factor.

The following proposition is the main result of this section.

Proposition 8.3. Let G, Γ, α, and ρ be as in Hypothesis 8.1. Suppose

α(γ0) is an Anosov diffeomorphism for some γ0 ∈ Γ. Then there exists a free

abelian subgroup Σ ⊂ Γ such that ρ|Σ has no rank-one algebraic factor actions

and α(γ1) is Anosov for some γ1 ∈ Σ.

Having found an appropriate Σ ⊂ Γ, Theorem 1.7 follows from the follow-

ing proposition. We recall that for an action α of a discrete abelian group Σ by

diffeomorphisms of a nilmanifold with an Anosov element, there is always an

abelian action, called the linearization of α, by affine nilmanifold transforma-

tions. Moreover, these two actions are conjugate. The main result of [RHW14]

shows this conjugacy is smooth.

Theorem 8.4 ([RHW14]). Let α be a C∞ action by a discrete abelian

group Σ on a nilmanifold M , and let ρ be its linearization. Suppose that ρ

has no rank-one algebraic factor action and α(γ1) is Anosov for some γ1 ∈ Σ.

Then α is conjugate to ρ by a C∞ diffeomorphism that is homotopic to the

identity.

Let G, Γ, α, and ρ be as in Hypothesis 8.1. Suppose α(γ0) is an Anosov

diffeomorphism for some γ0 ∈ Γ. Let Σ ⊂ Γ and γ1 ∈ Σ be as in Propo-

sition 8.3. Note that the conjugacy h in Hypothesis 8.1 guarantees that the

linearization of α�Σ coincides with the restriction of the linear data ρ of α to Σ.

By Theorem 8.4, there is a C∞ diffeomorphism h′ : M →M homotopic to the

identity that intertwines α�Σ and the linearization of α�Σ. Furthermore, there

is a lift of h′ intertwining the lifts of α(γ1) and ρ(γ1) ∈ Aut(N). From the

uniqueness criterion of semiconjugacies, it follows that h coincides with h′ and

hence is C∞. Theorem 1.7 follows immediately.

In the remainder of this section, we prove Proposition 8.3. First, starting

from one Anosov element, we produce a large Zariski dense semigroup of Γ

that acts by Anosov diffeomorphisms. By works of Prasad and Rapinchuk

[PR03], [PR05], generic elements of this semigroup will have centralizers of

rank equal to rankR(G). Finally, we show that the restriction of ρ to such

generic centralizers will not have rank-one factors using arithmeticity of the

representation ρ : Γ 7→ Aut(n). This reduces the problem to the global smooth
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rigidity property of Anosov actions without rank-one factors by higher-rank

abelian groups, which is known by [RHW14].

8.2. The semigroup of Anosov elements. We recall the setting of Propo-

sition 8.3. Let γ0 ∈ Γ be such that α(γ0) is an Anosov diffeomorphism. Let

Eσγ0(x), x ∈M , σ = s, u, be the stable and unstable bundles for α(γ0). Given

ε > 0 and σ = s, u, let Cσε (x) be the ε-cone around Eσγ0(x); that is, for σ = u,

decomposing v = vs+vu with respect to the splitting Esγ0(x)⊕Euγ0(x) we have

v ∈ Cuε (x) if and only if |vs| ≤ ε|vu|.
Fix any 0 < ε ≤ 1. Let S be the set of all γ ∈ Γ such that for every

x ∈M ,

Dxα(γ)Cuε (x) ⊂ Cu1
2
ε
(α(γ)(x))

and

Dx(α(γ))−1Csε (x) ⊂ Cs1
2
ε
((α(γ))−1(x))

(that is, α(γ) preserves the ε-stable and unstable cones) and, moreover, for ev-

ery vector v ∈Cuε (x), |Dxα(γ)v| ≥ 2|v| and for v ∈Csε (x), |Dx(α(γ))−1v| ≥ 2|v|.
We claim that S is Zariski dense:

Proposition 8.5. Suppose α, Γ, and γ0 are as in the assumptions of

Proposition 8.3. For every 0 < ε ≤ 1, the set S defined above is Zariski dense

in G.

Proof of Proposition 8.5. By Lemma 8.6 below, γN0
0 ∈ S for some N0. In

order to show Zariski density, we may assume without loss of generality that

N0 = 1.

Let S̄ be the Zariski closure of S. Then S̄ is a group. By Proposition 8.7

below, for every η ∈ Γ ∩W , there is an N such that γN0 ηγ
N
0 ∈ S ⊂ S̄. As

γ0 ∈ S ⊂ S̄ and as S̄ is a group, it follows that η ∈ S̄. Hence Γ∩W ⊂ S̄. Since

W is Zariski open in G and Γ is Zariski dense in G by Borel density theorem,

Γ ∩W ⊂ S̄ is Zariski dense in G. Since S̄ is Zariski closed, S̄ = G and thus S

is Zariski dense. �

Lemma 8.6. In the setting of Proposition 8.5, the set S satisfies the fol-

lowing conditions :

(1) S is a semigroup;

(2) for every γ ∈ S, α(γ) is an Anosov diffeomorphism ;

(3) for some N0 > 0, γN0
0 ∈ S.

Proof. That S is a semigroup is clear from definition. That γN0
0 ∈ S is

straightforward by choosing N0 > 0 large enough. Condition (2) follows from

standard cone estimates (see [KH95, §6.4]). �
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Proposition 8.7. In the setting of Proposition 8.5, there is a Zariski

open set W ⊂ G such that for every η ∈ Γ ∩ W , there is N > 0 such that

γN0 ηγ
N
0 ∈ S.

The proof of this proposition will occupy the next section.

8.3. Proof of Proposition 8.7. In this section, we follow and substantially

extend the main argument in [KLZ96]. Recall that the derivative of the action

α : Γ → Diff(M) induces a linear cocycle Dxα(γ) over the action α. Recall

also that, as α(γ0) is Anosov for some γ0, the semiconjugacy h : M → N/Λ is a

homeomorphism. The push-forward of the Haar measure on N/Λ under h−1 is

then α-invariant and, moreover, coincides with the measure of maximal entropy

for α(γ0). By Theorem 6.4 (applied to the Jacobian-determinant cocycle) and

Livsic’s Theorem it follows that this measure is smooth. Denote this smooth

α-invariant measure by m. Note that, as the linear data associated to α(γ0) is

hyperbolic, the Haar measure on N/Λ is ergodic whence m is ergodic for the ac-

tion α. Fix a trivialization of TM = M×n and an identification n = Rd. Iden-

tify n = Rd = V and GL(d,R) = GL(V ) = GL(n) unless some confusion arises.

By Theorem 6.4, for each ergodic α-invariant measure µ, there are a

measurable map Cµ : (M,µ) → GL(d,R), a linear representation Dµ : G →
GL(d,R), and a compact-group valued, measurable cocycle Kµ : Γ × M →
SO(d) such that

(8.1) Dxα(γ) = Cµ(α(γ)(x))Dµ(γ)Kµ(γ, x)(Cµ(x))−1

and Kµ commutes with Dµ: for every g ∈ G, η ∈ Γ, and x ∈ M , Dµ(g)Kµ

= Kµ(η, x)Dµ(g).

Recall that γ0 is the distinguished element with α(γ0) Anosov. Fix an

enumeration Γ r {γ0} = {γ1, γ2, . . . }. For j = 0, 1, 2, . . . let

ηj := γjγ0γ
−1
j .

Observe that α(ηj) is Anosov for every j. For x ∈ M , let Esηj (x) and Euηj (x)

denote, respectively, the stable and unstable bundles for α(ηj) at the point x.

For σ = s, u, let dσ = dimEσγ0(x). Note that Eσηj (x) =
Ä
Dα(γj)E

σ
γ0

ä
(x).

For g ∈ G, let Es,µg and Eu,µg denote, respectively, the stable and unstable

spaces of the linear map Dµ(g). Note that Dµ(g) need not be hyperbolic

whence the subspaces Eσ,µg may not be transverse. However, (as Kµ(γ, x) is

compact-valued and commutes with Dµ) for µ-a.e. x, we have

Eσηi(x) = Cµ(x)Eσ,µηi .

For r = 0, 1, 2, . . . , let Sr,µ ⊂ GL(V ) be given by

Sr,µ =
⋂

i=0,...,r−1
σ=s,u

Stab(Eσ,µηi ) =
⋂

i=0,...,r−1
σ=s,u

Stab(Dµ(γi)E
σ,µ
γ0 ).
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Note that each Sr,µ = Sr,µ(R), where Sr,µ is an algebraic group defined over R.

Moreover, Sr+1,µ ⊂ Sr,µ and each Sr,µ has finitely many components. Counting

dimension and connected components it follows that there is a r(µ) so that

Sr,µ = Sr(µ),µ for all r ≥ r(µ). Let Sµ = Sr(µ),µ and Sµ = Sµ(R). We then

have

Sµ =
⋂
γ∈Γ
σ=s,u

Dµ(γ) Stab(Eσ,µγ0 )Dµ(γ)−1.

It follows that Dµ(Γ) normalizes Sµ whence by Zariski density of Γ in G,

Sµ =
⋂
g∈G
σ=s,u

Dµ(g) Stab(Eσ,µγ0 )Dµ(g)−1.

For σ = s, u, denote by Gr(V, dσ) the Grassmannian of subspaces in V of

dimension dimEσ,µγ0 . Let

Φ: GL(V )×
Ä
(Gr(V, ds))r(µ) × (Gr(V, du))r(µ)

ä
→ (Gr(V, ds))r(µ) × (Gr(V, du))r(µ)

be the natural action. As Φ is an algebraic action,

Lemma 8.8. Let E ∈ (Gr(V, ds))r(µ) × (Gr(V, du))r(µ). Then OrbΦ(E),

the orbit of E under Φ, is open in its Zariski closure OrbΦ(E).

Let τ : M → (Gr(V, ds))r(µ) × (Gr(V, du))r(µ) be defined by

τ(x) =
Ä
(Esηi(x))i, (E

u
ηi(x))i

ä
i=0,...,r(µ)

.

The map τ is continuous since the bundles Esηj (x) and Euηj (x) are the stable

and unstable bundles of Anosov diffeomorphisms and are therefore continuous

in x. As observed above, for µ-a.e. x

τ(x) = Φ
Ä
Cµ(x),

Ä
(Es,µηi )i, (E

u,µ
ηi )i

ää
.

Let Orbµ be the orbit under Φ of
Ä
(Es,µηi )i, (E

u,µ
ηi )i

ä
i=0,...,r(µ)

. Then Φ induces

a smooth parametrization

φµ : GL(V )/Sµ → Orbµ .

Since τ is continuous, we have that τ(supp(µ)) is compact. By the

Lemma 8.8, for a µ-.a.e. x, the orbit OrbΦ(τ(x)) = Orbµ is open in Orbµ ⊃
τ(supp(µ)). Hence

Uµ := τ−1(Orbµ)

is (relatively) open and dense in supp(µ). Moreover, µ(Uµ) = 1. Via the

parametrization φµ, we have a continuous map Ĉµ : Uµ → GL(V )/Sµ given by

Ĉµ(x) := (φµ)−1 ◦ τ(x).

Moreover, Cµ(x)Sµ = Ĉµ(x) for µ-a.e. x.
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Lemma 8.9. Let µ be an ergodic α-invariant measure. The set Uµ is

α-invariant, and for every γ ∈ Γ, x ∈ Uµ, and σ = s, u, we have

Dxα(γ)Eσγ0(x) = Dxα(γ)Ĉµ(x)Eσ,µγ0 = Ĉµ(α(γ)(x))Dµ(γ)Eσ,µγ0 .

Proof of Lemma 8.9. For µ-a.e. x ∈ Uµ, we have that

τ(α(γ)(x)) = Φ (Dµ(γ), τ(x))

whence, for such x,

(8.2) α(γ)(x) ∈ τ−1 (Φ (Dµ(γ), τ(x))) .

Since τ ◦ α(γ) and x 7→ Φ (Dµ(γ), τ(x)) are continuous and since Uµ is open

and dense in supp(µ), (8.2) holds for all x ∈ Uµ. It follows that α(γ)(x) ∈ Uµ
for all x ∈ Uµ.

For any x ∈M and γ ∈ Γ, we have that

Dxα(γ)Eσγ0(x) = Eσγγ0γ−1(α(γ)(x)).

Also,
Dµ(γ)Eσ,µγ0 = Eσ,µγγ0γ−1 .

Recall that Sµ stabilizes each of the spaces Eσ,µγγ0γ−1 and that there is a mea-

surable Cµ(x) with
Cµ(x)Eσ,µγγ0γ−1 = Eσγγ0γ−1(x)

for µ-a.e. x. As the function Ĉµ(x) and the bundles Dxα(γ)Eσγ0(x) are contin-

uous on Uµ, the result follows. �

We summarize the above with the following lemma.

Lemma 8.10. There are countably many ergodic, α-invariant probabil-

ity measures µi, and relatively-open, relatively-dense, α-invariant sets Ui ⊂
supp(µi), and continuous maps Ĉµi : Ui → GL(V )/Sµi such that

(1) M is the union M =
⋃∞
i=0 Ui;

(2) Cµi(x)Sµi = Ĉµi(x) for µi-a.e. x ∈ Ui.

Proof. We start with the smooth measure µ0 = m and the corresponding

open set U0 = Um as constructed above. The image of U0 under the conju-

gacy h is a ρ-invariant, open dense subset of the nilmanifold M . It follows

that the complement of h(U0) coincides with the boundary of h(U0) and is a

closed, ρ-invariant set. In particular, the complement of h(U0) is saturated

by orbit closures. From Proposition 6.5 and using that U0 is dense in M , the

complement of h(U0) is a countable union

N/Λ r h(U0) =
⋃
Vi,

where each Vi is a finite union of ρ-invariant sub-nilmanifolds of N/Λ of di-

mension at most d − 1 where d = dimN . Moreover, each Vi coincides with

the support of an ergodic, ρ-invariant νVi . We note (as ρ(γ) is hyperbolic for

some γ) that there are a countable number of such Vi.
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Let µVi := (h−1)∗ν
Vi . For each µVi , we may repeat the above procedure

and obtain sets UVi such that h(UVi) is open and dense in Vi. As UVi is α-

invariant and Vi is the finite union of submanifolds of dimension at most d−1,

it follows that Vi r h(UVi) is a countable union

Vi r h(UVi) =
⋃
Wj ,

where each Wj is a finite union of ρ-invariant sub-nilmanifolds of N/Λ of di-

mension at most d− 2.

Proceeding recursively, we define a countable collection of ergodic α-invar-

iant measures µi with corresponding sets Ui. That every x ∈ M is contained

in a Ui follows as the dimension of the complement decreases at each step of

recursion. �

The set W appearing in Proposition 8.7 is defined as the set W in the

following lemma.

Lemma 8.11. Let µi be the measures in Lemma 8.10. Let W be the set

of all g ∈ G such that Dµi(g)Es,µiγ0 is transverse to Eu,µiγ0 and Dµi(g)Eu,µiγ0 is

transverse to Es,µiγ0 for every i. Then W is a nonempty Zariski open set in G.

Proof. Up to conjugation, there are only finitely many representations

of G into GL(d,R). In particular, up to conjugation there are only finitely

many values of Dµi(g) and Es,µiγ0 . Since α(γ0) is Anosov, for every µi, E
s,µi
γ0

is transverse to Eu,µiγ0 . Then W is the finite intersection of Zariski open sets

indexed by conjugacy classes of representations Dµi(g). �

With the above lemmas we show that the set W satisfies Proposition 8.7

via the following proposition.

Proposition 8.12. Let f be an Anosov diffeomorphism with splitting

TxM = Es(x) ⊕ Eu(x), and let 0 < ε ≤ 1. Let g be a diffeomorphism, and

assume for every x ∈M that DxgE
s(x) intersects Eu(g(x)) transversally and

that DxgE
u(x) intersects Es(g(x)) transversally. Then there is N > 0 such

that for every n ≥ N , writing F = fn ◦ g ◦ fn, for every x ∈M , we have

DxFC
u
ε (x) ⊂ Cu1

2
ε
(F (x))

and

DxF
−1Csε (x) ⊂ Cs1

2
ε
(F−1(x)).

Moreover, for every vector v ∈ Cuε (x), we have |DxFv| ≥ 2|v|, and for v ∈
Csε (x), we have |DxF

−1v| ≥ 2|v|.

Recall that here Cσε (x) denotes the ε-cone around Eσ(x). The proof is a

standard argument. We include it here for completeness.
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Proof of Proposition 8.12. By symmetry it is sufficient to prove the result

for the unstable cone. We write all linear transformations with respect to the

continuous splitting TxM = Es(x)⊕ Eu(x). Then,

Dxf =

Ç
A(x) 0

0 B(x)

å
and

Dxg =

Ç
a(x) b(x)

c(x) d(x)

å
,

where a(x) : Es(x) → Es(g(x)), b(x) : Eu(x) → Es(g(x)), c(x) : Es(x) →
Eu(g(x)), and d(x) : Eu(x)→ Eu(g(x)). As DxgE

u(x) and Es(g(x)) are trans-

verse, it follows that d(x) is invertible for every x. By continuity of the bundle

Eu(x), continuity of the derivative Dxg, and compactness of M , there is r > 0

such that m(d(x)) ≥ r for every x ∈ M . Here m(L) denotes the co-norm of a

linear map m(L) = ‖L−1‖−1. Let C = maxx∈m ‖Dxg‖. Observe that

Dxf
n =

Ç
A(n)(x) 0

0 B(n)(x)

å
,

where A(n)(x) = A(fn−1(x)) · · ·A(x). Choose a norm on TM adapted to f ;

that is, decomposing v = vs + vu according to the splitting TxM = Es(x) ⊕
Eu(x) we have |v| = max{|vu|, |vs|}, and there is a constant λ < 1 such that

for every x ∈M and n ≥ 0, ‖A(n)(x)‖ ≤ λn and m(B(n)(x)) ≥ λ−n.

Let ε > 0. The N in the proposition will depend on r, C, λ, and ε. We

first show for N sufficiently large that DF preserves the ε-unstable cone. First

observe that for every positive real number t > 0, natural number n ≥ 0, and

x ∈M , we have that

DfnCut (x) ⊂ Cuλ2nt(f
n(x)).

In the next lemma, the transversality between DgEu and Es is used; in

particular, we use that for r as defined above, r > 0.

Lemma 8.13. There are δ0 > 0 and T > 0 such that for every 0 < δ ≤ δ0,

we have that

DxgC
u
δ (x) ⊂ CuT (g(x)).

Given Lemma 8.13, for N sufficiently large and n ≥ N ,

DxFC
u
ε (x) =Dx(fn ◦ g ◦ fn)Cuε (x) = Dfn(x)(f

n ◦ g)Dxf
nCuε (x)

⊂Dfn(x)(f
n ◦ g)Cuλ2nε(f

n(x))

=Dg(fn(x))f
nDfn(x)gC

u
λ2nε(f

n(x))

⊂Dg(fn(x))f
nCuT (g(fn(x))) ⊂ Cuλ2nT (fn(g(fn(x))))

=Cuλ2nT (F (x)).
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Choosing N large enough so that λ2Nε ≤ δ0 and λ2NT ≤ 1
2ε, it follows that F

preserves the ε-unstable cones.

We now consider the growth of the vectors. Let v ∈ Cuε (x). Recall that

|v| = max{|vs|, |vu|}, hence |v| = |vu|. Since DF preserves the ε-unstable

cone, we have that |(DF v)s| ≤ ε
2 |(DF v)u| and, since ε ≤ 1, we have that

|DF v| = |(DF v)u|. Now,

(DF v)u = B(n)(g(fn(x)))[c(fn(x))A(n)(x)vs + d(fn(x))B(n)(x)vu]

so

|DF v|= |(DF v)u| ≥ λ−n|c(fn(x))A(n)(x)vs + d(fn(x))B(n)(x)vu|
≥ λ−n[rλ−n|vu| − Cλnε|vu|]
= λ−n(rλ−n − Cλnε)|v|.

Take N large enough such that λ−n(rλ−n − Cλnε) ≥ 2 for all n ≥ N . �

Proof of Lemma 8.13. Take a vector v = vs + vu in Cuδ0(x) (where δ0 will

be determined later). Then

Dxgv = (a(x)vs + b(x)vu) + (c(x)vs + d(x)vu).

We prove that

|a(x)vs + b(x)vu| ≤ T |c(x)vs + d(x)vu|

for some T > 0. Note that

|a(x)vs + b(x)vu| ≤ (Cδ0 + C)|vu| = C(δ0 + 1)|vu|

and

|c(x)vs + d(x)vu| ≥ r|vu| − Cδ0|vu| = (r − Cδ0)|vu|.

Take δ0 such that r − Cδ0 > 0, and let T = C(δ0+1)
(r−Cδ0) . �

For W as in Lemma 8.11, from Lemma 8.9 we verify for η ∈W ∩ Γ that,

with f = α(γ0) and g = α(η), the transversality in Proposition 8.12 holds.

Proposition 8.7 then follows immediately from Proposition 8.12.

8.4. Abelian subactions without rank-one factors. In this part we assume

Hypothesis 8.14. Suppose H is a simply connected semisimple algebraic

group defined over Q for which all R-simple factors are either anisotropic or of

R-rank 2 or higher. Let H = H(R)◦, and let Γ ⊂ H(Z) ∩H be an arithmetic

lattice in H . Suppose ρ : Γ → Aut(M) is a Γ-action by linear automorphisms

on a compact nilmanifold M = N/Λ. Let us also denote ρ : Γ→ Aut(N) as the

lift and assume that Dρ : Γ → Aut(n) extends to a Q-rational representation

Dρ : H→ GL(d).
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Proposition 8.15. Let H, Γ, M , ρ be as in Hypothesis 8.14, and let

S < Γ be a Zariski dense semigroup such that Dρ(η) is hyperbolic for all

η ∈ S. Then there is an element γ ∈ S such that

(1) the identity component ZH(γ)◦ of the centralizer of γ in H(R) is a maximal

Q-torus, contains a maximal R-split torus of H, and γ ∈ ZH(γ)◦;

(2) ZH(γ)◦ ∩ Γ contains a free abelian group Σ ∼= ZrankR H of finite index ;

(3) the restricted action ρ|Σ has no algebraic factor action of rank 1.

Proof. The proof is based on the works of Prasad and Rapinchuk [PR03],

[PR05].

We recall that if T ⊂ H is an algebraic torus defined over Q, then there

is a canonical Gal(Q̄/Q)-action on the character group X∗(T) defined over Q̄,

given by (σ.χ)(t) = σ−1(χ(σ(t))). Moreover, if T is a maximal Q-torus in a

semisimple algebraic group H defined over Q, then the Galois action permutes

the roots.

An element γ ∈ H(R) is called regular (resp. R-regular) if the number of

eigenvalues of Adγ that are equal to 1 (resp. on the unit circle), counted with

multiplicity, is minimum possible. It is called hyper-regular, if the number of

eigenvalues of
∧

Adγ that are equal to 1, again counted with multiplicity, is

minimum possible. Here
∧

Adγ denotes the action on the exterior powers of h,∧
h. It is known that hyper-regular elements are regular, and that both hyper-

regular and regular are Zariski open conditions [PR72, Rem. 1.2]. Furthermore,

for a regular and R-regular element γ, ZH(γ)◦ is a maximal torus that contains

γ (see [PR03, introduction]).

By the discussion in [PR05, pp. 240–241], there is a Zariski-dense subset

S′ ⊂ S such that for every γ ∈ S′,

(1) Property (1) holds;

(2′) γ is regular and R-regular;

(3′) For T = ZH(γ)◦, the Galois action contains all elements from the Weyl

group W (H,T), and the cyclic group 〈γ〉 is Zariski dense in T.

By Zariski openness of hyper-regular elements, we can find a γ ∈ S′ that

is hyper-regular. Prasad-Raghunathan proved in [PR72, Lemma 1.15] that

hyper-regularity and R-regularity together implies (2) for γ. It remains to

prove (3).

We assume ρ1 : Σ → Aut(M1) is a rank-one algebraic factor of ρ|Σ and

obtain a contradiction. Write M = N/Λ and M1 = N1/Λ1. By passing to a

subgroup if necessary, we may assume ρ1(Σ) is a cyclic group.

Since M1 is a compact quotient nilmanifold, N1 = N/N0, where N0 is

a ρ|Σ-invariant subgroup of N defined over Q. The Lie algebra n0 is hence

Dρ|Σ-invariant rational subspace of n.
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Notice that the cyclic group 〈γ〉 is Zariski dense in T, 〈γ〉 ∩ Σ has fi-

nite index in 〈γ〉, and T is Zariski connected. It follows that 〈γ〉 ∩ Σ is also

Zariski dense in T, therefore n0 ⊗R C is Dρ|T-invariant. So ρ|T projects to a

Q-representation Dρ1 of the Q-torus T on n1⊗RC, where n1 is the Lie algebra

of N1.

By property (1), T contains a maximal R-split Q-torus Ts of H. Denote

r = dimTs = rankRH. The restriction to Ts is a morphism X∗(T)→ X∗(Ts).

The R-torus T decomposes as an almost direct product Ta · Ts, where

Ta is a maximal R-anisotropic torus in T. The intersection Ta ∩Ts is a finite

subgroup of torsion elements in Ts
∼= Hr

m. In particular, Ta(R) ∩ Ts(R) is

a finite subgroup all of whose elements have order 2. Therefore for t ∈ T(R)

and g = t2, there is a unique decomposition g = gags with ga ∈ Ta(R) and

gs ∈ Ts(R). Moreover, gs is in Ts(R)◦ ∼= (R>0)r.

Without loss of generality, one may replace Σ with {σ2 : σ ∈ Σ}. Then all

elements σ ∈ Σ can be decomposed as above. Moreover, σ → σa and σ → σs
are group morphisms on Σ.

For any nontrivial σ ∈ Σ, σs is not trivial. Otherwise σ = σa lie in

the compact Ta(R). Since Σ ⊂ Λ is discrete, σ must be a torsion element,

contradicting our assumption that Σ is free abelian. It follows that σ → σs
is an isomorphism from Σ to Σs = {σs : σ ∈ Σ}. Furthermore, again because

Ta(R) is compact and Σ is discrete, Σs is discrete and hence is a lattice in

Ts(R)◦.

Fix a basis σ1, . . . , σr of Σ and write (σi)s as (eθi1 , . . . , eθir) in Ts(R)◦ ∼=
(R>0)r. Then (θij) is a nondegenerate matrix. Define a group morphism

L : X∗(Ts)→ Rr by

L(χ) =
Ä

log |χ((σ1)s)|, . . . , log |χ((σr)s)|
ä
.

Recall that with Ts identified with Hr
m, the coordinate maps πj : (t1, . . . , tr)

→ tj form a basis of X∗(Ts) ∼= Zr. Note that L(πj) = (θ1j , . . . , θrj). Thus by

nondegeneracy of (θij), L embeds X∗(Ts) as a lattice into Rr.
For any character χ ∈ X∗(T), χ̃ : t → χ(t)χ(t) is defined over R and its

restriction to Ta is trivial. In particular, for σ ∈ Σ, χ̃(σ) = χ̃(σs). Notice that

χ|Ts is defined over R, and hence χ̃|Ts = (χ|Ts)2.

Denote by Λ ⊂ X∗(T) the sets of weights of the Q-representation Dρ1

of T, which is invariant under the canonical Galois action. For γ ∈ S, by

[Man74], Dρ(γ) is a hyperbolic matrix, and hence so is Dρ1(γ). It follows,

because γ ∈ T(R), that λ̃(γ) = |λ(γ)|2 6= 1 for λ ∈ Λ. Thus λ̃((γ2)s) =

λ̃(γ2) = λ̃(γ)2 6= 1.

In particular, λ̃|Ts is nontrivial. Because Λ is invariant under the Ga-

lois action, it is also invariant under the action of W (H,T). Furthermore, by
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[Bor91, Cor. 21.4], every element ω ∈ W (H,Ts) is represented by the restric-

tion of some element ω̃ ∈W (H,T) to Ts. Therefore, the set

Λ̃s := {λ̃|Ts : λ ∈ Λ} = {(λ|Ts)2 : λ ∈ Λ}

is nonempty and W (H,Ts)-invariant.

One can always decompose H into a direct product
∏

Hi of almost R-simple

factors in such a way that Ts =
∏

Ts,i, where Ts,i is a maximal R-split torus in

Hi. Fix a λ ∈ Λ; its restriction λ̃|Ts,i to some Ts,i is nontrivial. The action by

W (Hi,Ts,i) ⊂W (H,Ts) on X∗(Ts,i) preserves no proper rank-one subgroup.

Hence as dimTs,i ≥ 2 by assumption, the W (H,Ts,i)-orbit of λ̃|Ts,i is not

contained in any cyclic subgroup. Thus, the same is true for the W (H,Ts)-

orbit of λ̃|Ts and for the W (H,T)-orbit of λ̃. In other words, there is no cyclic

subgroup of X∗(Ts) that contains Λ̃s, which is the same as that there is no

one-dimensional subgroup of Rr that contains L(Λ̃s).

However, on the other hand, as ρ1(Σ) is assumed to be a cyclic group

{An}, there are integers n1, . . . , nr such that ρ1(σi) = Ani . Then for each

λ ∈ Λ, there is aλ ∈ C such that λ(σi) = aniλ . Therefore,

L(λ̃|Ts) =
Ä

log |λ̃((σ1)s)|, . . . , log |λ̃((σr)s|
ä

=
Ä

log λ̃(σ1), . . . , log λ̃(σr)
ä

=
Ä
2 log |λ(σ1)|, . . . , 2 log |λ(σr)|

ä
=2 log |aλ|(n1, . . . , nr)

belongs to a given one-dimensional subspace for every λ ∈ Λ. This produces

the desired contradiction and completes the proof. �

8.5. Proof of Proposition 8.3. We deduce Proposition 8.3 from Proposi-

tions 8.5 and 8.15.

Proof of Proposition 8.3. Under Hypothesis 8.1, Theorem 6.1 applies to

G and Γ. Let H and φ : H 7→ G be as in Theorem 6.1. Denote H = H(R)◦.

Let Γ̂ = φ−1(Γ) ∩H(Z). Then Γ̂ is a lattice in H and is of finite index in

H(Z). Define Γ̂-actions α̂ = α ◦φ and ρ̂ = ρ ◦φ that act through Γ. Note that

ρ̂ is the linear data of α̂.

By the discussion in Section 2.2, there is a Q-structure of n such that

Dρ sends Γ into GL(d,Q). Hence the image of Γ̂ under Dρ̂ is in GL(d,Q) as

well. Applying Theorem 6.2 with k = Q and J = GL(d), we know that, after

restricting to a finite-index subgroup Γ̂′ ⊂ Γ̂, Dρ̂ extends to a representation

H→ GL(d) defined over Q. We replace Γ̂ with Γ̂′ in the sequel.

We apply Proposition 8.5 to obtain a Zariski open set W ⊂ G and a

semigroup S ⊂ Γ. Let Ŵ = φ−1(W ), which is a Zariski open set in H. Note

that because no Q-simple factor of H is R-anisotropic, H(Z), and hence Γ̂ as

well, are Zariski dense in H by Borel density theorem (see [Mor15, Cor. 4.5.6]).

In addition, define Ŝ = φ−1(S) ∩ Γ̂, and fix a preimage γ̂0 ∈ φ−1(γ0).
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Note that α̂ = α ◦ φ defines a C∞ action by Γ̂. We claim that the

(H, Γ̂, Ŝ, Ŵ , α̂, γ̂0), instead of (G,Γ, S,W, α, γ0), also satisfies the conclusion of

Proposition 8.5. In fact, the analogous conclusions of Lemma 8.6 and Propo-

sition 8.7 in the setting of (H, Γ̂, Ŝ, Ŵ , α̂, γ̂0) follow directly from the corre-

sponding properties for (G,Γ, S,W, α, γ0). The conclusion of Proposition 8.5

follows for Ŝ exactly as in the proof of Proposition 8.5, using now that Γ̂ is

Zariski dense in H and Ŵ is Zariski open.

Recall that if α̂(γ) is Anosov, then Dρ̂(γ) is a hyperbolic matrix. Hence

(H, Γ̂, Ŝ, ρ̂) satisfies Hypothesis 8.14 as well as the conditions in Proposi-

tion 8.15. Let γ̂ ∈ Ŝ and Σ̂ ⊂ ZH(γ̂)◦ ∩ Λ be given by Proposition 8.15.

Then ρ̂|Σ̂ has no rank-one algebraic factor. Since γ̂ ∈ ZH(γ̂)◦ and as Σ̂ is of

finite index in ZH(γ̂)◦ ∩ Λ, a nontrivial power γ̂k is in Σ̂. Then α̂(γ̂k) is an

Anosov diffeomorphism as α̂(γ̂) is.

Consider Σ = φ(Σ̂) ⊂ Γ. Then as ρ̂|Σ̂ acts through ρ|Σ, it has no rank-one

algebraic factor actions. Moreover, α(γ) is Anosov for γ = φ(γ̂) ∈ Σ. �

9. Cohomological obstructions to lifting actions on nilmanifolds

In this section, we justify Remark 1.5, which in turn gives Corollary 1.9.

Let M be a finite connected CW-complex. Let ΛM = π1(M)/K be a

quotient of the fundamental group of M . Let M̃ be the normal cover of M

with deck transformation group ΛM . Let Γ be a finitely generated discrete

group, and let α : Γ → Homeo(M) be an action. Given γ ∈ Γ, select an

arbitrary lift α̃(γ) : M̃ → M̃ of α(γ) : M → M . Given λ ∈ ΛM , select any

x ∈ M̃ and let α̃(γ)∗ : ΛM → ΛM be such that

(9.1) α̃(xλ) = α̃(x)α̃(γ)∗(λ).

Note that α∗(λ) is independent of the choice of x by continuity.

Given a second lift α̃′(γ), there is some λ′ ∈ ΛM so that for all x,

α̃′(γ)(x) = α̃(γ)(x)λ′.

Then

(9.2) α̃′(xλ) = α̃(γ)(xλ)λ′ = α̃(γ)(x)α̃(γ)∗(λ)λ′ = α̃′(γ)(x)(λ′)−1α̃(γ)∗(λ)λ′.

It follows that α̃(γ)∗ is defined up to Inn(ΛM ). We thus obtain a well-defined

homomorphism α# : Γ→ Out(ΛM ).

Let N be a simply connected, m-dimensional, nilpotent Lie group, and

let Λ ⊂ N be a lattice. Let P∗ : ΛM → Λ be a surjective homomorphism. As

the kernel of P∗ is normal in ΛM , whether or not α# preserves the kernel of

P∗ is well defined. We assume for the remainder that α# preserves this kernel.

Replacing ΛM with ΛM/(Ker(P∗)) if necessary, we may further assume that

P∗ is an isomorphism. We then identify ΛM and Λ for the remainder and
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continue to write M̃ for the normal cover of M with deck group Λ. Recall that

P : M → N/Λ is the continuous map induced by P∗.

Recall that we have a series of central extensions in (2.2) and (2.3). Let

Zi denote the kernel of Ni → Ni+1. Then Zi ∩ Λi ' Zdi is the center of Λi
and is the kernel of each map Λi → Λi+1. As each Zi ∩ Λi is the center of Λi,

an element ψ ∈ Out(Λi) restricts to an automorphism ψ�Zi∩Λi ∈ Aut(Zi ∩Λi).

Moreover, as automorphisms fix centers, we have natural maps

Out(Λ0)→ Out(Λ1)→ · · · → Out(Λr−1).

In particular, α# induces representations α#,i : Γ→ Aut(Zi∩Λi) = GL(di,Z).

We have the following proposition, which guarantees the action α lifts to

an action of Homeo(M̃) given the vanishing of certain cohomological obstruc-

tions.

Proposition 9.1. Suppose that the cohomology group H2
α#,i

(Γ,Rdi) is

trivial for every representation α#,i : Γ → Aut(Zi ∩ Λi). Then, there is a

finite-index subgroup Γ′ ⊂ Γ such the restricted action α : Γ′ → Homeo(M)

lifts to an action α̃ : Γ′ → Homeo(M̃).

In particular, whether or not the action α : Γ → Homeo(M) lifts (when

restricted to a finite-index subgroup) is determined only by the data of the

linear representations α#,i associated to α.

The vanishing of H2
ρ (Γ;Rd) has been studied in [Bor81] and [GH68]. In

particular, it is known to vanish in case (2) of Remark 1.5; case (1) follows from

computations in [FW01]. Cases (3) and (4) will be discussed in Section 9.3.

9.1. Candidate liftings and defect functional. Recall that we identify Λ⊂N
with the deck group of the cover M̃ → M . For γ ∈ Γ, consider an arbitrary

lift α̃(γ) : Γ → Homeo(M̃). The collection of lifts {α̃(γ) : γ ∈ Γ} need not

assemble into an action. The defect of the lifts {α̃(γ)} forming a coherent

action is measured by the associated defect functional β : Γ × Γ → Λ defined

by

(9.3) α̃(γ1)(α̃(γ2)(x))β(γ1, γ2) = α̃(γ1γ2)(x).

Note that the value β(γ1, γ2) is independent of the choice of x by continuity.

Clearly,

Claim 9.2. The action α : Γ → Homeo(M) lifts to an action α̃ : Γ →
Homeo(N) if and only if the lifts α̃(γ) above can be chosen so that β ≡ e.

We consider the range of β modulo the kernel of the map Λ→ Λi. Write ∆i

for the kernel of this projection. Let βi : Γ× Γ→ Λi denote the induced map

βi(γ1, γ2) = β(γ1, γ2) mod ∆i. Below, we will have the inductive hypothesis

that βi+1 ≡ e. Note that this ensures that βi takes values in (Z ∩ Λi) ' Zdi .
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In particular, if βi+1 ≡ e, then the representation α#,i : Γ → Out(Λi) induces

a linear representation α#,i : Γ→ GL(di,Z) on the range of βi.

We recall the definition of group cohomology for nontrivial representa-

tions. Let V be an abelian group, and let ψ : Γ → Aut(V ) be a Γ-action

on V . Denote by Ck(Γ, V ) the space of functions from Γk to V . Define a map

dψ,k : Ck(Γ, V )→ Ck+1(Γ, V ) by

dψ,kf(γ1, . . . , γk+1) = ψ(γ1).f(γ2, . . . , γk+1)

+
k∑
j=1

(−1)jf(γ1, . . . , γj−1, γjγj+1, γj+2, . . . , γk+1)

+ (−1)k+1f(γ1, . . . , γk).

It is a standard fact that dψ,k+1 ◦ dψ,k = 0, and thus

0→ C(Γ, V )
dψ,1−−→ C(Γ2, V )

dψ,2−−→ C(Γ3, V )
dψ,3−−→ · · ·

forms a cochain complex, denoted by Xψ(Γ, V ).

The group cohomology H•ψ(Γ, V ) is defined by the homology groups of

Xψ(Γ, V ). The map f ∈ Ck(Γ, V ) is called a k-cocycle if f is in the kernel of

dψ,k and a k-coboundary if f is in the image of dψ,k−1.

Claim 9.3. Assume βi+1 ≡ e. Then βi is 2-cocycle over the representa-

tion α#,i.

Proof. For γ1, γ2, γ3 ∈ Γ, we have that

α̃(γ1) ◦ α̃(γ2) ◦ α̃(γ3)(x)α̃(γ1)∗β(γ2, γ3)β(γ1, γ2γ3)β(γ1γ2, γ3)−1β(γ1, γ2)−1

= α̃(γ1) (α̃(γ2) ◦ α̃(γ3)(x)β(γ2, γ3))β(γ1, γ2γ3)β(γ1γ2, γ3)−1β(γ1, γ2)−1

= α̃(γ1) (α̃(γ2γ3)(x))β(γ1, γ2γ3)β(γ1γ2, γ3)−1β(γ1, γ2)−1

= α̃(γ1γ2γ3)(x)β(γ1γ2, γ3)−1β(γ1, γ2)−1

= α̃(γ1γ2) ◦ α̃(γ3)(x)β(γ1, γ2)−1

= α̃(γ1) ◦ α̃(γ2) ◦ α̃(γ3)(x),

whence

α̃(γ1)∗β(γ2, γ3)β(γ1, γ2γ3)β(γ1γ2, γ3)−1β(γ1, γ2)−1 ≡ e.

Taken modulo ∆i, the terms commute and

d(α#,i),2βi(γ1, γ2, γ3)

= α#,i(γ1)βi(γ2, γ3) [βi(γ1γ2, γ3)]−1 βi(γ1, γ2γ3) [βi(γ1, γ2)]−1

=
Ä
α̃(γ1)∗β(γ2, γ3)β(γ1, γ2γ3)β(γ1γ2, γ3)−1β(γ1, γ2)−1

ä
mod ∆i

= e. �
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9.2. Vanishing of defect given vanishing of cohomology. Proposition 9.1

follows from the following lemma.

Lemma 9.4. Suppose for some 1 ≤ i ≤ r that the lifts {α̃(γ) : γ ∈ Γ} are

chosen so that βi+1 ≡ e. Then, under the hypotheses of Proposition 9.1, there

is a finite-index subgroup Γ̂ ⊂ Γ and choice of lifts {α̂(γ) : γ ∈ Γ̂} so that, for

the new defect functional defined by

α̂(γ1)(α̂(γ2)(x))β̂(γ1, γ2) = [α̂(γ1γ2)(x)] ,

β̂i ≡ e.

Clearly βr ≡ e for any choice of lifts {α̃(γ) : γ ∈ Γ}. Proposition 9.1 then

follows from finite induction using Lemma 9.4.

In order to prove Lemma 9.4, we recall some elementary properties of

group cohomology. First, note that if ψ is a morphism into Aut(Zd) =

GL(d,Z), then for any abelian group A, ψ induces a morphism Γ→ Aut(Ad),

which we still denote by ψ. Moreover, we have the relation

Xψ(Γ, Ad) = Xψ(Γ,Zd)⊗Z A

between cochain complexes. Any short exact sequence 0 → A → B → C → 0

of abelian groups induces a short exact sequence

0→ Xψ(Γ, Ad)→ Xψ(Γ, Bd)→ Xψ(Γ, Cd)→ 0

of cochain complexes. It follows that there is a long exact sequence

· · · → Hk
ψ(Γ, Cd)→ Hk+1

ψ (Γ, Ad)→ Hk+1
ψ (Γ, Bd)→ Hk+1

ψ (Γ, Cd)→ · · ·

between group cohomologies. Finally, we recall that by the universal coeffi-

cients theorem, there is a short exact sequence

0→ Hk
ψ(Γ,Zd)⊗Z A→ Hk

ψ(Γ, Ad)→ Tor(Hk+1
ψ (Γ,Zd), A)→ 0.

In particular, when A is a flat Z-module, or equivalently when A is torsion-free,

Tor(Hk+1
ψ (Γ,Zd), A) vanishes and Hk

ψ(Γ,Zd)⊗Z A ∼= Hk
ψ(Γ, Ad).

Claim 9.5. Under the assumption that H2
α#,i

(Γ;Rdi) = 0, after restricting

to a finite-index subgroup Γ̂ ⊂ Γ, we have that βi vanishes in H2
α#,i

(Γ̂;Zdi).

Proof. By the universal coefficients theorem,

H2
α#,i

(Γ;Zdi)⊗Z R = H2
α#,i

(Γ;Rdi) = 0.

Hence all elements in H2
α#,i

(Γ;Zdi) are torsion elements, and again by the uni-

versal coefficients theorem, H2
α#,i

(Γ;Qdi) = H2
α#,i

(Γ;Zdi)⊗ZQ = 0. Moreover,

as Γ is finitely generated, H2
α#,i

(Γ;Zdi) is a finitely generated abelian group.

Thus H2
α#,i

(Γ;Zdi) is finite.
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On the other hand, take the long exact sequence

· · · → H1
α#,i

(Γ; (Q/Z)di)→ H2
α#,i

(Γ;Zdi)→ H2
α#,i

(Γ;Qdi)→ · · · .

We see that βi is the image of some η ∈ H1
α#,i

(Γ; (Q/Z)di). Since Γ is finitely

generated, there is a denominator q such that η can be chosen to take values

in the finite abelian group (1
qZ/Z)di . The zero set η−1(0) is a finite-index

subgroup Γ̂ of Γ, which establishes the claim. �

Identifying Zi∩Λi with Zdi , from Claim 9.5 it follows under the hypotheses

of Proposition 9.1 that by restricting to a finite-index subgroup Γ̂ ⊂ Γ, we have

that βi is 2-coboundary over α#,i. That is, there is a function η : Γ̂→ Zi ∩ Λi
with

d(α#,i),1η(γ1, γ2) := α#,i(γ1)η(γ2) · [η(γ1γ2)]−1 · η(γ1) = βi(γ1, γ2)

for all γ1, γ2 ∈ Γ̂.

Note that η takes vales in Λ/∆i. Given γ ∈ Γ̂, let η̃(γ) ∈ Λ be any choice

of representative. We use η̃ to correct the original choice of lifts α̃(γ): given

γ ∈ Γ̂, let α̂(γ) = α̃(γ)η̃(γ). With the new family of lifts {α̂(γ) : γ ∈ Γ̂} define

a new defect functional β̂ : Γ̂ × Γ̂ → Λ as in the lemma and similarly define

induced functionals β̂k.

We have

Claim 9.6. The defect β̂i vanishes.

Proof. By definition, we have

α̃(γ1) (α̃(γ2)(x)η̃(γ2)) η̃(γ1)β̂(γ1, γ2) = α̃(γ1γ2)(x)η̃(γ1γ2).

With β the defect of α̃, we have

α̃(γ1γ2)(x)β(γ1, γ2)−1α̃(γ1)∗(η̃(γ2))η̃(γ1)β̂(γ1, γ2) = α̃(γ1γ2)(x)η̃(γ1γ2)

and

β(γ1, γ2)−1α̃(γ1)∗(η̃(γ2))η̃(γ1)β̂(γ1, γ2) = η̃(γ1γ2).

Modulo ∆i, we have

β̂(γ1, γ2) mod ∆i =βi(γ1, γ2) ·
Ç
α#,i(γ1)(η(γ2))−1 · η(γ1γ2) · η(γ1)−1

å
=βi(γ1, γ2) · [dη(γ1, γ2)]−1

=e. �

Lemma 9.4 follows from the above claims.
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9.3. Vanishing of defect in the case of an invariant measure. Consider first

an action α : Γ → Homeo(Td) on a torus preserving a probability measure µ.

It will follow from the proof of the more general Proposition 9.8 below that

the action α lifts establishing (3) of Remark 1.5.

Proposition 9.7. Suppose the action α : Γ → Homeo(Td) preserves a

Borel probability measure µ. Then α lifts to an action α̃ : Γ̂ → Homeo(Rd)
when restricted to a finite-index subgroup Γ̂ ⊂ Γ.

In the case of actions on nilmanifolds or, more generally, actions on CW-

complexes admitting π1-factors, the corresponding result is more complicated.

Recall that we fix a connected finite CW-complex M and an action α : Γ →
Homeo(M). We also fix a simply connected, nilpotent Lie group N , a lattice

Λ ⊂ N , and a normal cover M̃ of M whose deck group is identified with Λ.

Recall the sequences of Ni and Λi in (2.2) and (2.3). For each i, let

M̃i denote the intermediate normal cover of M with deck group Λi. The

natural identification of Λi with the deck groups of M̃i →M and Ni → Ni/Λi
induces a map Pi : M → Ni/Λi. Recall (as we identify ΛM and Λ) that we

have distinguished lifts P̃i : M̃i → Ni with P̃i(xλ) = P̃i(x)λ. Suppose for

some 1 ≤ i ≤ r − 1 that the action α : Γ → Homeo(M) lifts to an action

α̃ : Γ → Homeo(M̃i+1). We then obtain an action ρi+1 : Γ → Aut(Λi+1) that

uniquely extends to an action ρi+1 : Γ → Aut(Ni+1); in particular, ρi+1 : Γ →
Aut(Ni+1/Λi+1) defines a π1 factor of α.

Below is the general proposition guaranteeing the lifting of an action given

an invariant measure. Note that we use the existence of a semiconjugacy to

guarantee the lifting.

Proposition 9.8. With the above setup, suppose there is a continuous

h : M → Ni+1/Λi+1 homotopic to Pi+1 that lifts to a map h̃ : M̃i+1 → Ni+1

and that intertwines the actions α̃i+1 : Γ → Homeo(M̃i+1) and ρi+1 : Γ →
Aut(Ni+1) and is Λi+1-equivariantly homotopic to Pi+1.

Then, if the action α : Γ→ Homeo(M) preserves a Borel probability mea-

sure µ, the action α lifts to an action α̃i : Γ̂→ Homeo(M̃i) when restricted to

a finite-index subgroup Γ̂ ⊂ Γ.

Proposition 9.7 follows from Proposition 9.8 with h : Td → {e}. For mea-

sure preserving actions α : Γ → Homeo(N/Λ) on nilmanifolds, we automati-

cally obtain the lifting of α to α̃r−1 : Γ̂ → Homeo(M̃r−1). We can then define

the π1-factor ρr−1 : Γ̂ → Aut(Nr−1/Λr−1). If ρr−1 satisfies the hypotheses of

Theorem 3.2, the semiconjugacy satisfying the hypotheses of Proposition 9.8

exists and we may lift α to α̃r−2 : Γ̄ → Homeo(M̃r−2). We then recursively

verify whether or not the induced π1-factors ρi : Γ̂ → Aut(Ni/Λi) satisfy the
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hypotheses of Theorem 3.2 in order to continue to lift the action. Under Hy-

pothesis 1.2, if ρ(γ0) is hyperbolic for some γ0 ∈ Γ, then the same arguments

as in Section 7 show that the representations ρi satisfy the hypotheses of The-

orem 3.2 (after restricting to finite-index subgroups and extending from G to

L as in Section 7.1.) It follows that at each step an h satisfying the hypotheses

of Proposition 9.8 can be found. This establishes (4) of Remark 1.5.

Proof of Proposition 9.8. Recall that we assume α : Γ → Homeo(M) lifts

to α̃i+1 : Γ→ Homeo(M̃i+1). For every γ ∈ Γ, choose an arbitrary lift α̃i(γ) ∈
Homeo(M̃i) of α̃i+1(γ). For γ ∈ Γ, let α̃i(γ)∗ : Λi → Λi be defined as in (9.1).

Note that given a second lift α̃′i(γ), we have α̃′i(γ) = α̃i(γ)λ′ for a central

λ′ ∈ Zi ∩ Λi. In particular, from (9.2) we have for λ ∈ Λi that

α̃′i(γ)∗(λ) = (λ′)−1α̃i(γ)∗(λ)λ′ = α̃i(γ)∗(λ).

Thus any choice of lifts {α̃i(γ) : γ ∈ Γ} of the action α̃i+1 induces a repre-

sentation αi,∗ : Γ → Aut(Λi). This in turn induces a representation ρi : Γ →
Aut(Ni), which in turn induces a π1-factor of α̃ on Ni/Λi.

Fix an arbitrary family of lifts {α̃i(γ) : γ ∈ Γ} of the action α̃i+1. We

define the defect functional βi(γ1, γ2) as in (9.3). As we assume αi+1 lifts, we

have that βi has range Zi ∩ Λi.

Recall that we have h̃ : M → Ni+1/Λi+1 homotopic to Pi+1 and lifting

to a map h̃ : M̃i+1 → Ni+1 that intertwines the actions of α̃i+1 and ρi+1. Let

H : M → Ni/Λi be any continuous map, homotopic to Pi and lifting h. As

discussed in Section 4.1 we may find a lift H̃ : M̃i → Ni of H that is Λi-equi-

variantly homotopic to P̃i and also lifts h̃ : M̃i+1 → Ni+1.

Given γ ∈ Γ and x ∈ M̃i+1, let

ω̃γ(x) = H(α̃i(γ)(x))−1ρi(γ)(H(x)).

Using that h̃ intertwines the actions of α̃i+1 and ρi+1 and that H̃(xλ) = H̃(x)λ

for λ ∈ Λi, we verify for every γ that

(1) ω̃γ is Λi-invariant, and

(2) ω̃γ(x) ∈ Zi for every x.

It follows that ω̃γ induces a function ωγ : M → Zi. Recall that µ is the invariant

measure for the action α on M . Identifying Zi ' Rdi , define η : Γ→ Zi by

η(γ) =

∫
M
ωγ dµ.

Viewing ρi�Zi ∈ Aut(Zi) ' GL(Rdi), we claim

Claim 9.9. We have dρi,1η = βi.

Proof. We have for any x ∈ M̃i that

α̃i(γ1γ2)(x) = α̃i(γ1)(α̃i(γ2)(x))βi(γ1, γ2).
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Applying the map H to both sides, we have

ρi(γ1γ2)(H(x)) · ω̃γ1γ2(x)−1 = H(α̃i(γ1γ2)(x))

= H (α̃i(γ1)(α̃i(γ2)(x))) · βi(γ1, γ2)

= ρi(γ1)(H(α̃i(γ2)(x))) · ω̃γ1(α̃i(γ2)(x))−1 · βi(γ1, γ2)

= ρi(γ1)(ρi(γ2)(H(x))) · ρi(γ1)(ω̃γ2(x))−1 · ω̃γ1(α̃i(γ2)(x))−1 · βi(γ1, γ2)

= ρi(γ1γ2)(H(x))) · ρi(γ1)(ω̃γ2(x))−1 · ω̃γ1(α̃i(γ2)(x))−1 · βi(γ1, γ2).

It follows that for any x ∈ M̃i,

βi(γ1, γ2) = ω̃γ1γ2(x)−1 · ρi(γ1)(ω̃γ2(x)) · ω̃γ1(α̃i(γ2)(x)).

Using that the measure µ is α(γ2)-invariant, it follows for any x ∈ M̃ that

βi(γ1, γ2) = ωγ1γ2(x)−1 · ρi(γ1)(ωγ2(x)) · ωγ1(α(γ2)(x))

= ρi(γ1)(η(γ2)) · η(γ1γ2)−1 · η(γ1)

= dρi,1η(γ1, γ2). �

It follows that βi vanishes as an element of H2
ρi(Γ;Rdi). As discussed

above, by passing to a finite-index subgroup Γ̂ ⊂ Γ, it follows that βi vanishes

as an element of H2
ρi(Γ;Zdi), where the lattice Zdi is identified with Zi ∩ Λi.

Then, as in the proof of Lemma 9.4, we may correct the choice of lifts α̃i(γ)

for γ ∈ Γ̂ into a coherent action that lifts the action α. The proposition

follows. �
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