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The triviality of the 61-stem in the stable
homotopy groups of spheres

By Guozhen Wang and Zhouli Xu

Abstract

We prove that the 2-primary π61 is zero. As a consequence, the Kervaire

invariant element θ5 is contained in the strictly defined 4-fold Toda bracket

〈2, θ4, θ4, 2〉.
Our result has a geometric corollary: the 61-sphere has a unique smooth

structure, and it is the last odd dimensional case — the only ones are

S1, S3, S5 and S61.

Our proof is a computation of homotopy groups of spheres. A major

part of this paper is to prove an Adams differential d3(D3) = B3. We prove

this differential by introducing a new technique based on the algebraic and

geometric Kahn-Priddy theorems. The success of this technique suggests

a theoretical way to prove Adams differentials in the sphere spectrum in-

ductively by use of differentials in truncated projective spectra.
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1. Introduction

In 1904, Poincaré proposed the following famous conjecture:

Conjecture 1.1. Let M be a closed 3-manifold. If M is simply con-

nected, then M is homeomorphic to the 3-sphere.

This is the celebrated Poincaré conjecture. It was proved by Perelman

[38] in 2002, using geometric analytic methods. Note that a closed 3-manifold

is simply connected if and only if it is homotopy equivalence to the 3-sphere.

This conjecture can be generalized to higher dimensions as the following

question:

Question 1.2. Let M be a closed n-manifold. Suppose M is homotopy

equivalent to Sn. Is M homeomorphic to Sn?

The answer turns out to be yes for all dimensions. For n = 4, it was

proved by Freedman [14] in 1982. For n ≥ 5, it was proved by Smale [45]

in 1962, using the theory of h-cobordisms, by Newman [37] in 1966, and by

Connell [13] in 1967. The statement Smale proved assumes further that the

n-manifold M admits a smooth structure, while the statement Newman and

Connell proved does not require such a condition.

In summary, we have the following theorem:

Theorem 1.3 ([45], [37], [13], [14], [38]). Any closed n-manifold that is

homotopy equivalent to Sn is homeomorphic to Sn.

We can also generalize this question into the smooth category.

Question 1.4. LetM be a closed n-manifold. SupposeM is homeomorphic

to Sn. Is M diffeomorphic to Sn?

For n = 3, the answer is yes. It is due to Moise [34] that every closed

3-manifold has a unique smooth structure. In particular, the 3-sphere has a

unique smooth structure. For n = 4, this question is wildly open.

For higher dimensions, Milnor [31] constructed an exotic smooth structure

on S7. Furthermore, Kervaire and Milnor [23] showed that the answer is not

true in general for n ≥ 5.

Since the answer to Question 1.4 is not true in general, there come two

natural questions:

Question 1.5. How many exotic structures are there on Sn?
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Question 1.6. For which n’s does there exist a unique smooth structure

on Sn?

Kervaire and Milnor reduced Question 1.5 to a computation of the stable

homotopy groups of spheres. In fact, Kervaire and Milnor constructed a group

Θn, which is the group of h-cobordism classes of homotopy n-spheres. The

group Θn classifies the differential structures on Sn for n ≥ 5. This group Θn

has a subgroup Θbp
n , which consists of homotopy spheres that bound paralleliz-

able manifolds. The relation between Θn and πn (the n-th stable homotopy

group of the spheres) can be summarized by the following theorem:

Theorem 1.7 (Kervaire-Milnor [23]). Suppose that n ≥ 5.

(1) The subgroup Θbp
n is cyclic, and has the following order:

|Θbp
n | =


1, if n is even,

1 or 2, if n = 4k + 1,

22k−2(22k−1 − 1)B(k), if n = 4k − 1.

Here B(k) is the numerator of 4B2k/k and B2k is the Bernoulli number.

(2) For n 6≡ 2 (mod 4), there is an exact sequence

0 // Θbp
n

// Θn
// πn/J // 0.

Here πn/J is the cokernel of the J-homomorphism.

(3) For n ≡ 2 (mod 4), there is an exact sequence

0 // Θbp
n

// Θn
// πn/J

Φ // Z/2 // Θbp
n−1

// 0.

Here the map Φ is the Kervaire invariant.

Remark 1.8. In the first part of Theorem 1.7, the case n ≡ 3 (mod 4)

depends on the computation of the order of the image of the J-homomorphism.

The case n ≡ 1 (mod 4) depends on the Kervaire invariant in dimension n+ 1.

The computation of the image of the J-homomorphism at 4k − 1 stems is a

special case of the Adams conjecture. The proof was completed by Mahowald

[27], and the full Adams conjecture was proved by Quillen [41], Sullivan [46],

and by Becker-Gottlieb [8].

For Question 1.6, it is clear from Theorem 1.7 that, for n = 4k + 3 with

k ≥ 1, the smooth structure on the n-sphere is never unique. For n = 4k + 1

with k ≥ 1, the answer depends on the existence of the Kervaire invariant

elements. In 2009, Hill, Hopkins and Ravenel [17] showed that the only dimen-

sions in which the Kervaire invariant elements exist are 2, 6, 14, 30, 62 and

possibly 126. That is, in other dimensions, the Kervaire invariant map

πn/J
Φ // Z/2
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in part (3) of Theorem 1.7 is always zero and the group Θbp
n−1 is Z/2. Therefore,

the only odd dimensional spheres that could have a unique smooth structure

are S1, S3, S5, S13, S29, S61 and S125. Further, the cases S13 and S29 can be

ruled out by May’s [29] 3-primary computation of the stable homotopy groups

of spheres.

For dimension 61, we have the main theorem of this paper.

Theorem 1.9. The 2-primary π61 = 0, and therefore the sphere S61 has

a unique smooth structure.

We postpone the proof of the first claim of Theorem 1.9 to Section 2 and

present the proof of the second claim now.

Proof. In [5], Barratt, Jones and Mahowald showed that the Kervaire

invariant element θ5 exists. The second author gave a new proof in [54]. By

Theorem 1.7, this implies that Θbp
61 = 0.

At an odd prime p, the first nontrivial element in the cokernel of J is β1,

which lies in the stem 2p2 − 2p − 2. (This is proved in Section 4 of [42].)

This value is 82 if p = 7. For p = 3 and p = 5, the table in Appendix A3

of Ravenel’s green book [42] shows that the cokernel of J in dimension 61

vanishes. Therefore, the cokernel of J in dimension 61 vanishes at all odd

primes.

Combining the first claim of Theorem 1.9 with Theorem 1.7, this proves

the second claim of Theorem 1.9. �

There is an important corollary of our theorem, regarding the Kervaire

invariant element θ5 ∈ π62.

Corollary 1.10. The Kervaire invariant class θ5 ∈ π62 is contained in

the strictly defined 4-fold Toda bracket 〈2, θ4, θ4, 2〉.

Proof. We first check this 4-fold Toda bracket is strictly defined. In [54],

the second author showed that θ2
4 = 0. Note that the 3-fold Toda bracket

〈2, θ4, θ4〉 is contained in π61 = 0. Therefore, this 4-fold Toda bracket is strictly

defined. In the Adams E3 page, we have a Massey product

〈h0, h
2
4, h

2
4, h0〉 = h2

5,

because of the Adams differential d2(h5) = h0h
2
4. Then the theorem follows

from Moss’s Theorem [35, Th. 1.2]. �

Remark 1.11. When computing stable stems, it is crucial to understand

Toda brackets decompositions of multiplicatively indecomposable classes. A

theorem of Joel Cohen [12] says that any classes in the stable homotopy groups

of spheres can be decomposed as a (matric) Toda bracket starting only from

the classes that correspond to the Hopf maps. However, in practice, it is
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usually hard to find such a description. For the Kervaire invariant class θ5,

our Corollary 1.10 gives the first known Toda bracket of it. Note that θ4 was

known to have multiple Toda bracket decompositions using the Hopf maps.

By a theorem of Barratt, Jones and Mahowald [4], if θ5 has order 2 and

θ2
5 = 0, then θ6 exists and has order 2. It is proved by the second author [54]

that θ5 has order 2. Our Toda bracket of θ5 in Corollary 1.10 therefore leads

us to consider the Toda bracket 〈θ5, 2, θ4〉 in π93, which is in a much lower stem

than θ6 itself. Using obstruction theory as Barratt-Jones-Mahowald did in [5],

one can show that if the Toda bracket 〈θ5, 2, θ4〉 contains zero, then θ6 exists.

The Toda bracket of θ5 in Corollary 1.10 has also been very helpful in ongoing

work of Isaksen and the authors of extending computations of stable stems.

For dimension 125, we have the following proposition:

Proposition 1.12. The sphere S125 does not have a unique smooth struc-

ture.

Proof. This proof uses the Hurewicz image of tmf (the spectrum of topo-

logical modular forms). See [7], [16] for computations of the homotopy groups

of tmf.

Let {w} ∈ π45 be the unique homotopy class detected by w in Adams

filtration 9. It is known that both κ ∈ π20 and {w} are detected by tmf,

that is, they map nontrivially under the following map:

π∗S
0 −→ π∗tmf.

We have that κ4{w} 6= 0 in π125tmf. Therefore, κ4{w} 6= 0 in π125S
0 and it

lies in the cokernel of J . This shows that S125 does not have a unique smooth

structure. �

Therefore, we have the following corollary:

Corollary 1.13. The only odd dimensional spheres with a unique smooth

structure are S1, S3, S5 and S61 .

For even dimensions, since the subgroup Θbp
n is always zero, we need to

understand the cokernel of the J-homomorphism.

In [32], Milnor states that up to dimension 64, the only dimensions where

the n-sphere has a unique smooth structure are n = 1, 2, 3, 5, 6, 12, 61 and pos-

sibly n = 4. This observation is based on the computation of 2-primary stable

homotopy groups of spheres up to the 64 stem by Kochman and Mahowald

[25] from 1995. Recently, Isaksen [20] discovered several errors in Kochman

and Mahowald’s computations, and he was able to give rigorous proofs of

computations through the 59 stem. One major correction is that, instead of

having order 4, π56 is of order 2 and is generated by a class in the image of J .

Consequently, we have the following theorem:
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Theorem 1.14 (Isaksen). The sphere S56 has a unique smooth structure.

Proof. It is clear from Theorem 1.7 that Θbp
56 = 0. Ravenel’s computa-

tion [42] shows that the cokernel of J in dimension 56 vanishes at odd primes.

Recent computation of Isaksen [20] shows that the cokernel of J in dimen-

sion 56 vanishes at the prime 2. Then this theorem follows from part (2) of

Theorem 1.7. �

The technique used by Kochman and Mahowald [25] is quite different

from the classical technique used by Barratt, Bruner, Mahowald, May and

Tangora [29], [28], [6], [49], [47], [50], [10] through dimension 45, and the

motivic technique used by Isaksen and the second author [20], [21] through

dimension 59. For more details of known techniques, see Section 2.

Based on Isaksen’s computation, we give rigorous proofs regarding π60

and π61. Besides the classical technique of Toda brackets, one of our proofs

relies heavily on the transfer map from the infinite real projective spectrum to

the sphere spectrum. The success of this technique suggests a theoretical way

to improve our understanding through a bigger range.

Combining our computations with the previous knowledge of π∗, we have

another corollary of the main theorem.

Corollary 1.15. For 5 ≤ n ≤ 61, the only dimensions that Sn has a

unique smooth structure are n = 5, 6, 12, 56 and 61.

Proof. The range for n < 19 was known to Kervaire and Milnor. For even

dimensions between 20 and 60, it is straightforward to check that at p = 2,

the only dimension in which the cokernel of J vanishes is 56. Note that the

Kervaire invariant θ4 exists in dimension 30. In fact, Barratt, Mahowald and

Tangora [6] showed that π30 is Z/2, generated by θ4. Therefore, we need to

consider odd primary computations in this dimension. May [29] showed that

at the prime 3, the cokernel of J in dimension 30 is Z/3, which implies that

S30 does not have a unique smooth structure. Combining with Theorems 1.9

and 1.7 and Corollary 1.13, this completes the proof. �

Remark 1.16. Recent work of Behrens, Hill, Hopkins and Mahowald [9]

shows that the next sphere with a unique smooth structure, if exists, is in

dimension at least 126.

Based on our current knowledge on π∗, we have the following conjecture:

Conjecture 1.17. For dimensions greater than 4, the only spheres with

a unique smooth structure are S5, S6, S12, S56, and S61.

The rest of this paper is organized as follows. In Section 2, we give a brief

review of the stem-wise computation of π∗ with a focus on the prime 2. We com-

pare the known techniques. We reduce π61 = 0 to three Adams differentials.
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From Section 3 through Section 10, we present the proof of the hardest

differential d3(D3) = B3. In Section 3, we summarize the strategy of our

technique and explain how we organize the details of the proof in Sections 4

through 10. The intuition behind part of this proof is included in Appendix II,

which is Section 14.

We present the proof of the other two differentials in Sections 11 and 12.

The targets of these two differentials detect certain homotopy classes. We use

the theory of Toda brackets to show that these homotopy classes must vanish.

Acknowledgement. The authors would like to thank Mark Behrens for

introducing and suggesting this problem and for many helpful conversations.

The authors would like to thank Dan Isaksen for discussing and sharing lots of

his computations. We are also especially indebted to him for his very careful

checking of our proofs. Any errors that remain are not his fault. The authors

thank Agnes Beaudry and Peter May for helping edit and reorganize this paper.

Both have read more drafts than they care to remember. We would also like

to thank Paul Goerss and Jesper Grodal for their support. Finally, we owe a

great debt of gratitude to Mark Mahowald for his tenacious exploration of the

stable stems and his generosity in sharing his ideas with us.

2. The stable homotopy groups of spheres

The computation of the stable homotopy groups of spheres is a long stand-

ing and very challenging problem in algebraic topology. We will first give a

brief review of the history from the stem-wise point of view and then talk about

some recent progress.

After the geometric computation of the first three stems [18], [15], [53],

[39], [43], Serre [44] did the computation of πn for n < 9 with the aid of the

Serre spectral sequence and the Eilenberg-Maclane spectra. Serre also showed

that these stable groups are finite in positive stems, so we can compute them

one prime at a time. Afterwards, at each prime, Adams [1] constructed the

Adams spectral sequence whose E2-term encodes the information that we could

obtain via primary cohomology operations. The Adams spectral sequence gives

an upper bound on πn, and therefore determining the Adams differentials be-

comes a major method in computing the stable homotopy groups. Generalizing

Adams’s idea, Novikov constructed the Adams-Novikov spectral sequence us-

ing the complex cobordism spectrum.

There is another method using the EHP sequence, which computes the

unstable homotopy groups inductively. Using this method, together with the

Toda bracket operations, Toda [51] succeeded to do the computation of πn for

n ≤ 19.

It turns out that the Adams-Novikov spectral sequence is more successful

at odd primes than at the prime 2. In the 1980’s, using the Adams-Novikov
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spectral sequence, Ravenel [42] computed up to the 108-stem at the prime 3,

and the 999-stem at the prime 5. Previously, the computation was due in-

dependently to Nakamura [36] and Tangora [48] up to the 103-stem at the

prime 3, and to Aubry [3] up to the 760-stem at the prime 5.

At the prime 2, the Adams spectral sequence is still the most efficient

way. In [29], May constructed the May spectral sequence, which converges

to the E2-page of the Adams spectral sequence. This works at all primes.

In particular, May computed πn for n ≤ 28 at the prime 2. In the 1960’s,

using the Adams spectral sequence, and with the aid of the technique of Toda

brackets, Barratt, Mahowald and Tangora [6] determined the differentials in

the Adams spectral sequence up to the 45-stem. About one and a half decades

later, Bruner [10] discovered a gap in [6] and proved a new Adams differential

in the 38-stem. Bruner’s differential therefore corrected the result of π37 and

π38, and along with that corrected some relations in the stable homotopy ring.

In 1990, based on the Atiyah-Hirzebruch spectral sequence of the Brown-

Peterson spectrum, Kochman [24] made an algorithm and implemented it into

computer programs. In this way, he produced a table of πn up to the 64-stem.

However, his method is not completely reviewed by others due to its complex-

ity, and his result is not fully accepted by the experts. In 1995, Kochman and

Mahowald [25] made a few corrections to [24], in the range from 52 to 64. A

tentative chart of the Adams spectral sequence is included in the appendix of

[24] and [25] without proofs. Note that the Adams differentials in this chart

are deduced from the stable homotopy groups, not the other way around.

For about two decades, much of our knowledge regarding πn, in the range

from 45 to 64, relied on [25]. Recently, by comparing the motivic Adams

spectral sequence and the classical Adams spectral sequence, Isaksen [20] gave

rigorous proofs to all but one Adams differentials up to the 59 stem. The

exception was later proved by the second author [21] based on Isaksen’s motivic

computation. Along with a few corrections to some relations in the stable

homotopy ring, Isaksen proved a new Adams differential in the 57-stem, which

was not included in [25]. This also corrects π56 and π57 as we used in the proof

of Proposition 1.12.

In the range beyond the 59-stem, Isaksen [20] also proved a few differen-

tials. The part that Isaksen did not fully understand can be summarized in

his Adams E∞ chart [19], which we include in the following page.

Note that we do not include elements in filtration higher than 16. Those

elements are detected by the K(1)-local sphere, and are not relevant to our

proof. Here we use dashed curved lines to denote some known nontrivial 2, η

and ν-extensions. Note that because of differentials unknown to Isaksen, the

actual E∞-page beyond the 59-stem is a subquotient of what is shown in this

chart.
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Now we reduce the first claim of Theorem 1.9, i.e., π61 = 0, to three

Adams differentials.

Proof. It is proven in Theorem 3.1 (and this is the crux of the paper) that

d3(D3) = B3

and therefore

d3(h1D3) = h1B3.

It is proven in Theorem 12.1 that

d5(A′) = h1B21.

It is proven in Theorem 11.1 that the element gz must be killed by some Adams

differential.

There are no elements left in the E∞-page of the 61-stem. �

It is clear that these differentials also settle π60.

Corollary 2.1. The 2-primary π60 is Z/4, generated by κ3.

Proof. The elements g3 and d2
0l are the only elements left, and there is a

hidden 2-extension between them. The element g detects κ ∈ π20. Therefore,

the 2-primary group π60 is Z/4, generated by κ3. �

3. Intuition and the proof of the differential d3(D3) = B3

We have developed a general method to prove a differential in the Adams

spectral sequence of the sphere spectrum. The strategy can be summarized in

three parts:

(1) Using the algebraic Kahn-Priddy theorem, we pull back a differential in

the Adams spectral sequence of the sphere spectrum to one in the Adams

spectral sequence of the suspension spectrum of RP∞.

(2) Using our knowledge of the cell structure of RP∞ and the algebraic Atiyah-

Hirzebruch spectral sequence, we deduce the Adams differential in RP∞

from one in a certain HF2-subquotient of RP∞.

(3) Using our knowledge of the Adams spectral sequence of the sphere spec-

trum, and the cell structure of this HF2-subquotient, we reduce the com-

putation of the Adams differential in this HF2-subquotient to that of a

product (or more generally a Toda bracket) in a lower stem of the stable

homotopy groups of spheres.

Intuitively, an HF2-subquotient of a CW complex is a subquotient to the

eyes of mod 2 homology, in a sense that will be made precise in Definition 4.1.

The technical heart of the paper, explained in Sections 3–10, is to apply

this method to prove Theorem 3.1.

Theorem 3.1. We have the Adams differential : d3(D3) = B3.
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With notation to be explained, here is a “road map” of the proof.

Ext(S0) Ext(Σ14Cη)

��

Ext(P∞1 )

OO

Ext(‹X)

��
Ext(P 23

1 )

OO

// Ext(P 23
14 ) // Ext(X)

B3 B1[14]
_

��

D3

d3

bb

h3
4[16]

d4

gg

_

��

G[6]
_

OO

B1[14]
_

��

h1h3h5[22]

d3

bb

_

OO

h3
4[16]

_

��

d4

gg

G[6]
_

OO

B1[14]
� // B1[14]

h1h3h5[22]

d3

__

_

OO

� // h1h3h5[22]

d4

aa

h3
4[16]

h1h3h5[22] is a cycle.

d4

ee

The first part of this “road map” describes seven Adams spectral sequences

and maps among them; the second part describes certain Adams d3 or d4

differentials in the 61-stem of each of the spectral sequences and maps in the

Adams E2-page among the sources and targets of these differentials.

Notation 3.2. All spectra are localized at the prime 2. Suppose Z is a

spectrum. Let Ext(Z) denote its Adams E2-page.

For spectra, let S0 be the sphere spectrum and P∞1 be the suspension

spectrum of RP∞. In general, we use Pn+k
n to denote the suspension spectrum
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of RPn+k/RPn−1. Recall that we have the James periodicity for the stunted

projective spectra:

Σφ(k)Pn+k
n ' Pn+k+φ(k)

n+φ(k) ,

where φ(k) = 2ψ(k), and

ψ(k) = bk
2
c+



−1, k ≡ 0 mod 8,

0, k ≡ 1,

0, k ≡ 2,

1, k ≡ 3,

0, k ≡ 4,

1, k ≡ 5,

0, k ≡ 6,

0, k ≡ 7.

For example, φ(7) = 2ψ(7) = 8, hence we have P 23
16 ' Σ8P 15

8 ' Σ16P 7
0 .

The spectrum X is a quotient spectrum of P 23
14 and ‹X is a subspectrum

of X. The spectrum Cη is the cofiber of η ∈ π1, and Σ14Cη turns out to be

a subspectrum of ‹X. The precise definitions of the spectra X and ‹X can be

found in Definition 5.1.

For sources and targets of these differentials, we use the following way to

denote the elements in the Adams E2-page of P∞1 and its HF2-subquotients.

One way to compute Ext(P∞1 ) is to use the algebraic Atiyah-Hirzebruch spec-

tral sequence.
E1 =

⊕∞
n=1 Ext(Sn) +3 Ext(P∞1 ).

Notation 3.3. We denote any element in Ext(Sn) to be a[n], where a ∈
Ext(S0), and n suggests that it comes from Ext(Sn). We will abuse notation

and write the same symbol a[n] for an element of Ext(P∞1 ) detected by the

element a[n] of the Atiyah-Hirzebruch E∞-page. Thus, there is indeterminacy

in the notation a[n] that is detected by Atiyah-Hirzebruch E∞ elements in lower

filtration. When a[n] is the element of lowest Atiyah-Hirzebruch filtration in

the Atiyah-Hirzebruch E∞-page in a given bidegree (s, t), then a[n] also is a

well-defined element of Ext(P∞1 ). Sometimes we will need to be precise about a

particular element of Ext(P∞1 ) detected by a[n]. We will use the notation a[n]

to denote a particular choice, and we must provide a definition that specifies

a[n] in this case. We use this same notation for all HF2-subquotients of P∞1 .

There will not be any confusion on the index n since any HF2-subquotient

contains at most one cell in each dimension.

Remark 3.4. In [52], we computed the Adams E2-page of P∞1 in the range

of t < 72 by the Lambda algebra. This Lambda algebra computation gives
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us a lot of information on the algebraic Atiyah-Hirzebruch spectral sequence.

In particular, there is a one-to-one correspondence between the differentials

in the Lambda algebra computation and differentials in the algebraic Atiyah-

Hirzebruch spectral sequence.

Remark 3.5. Despite the indeterminacy in Notation 3.3, there is a huge

advantage to it. Suppose f : Q→ Q′ is a map between two HF2-subquotients

of P∞1 , which is a composite of inclusion and quotient maps. Suppose further

that there exists an element a[n] that is a generator of both Exts,t(Q) and

Exts,t(Q′) for some bidegree (s, t). (This implies both Q and Q′ have a cell

in dimension n.) We therefore must have that, with the right choices, a[n] in

Exts,t(Q) maps to a[n] in Exts,t(Q′). This property follows from the naturality

of the algebraic Atiyah-Hirzebruch spectral sequence:⊕
i∈I

Ext(Si)

��

// ⊕
i∈I′

Ext(Si)

��
Ext(Q) // Ext(Q′)

a[n] � // a[n].

Example 3.6. As an example, the group Ext3,64(X) = Z/2 ⊕ Z/2 ⊕ Z/2,

is generated by h3
4[16], h1h3h5[22] and h0h3h5[23], as explained in Table 6 in

Section 9. The element h3
4[16] is uniquely determined by our notation, since

it has the lowest Atiyah-Hirzebruch filtration. In fact, the 16-skeleton of X is

Σ14Cη. The inclusion map specifies the element h3
4[16] in Ext3,64(X) as the

image of the element h3
4[16] in Ext3,64(Σ14Cη).

Ext(Σ14Cη) // Ext(X)

h3
4[16] � // h3

4[16].

As a comparison, the element h1h3h5[22] in our notation does not spec-

ify a unique element in Ext3,64(X). In fact, suppose A and B are elements

in Ext3,64(X), which are detected by h3
4[16] and h1h3h5[22] in the algebraic

Atiyah-Hirzebruch spectral sequence of X. The element A + B is therefore

also detected by h1h3h5[22]. Our notation h1h3h5[22] in Ext3,64(X) does not

distinguish the elements B and A+B.

It turns out that making a choice for h1h3h5[22] is essential to our proof.

In fact, we use a four cell complex X22 (see Definition 5.6) to specify such

a choice. The complex X22 is an HF2-subcomplex of X and contains a cell

in dimension 22, but not in dimension 16. The group Ext3,64(X22) = Z/2,
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generated by h1h3h5[22], as explained in Table 4 in Section 8. We denote the

image of h1h3h5[22] in Ext3,64(X22) to be h1h3h5[22] in Ext3,64(X):

Ext(X22) // Ext(X)

h1h3h5[22] � // h1h3h5[22].

Now, we explain the main steps of the proof for the Adams differential

d3(D3) = B3.

(1) Step 1: We establish a d4 differential in the Adams spectral sequence of

Σ14Cη:

d4(h3
4[16]) = B1[14].

This is stated as Theorem 7.1 and proved in Section 7.

(2) Step 2: Using the inclusion map Σ14Cη → ‹X, we push forward the Adams

d4 differential in Step 1 to an Adams d4 differential in ‹X:

d4(h3
4[16]) = B1[14].

This is stated as Theorem 8.1 and proved in Section 8.

(3) Step 3: Using the inclusion map ‹X → X, we push forward the Adams d4

differential in Step 2 to an Adams d4 differential in X:

d4(h3
4[16]) = B1[14].

This is stated as Theorem 9.1 and proved in Section 9.

(4) Step 4: We show that the chosen element h1h3h5[22] (as explained in Ex-

ample 3.6) is a permanent cycle in the Adams spectral sequence of X. This

is stated as Theorem 9.2 and proved in Section 9.

Combining with Step 3, we have an immediate Adams d4 differential

in X:

d4(h1h3h5[22] + h3
4[16]) = B1[14].

This is stated as Corollary 9.3.

(5) Step 5: Using the quotient map P 23
1 → X, we pull back the Adams d4

differential in Step 4 to an Adams d3 differential in P 23
1 :

d3(h1h3h5[22]) = G[6].

This is stated as Theorem 10.1 and proved in Section 10.

(6) Step 6: Using the inclusion map P 23
1 →P∞1 and the transfer map P∞1 →S0,

we push forward the Adams d3 differential in Step 4 to an Adams d3 dif-

ferential in S0:

d3(D3) = B3.

This is our main theorem and is proved in this section.

We have several comments before we dive into the details of the proofs.
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Remark 3.7. Step 1 is the origin of all our differentials. It follows essen-

tially from a relation in the stable homotopy groups of spheres: there is a

nontrivial η-extension from h3
4 to B1.

Remark 3.8. Intuitively, the most mysterious step is Step 5. The intuition

behind such an argument is explained in detail in Section 14, which is Appen-

dix II. But note that the intuition is irrelevant to our proofs. For the proof,

when we pull back a d4 differential, the preimage of the source must support

a d2, d3 or d4 differential. To get the d3 differential as claimed in Step 5, we

rule out all other possibilities.

Remark 3.9. Logically, the most complicated step is Step 2. The intuition

seems straightforward: we push forward a d4 differential to get a d4 differential.

But note that we need to show that the image of the target survives to the

E4 page; i.e., it is not killed by a d2 or d3 differential. It turns out in the

corresponding bidegrees, there are ten elements that have the potential to

support a d2 or d3 differential. To rule out these possibilities, we will show

in Section 8 that nine elements out of the ten are permanent cycles, and the

other one supports a d2 differential so it is irrelevant. Our way to show that

these elements are permanent cycles is by showing they are permanent cycles

in some HF2-subcomplexes of X. For this purpose, in Section 5, we study the

cell structure of X, as well as its several HF2-subcomplexes.

Remark 3.10. The intuitive reason why this method works is due to the

geometric and algebraic Kahn-Priddy theorems. It is because of Step 6 that

we can reduce the computation of an Adams differential in S0 to one in P∞1 ,

and further to one in a lower stem of S0.

In the rest of this section, we prove Step 6. Recall that we have the

Kahn-Priddy Theorem [22], stated as follows:

Theorem 3.11. The transfer map P∞1 → S0 induces a surjection on

homotopy groups in positive stems.

We also have the algebraic Kahn-Priddy Theorem due to Lin [26].

Theorem 3.12. The transfer map also induces a surjection :

Exts,t(P∞1 )→ Exts+1,t+1(S0)

for t− s > 0.

Now we prove Step 6.

Proof. For the purpose of the differential d3(D3) = B3, we check the two

tables in the appendix of [52]. See [52] for more details of the Lambda algebra

notation we used here. We rewrite Ext(s,t) as Ext(s,s+(t−s)) to indicate that it

is in stem t− s.
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The element D3 is in Ext4,61+4(S0) = Z/2. Checking the table for P∞1 ,

we have that

Ext3,61+3(P∞1 ) = Z/2, generated by (22) 21 11 7,

Ext3,61+3(P 23
1 ) = (Z/2)2, generated by (22) 21 11 7,

(23) 22 13 3.

The element 21 11 7 lies in

Ext3,39+3(S0) = Z/2, generated by h1h3h5.

Therefore, the element h1h3h5[22] maps to D3.

The element B3 is in Ext7,60+7(S0) = Z/2. Checking the table for P∞1 ,

we have that

Ext6,60+6(P∞1 ) = (Z/2)2, generated by (6) 2 4 7 11 15 15, (20) 5 5 9 7 7 7,

Ext6,60+6(P 23
1 ) = (Z/2)4, generated by (6) 2 4 7 11 15 15, (20) 5 5 9 7 7 7,

(22) 3 5 9 7 7 7, (23) 13 2 3 5 7 7.

In the table for the transfer, we have that the element (20) 5 5 9 7 7 7 (with

certain choice) maps to 0. Due to the algebraic Kahn-Priddy Theorem, we must

have the element (6) 2 4 7 11 15 15 maps to B3. The element 2 4 7 11 15 15

lies in

Ext6,54+6(S0) = Z/2, generated by G.

Therefore, the element G[6] maps to B3.

Ext3,61+3(P 23
1 ) // Ext3,61+3(P∞1 ) // Ext4,61+4(S0)

h1h3h5[22] � // h1h3h5[22] � // D3

Ext6,60+6(P 23
1 ) // Ext6,60+6(P∞1 ) // Ext7,60+7(S0)

G[6] � // G[6] � // B3.

Note that in both Ext(P∞1 ) and Ext(P 23
1 ), the elements h1h3h5[22] and

G[6] are uniquely determined by our notation, since they have the lowest

Atiyah-Hirzebruch filtrations in their bidegrees.

In the Adams spectral sequence for S0, the element B3 survives to the

E3-page: there is no element that could kill B3 by a d2 differential. Therefore,

the Adams d3 differential in P 23
1

d3(h1h3h5[22]) = G[6]

in Step 5 (Theorem 10.1) implies the Adams d3 differential in S0:

d3(D3) = B3. �
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4. HF2-subquotients for CW spectra

In this section, we introduce the definitions of HF2-subcomplexes and

HF2-quotient complexes for CW spectra. We also discuss an important HF2-

subcomplex of P 6
1 in Theorem 4.7.

Definition 4.1. Let A, B, C and D be CW spectra, and let i and q be maps

A �
� i // B, B

q // // C.

We say that (A, i) is an HF2-subcomplex of B, if the map i induces an injec-

tion on mod 2 homology. We denote an HF2-subcomplex by a hooked arrow

as above.

We say that (C, q) is an HF2-quotient complex of B if the map q induces

a surjection on mod 2 homology. We denote an HF2-quotient complex by a

double headed arrow above.

When the maps involved are clear in the context, we also say A is an

HF2-subcomplex of B and C is an HF2-quotient complex of B.

Furthermore, we say D is an HF2-subquotient of B if D is an HF2-

subcomplex of an HF2-quotient complex of B, or an HF2-quotient complex of

an HF2-subcomplex of B.

Remark 4.2. Note that our definitions of HF2-subcomplexes and HF2-

quotient complexes are not necessarily subcomplexes and quotient complexes

on the point set level. Our definitions should be thought as in the homological

or homotopical sense. Here is a motivating example of why we use these

definitions. The top cell of the spectrum P 3
1 splits off, therefore there is a

map from S3 to P 3
1 that induces an injection on mod 2 homology. This is an

HF2-subcomplex in our sense. However, on the point set level, the image of

the attaching map is not a point, therefore S3 is not a subcomplex of P 3
1 in

the classical sense.

Remark 4.3. It follows directly from Definition 4.1 that if (A, i) is an HF2-

subcomplex of B, then the cofiber of i is an HF2-quotient complex of B, which

we sometimes denote as B/A. Dually, if (C, q) is an HF2-quotient complex

of B, then the fiber of q is an HF2-subcomplex of B.

The following lemma is useful in constructing HF2-subquotients.

Lemma 4.4. Suppose (A, i) is an HF2-subcomplex of B. Let C be the

cofiber of i. Let (D, j) be an HF2-subcomplex of C . Define E to be the homo-

topy pullback of D along B → C . We have that E is an HF2-subcomplex of B.

Moreover, A is an HF2-subcomplex of E with quotient D.

Dually, suppose (C, q) is an HF2-quotient complex of B. Let A be the

fiber of q, and let (F, p) be an HF2-quotient complex of A. Define G to be the
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homotopy pushout of F along A → B. We have that G is an HF2-quotient

complex of B. Moreover, C is an HF2-quotient complex of G with fiber F .

Proof. This follows from the short exact sequences of homology induced by

the following commutative diagrams of cofiber sequences and diagram chasing:

A �
� // E // //� _

��

D� _

j

��
A �
� i // B // // C,

A �
� //

p
����

B
q // //

����

C

F �
� // G // // C. �

We first study the spectrum P 6
1 . For attaching maps, we abuse notation

and refer to a homotopy class by its detecting element in the E1-page of the

Atiyah-Hirzebruch spectral sequence. We use similar notation as in the alge-

braic case in Notation 3.3. The readers who are familiar with the notation of

cell diagrams from [5] should compare with the cell diagrams in Remark 4.8

for the intuition of the following Lemmas 4.5, 4.6 and Theorem 4.7:

Lemma 4.5. There is an HF2-subcomplex of P 5
1 with a 3-cell and a 5-cell

that forms Σ3Cη.

Proof. Firstly, by the solution of the Hopf invariant one problem, the top

cell of P 3
1 splits off. It follows that S3 is an HF2-subcomplex of P 3

1 , and

therefore an HF2-subcomplex of P 5
1 .

Secondly, we consider the HF2-quotient complex P 5
1 /S

3. We claim the

top cell of P 5
1 /S

3 splits off. We prove this claim by showing the attaching map

is homotopic to zero. In fact, the following composition is trivial:

S4 → P 4
1 /S

3 → S4,

where the second map is the quotient map. Otherwise, we would have a non-

trivial

Sq1 : H4(P 5
1 /S

3)→ H5(P 5
1 /S

3),

which we do not. This shows that the attaching map factors through P 2
1 .

S4 //

��

P 4
1 /S

3.

P 2
1

<<
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The group π4(P 2
1 ) is generated by η2[2] and ν[1]. However, the element η2[2]

is killed by η[4] in the Atiyah-Hirzebruch spectral sequence of P 4
1 /S

3. The

element ν[1] does not detect the attaching map either, since otherwise we

would have a nontrivial

Sq4 : H1(P 5
1 /S

3)→ H5(P 5
1 /S

3),

which we do not. Therefore, the attaching map S4 → P 4
1 /S

3 is trivial, and S5

is an HF2-subcomplex of P 5
1 /S

3.

Now we pull back S5 along the quotient map P 5
1 → P 5

1 /S
3. We claim that

we have Σ3Cη as an HF2-subcomplex of P 5
1 :

S3 � � // Σ3Cη // //
� _

��

S5
� _

��
S3 � � // P 5

1
// // P 5

1 /S
3.

In fact, by Lemma 4.4, we have an HF2-subcomplex of P 5
1 with nontrivial H3

and H5. Since there is a nontrivial

Sq2 : H3(P 5
1 )→ H5(P 5

1 ),

we must have Σ3Cη as the HF2-subcomplex. �

Lemma 4.6. If we quotient out the HF2-subcomplex Σ3Cη in P 6
1 , then

the 6-cell splits off. Therefore, S6 is an HF2-subcomplex of P 6
1 /Σ

3Cη.

Proof. We claim that the attaching map S5 → P 4
1 /S

3 is trivial.

In fact, the group π5(P 4
1 /S

3) ∼= Z/2, generated by η[4]. To compute it,

note that the E1-page of the Atiyah-Hirzebruch spectral sequence of P 4
1 /S

3 is

π5(S1) ⊕ π5(S2) ⊕ π5(S4) = Z/8 ⊕ Z/2, generated by ν[2] and η[4]. We have

the following Atiyah-Hirzebruch differentials:

ν[2]→2ν[1],

2ν[2]→4ν[1],

η2[4]→4ν[2] = η3[2].

Therefore, the element η[4] is the only one left in the E∞-page.

Since we have

Sq2 = 0 : H4(P 6
1 )→ H6(P 6

1 ),

we must have

Sq2 = 0 : H4(P 6
1 /Σ

3Cη)→ H6(P 6
1 /Σ

3Cη).

Therefore, the attaching map is not detected by η[4], and it is trivial. This

proves that S6 is an HF2-subcomplex of P 6
1 /Σ

3Cη. �
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Theorem 4.7. There is an HF2-subcomplex Y of P 6
1 consisting of the

3-cell, 5-cell and the 6-cell, which is the pullback of S6 along the quotient map

P 6
1 → P 6

1 /Σ
3Cη.

Σ3Cη �
� // Y // //� _

��

S6
� _

��
Σ3Cη �

� // P 5
1

// // P 5
1 /Σ

3Cη

Proof. This follows directly from Lemmas 4.3 and 4.6. �

Remark 4.8. The cell diagrams of the cofiber sequences in Theorem 4.7

are the following:

6

2

6

2

5

η

5

η 4

2

η

4

η3 3

2

2

2

2

1 1

5. Some HF2-subquotients of P∞1

In this section, we discuss the cell structures of certain HF2-subquotients

of P∞1 . All of them turn out to be HF2-subcomplexes of a nine cell complex

X. The existence of these HF2-subquotients is used extensively in the proofs

in Sections 8, 9 and 10. For illustration purpose, we include the cell diagrams

of these HF2-subquotients. The definition of cell diagrams is reviewed in Sec-

tion 13, which is Appendix I.

We define the nine cell complex X.

Definition 5.1. Recall that the 15-skeleton of P 23
14 is P 15

14 = S14∨S15. The

complex X is defined to be the cofiber of the inclusion map S15 ↪→ P 23
14 , i.e.,

X fits into the cofiber sequence

S15 � � // P 23
14

// // X.
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We also define the 22-skeleton of X to be ‹X. In other words, ‹X fits into the

cofiber sequence

S15 � � // P 22
14

// // ‹X.
Now we establish the following lemmas on the cell structure of X:

Lemma 5.2. There is a quotient map X � S16.

Proof. There is a quotient map P 7
0 � S0, since the bottom cell splits

off. By James periodicity, this gives a quotient map P 23
16 � S16. Since the

14-skeleton of X is S14, we have a quotient map to its cofiber P 23
16 :

S14 � � // X // // P 23
16 .

Pre-composing the quotient map P 23
16 � S16 with the quotient map X � P 23

16 ,

we get the desired quotient map X � S16. �

Lemma 5.3. We have S17 as an HF2-subcomplex of ‹X and of X .

Proof. We claim that the top cell of the 17-skeleton of ‹X splits off, and

therefore S17 is an HF2-subcomplex of ‹X and X.

The 16-skeleton of ‹X is Σ14Cη because of the nontrivial Sq2. The group

π16(Σ14Cη) is generated by 2[16]. Note that in the Atiyah-Hirzebruch spectral

sequence, the element η2[14] is killed by η[16]. Therefore, it follows from James

periodicity that the attaching map is trivial. �

Now we define some HF2-subcomplexes of X. The relationships among

the HF2-subcomplexes are summarized in Remark 5.12. The reader should

compare with the cell diagrams in Remark 5.13 for the intuition of the following

definitions:

Definition 5.4. We define ‘X20 to be the 20-skeleton of X, and X20 to be

the fiber of the following composition:‘X20 �
� // ‹X // // S16.

Note that the composition is a quotient map, and therefore X20 is an HF2-

subcomplex of ‘X20.

Definition 5.5. Quotienting out the 16-skeleton of ‹X, we have the HF2-

quotient complex P 22
17 . We define ‘X22 to be the pullback of Σ16Y along the

quotient map ‹X → P 22
17 . Note that by Theorem 4.7 and James periodicity,

Σ16Y is an HF2-subcomplex of P 22
17 :

Σ14Cη �
� //‘X22 // //� _

��

Σ16Y� _

��
Σ14Cη �

� // ‹X // // P 22
17 = Σ16P 6

1 .
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Definition 5.6. We define X22 to be the fiber of the following composition:‘X22 �
� // ‹X // // S16.

Note that the composition is a quotient map, and therefore X22 is an HF2-

subcomplex of ‘X22.

Definition 5.7. We define ‘X21 to be the 21-skeleton of ‘X22, and X21 to

be the 21-skeleton of X22.

Remark 5.8. Note that S19 is an HF2-subcomplex of X21. In fact, the

19-skeleton of X21 is S19 ∨ S14. The attaching map S18 → S14 is trivial since

π4 = 0.

Definition 5.9. The top cell of P 7
1 splits off due to the solution of the Hopf

invariant one problem. By James periodicity, this implies that the top cell of

P 23
17 splits off. Therefore, S23 is an HF2-subcomplex of P 23

17 .

We define ‘X23 to be the pullback of S23 along the quotient map X → P 23
16 :

Σ14Cη �
� //‘X23 // //� _

��

S23
� _

��
Σ14Cη �

� // X // // P 23
17 = Σ16P 7

1 .

Definition 5.10. We define X23 to be the fiber of the following composition:‘X23 �
� // X // // S16.

Note that the composition is a quotient map, and therefore X23 is an HF2-

subcomplex of ‘X23.

Remark 5.11. We do not know if the top cell of X23 splits off. If not,

then the attaching map is detected by a nontrivial homotopy class in π8. Since

homotopy classes in π8 have Adams filtration at least 2, Ext(X23) splits as a

direct sum of Ext(S14) and Ext(S23) in either case.

Remark 5.12. In the following diagram we summarize the relationships

among the HF2-subcomplexes defined in Definitions 5.4–5.7, 5.9 and 5.10. For

the name convention, we have been using the notation Xn, not to be confused

with the n−skeleton of X, to indicate a kind of “n−skeleton” to the eyes of

mod 2 homology, and the notation X̂n to indicate “adding” the 16-cell to Xn.

The cases for n = 23 do not necessarily follow this convention, since we do not

know if the top cell of X23 splits off:
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P 23
14

����
X23 � � //‘X23 �

� // ‹X � � // X

X22 � � //‘X22 �
� // ‹X

S19 � � // X21 � � //
?�

OO ‘X21 �
� //

?�

OO ‹X
X20 � � //‘X20 �

� // ‹X.
In Section 8, we need to show certain elements in Ext(X) are permanent cycles.

We will show that these elements are permanent cycles in the corresponding

HF2-subcomplexes and use the naturality of Adams spectral sequences and

the algebraic Atiyah-Hirzebruch spectral sequences to show that they are per-

manent cycles in X. The intuition of finding these HF2-subcomplexes is due

to the rearrangement of the cell diagram of ‹X. Following the cell diagram, one

could reconstruct ‹X layer by layer. Firstly, consider the cells in the bottom

layer: S14 ∨ S17 ∨ S19. Secondly, attach the cells in the next layer: the ones

in dimension 16, 18 and 21. Lastly, attach the cells in dimension 20 and 22.

Any HF2-subcomplex consists of a collection of cells, such that for each cell

contained in this collection, any cells in lower layers that this cell is attached

to are also contained in this collection. The reader should compare this with

the cell diagrams in Remark 5.13:

20

η

222
2

18

2
ν

16
η

21

ην2

17 14 19

Remark 5.13. For readers who are familiar with the notation of cell di-
agrams from [5], we include the cell diagrams as illustrations of the HF2-
subcomplexes we defined. The definition and some examples of cell diagrams
are explained in Appendix I.



524 GUOZHEN WANG and ZHOULI XU

22

2

21

ν2

η

21

η

ν2

21

η

ν2

20

2

η

20

2

η

20

2

η19 19 19 19 19

18

2

ν

18

2

ν

18

2

ν

17 17 17

16

η

16

η

16

η

14 14 14 14 14‹X X20 ‘X20 X21 ‘X21

23 23

22

2

22

2

21

η

ν2

21

η

ν2

19 19

16

η

16

η

14 14 14 14

X22 ‘X22 X23 ‘X23
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Here the dashed lines in X23 and ‘X23 mean some possible attaching maps, as

explained in Remark 5.11.

For the cell diagram of ‹X, note that we have a nonzero Sq8 on H14(‹X).

However, Σ14Cσ is not an HF2-subquotient of ‹X; therefore we do not draw

the attaching map σ. The nonexistence of the HF2-subquotient is due to the

existence of the attaching map ν2, which is proved in Theorem 5.14.

By Remark 5.8, we have S19 as an HF2-subcomplex of X21. The cofiber

X21/S19 is therefore a two cell complex with cells in dimension 14 and 21. We

have the following theorem:

Theorem 5.14. The complex X21/S19 is Σ14Cν2, where Cν2 is the cofiber

of ν2.

This theorem implies the following corollary:

Corollary 5.15. The complex Σ14Cν2 is an HF2-subquotient of X21,‘X21, X22 and ‘X22.

In the rest of this section, we prove Theorem 5.14. Note that since

π6 = Z/2 is generated by ν2, the complexX21/S19 is either Σ14Cν2 or S14∨S21.

Theorem 5.14 and Corollary 5.15 are used in several proofs in Section 6. How-

ever, the proofs in Section 6 do not depend on these results. In fact, if the

complex X21/S19 were S14∨S21, the proofs in Section 6 would be strictly much

easier. The reader should feel free to skip the proof of Theorem 5.14: knowing

either case could be true is good enough for the proofs in Section 8. Since this

theorem may be of other interest, we include the proof of Theorem 5.14 for

completeness.

To prove Theorem 5.14, we first consider the spectrum CP 3
1 , which is the

suspension spectrum of CP 3. As we will explain in Example 13.5, the top

cell does not split off and is attached to CP 2
1 via 2ν[2]. We have a standard

quotient map P 7
1 → CP 3

1 , which is induced by the quotient map on the space

level. Then pre-composing it with the inclusion map, we have a map

q : P 6
1 � CP 3

1 .

Recall that in Theorem 4.7, we showed that there exists a three cell complex Y ,

which is an HF2-subcomplex of P 6
1 .

Theorem 5.16. The composition

S3 � � // Y �
� // P 6

1

q // // CP 3
1

is trivial, therefore the composition

Y �
� // P 6

1

q // // CP 3
1
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maps through P 6
5 . Furthermore, the composition

S5 � � // P 6
5

// CP 3
1

is nontrivial and is detected by ν[2] in the Atiyah-Hirzebruch spectral sequence

of CP 3
1 .

Remark 5.17. We have the following commutative diagram:

Y �
� //

����

P 6
1

q // // CP 3
1 .

P 6
5

66

S5
?�

OO

ν // S2
?�

OO

In other words, the cell diagrams of the composition Y → CP 3
1 can be described

as follows:

6

2

1 // 6

2ν

5

η

ν

��

4

η3

2

Proof. The first claim of Theorem 5.16 follows from the fact that π3(CP 3
1 )

= 0. In fact, in the E1-page of the Atiyah-Hirzebruch spectral sequence of CP 3
1 ,

there is only one candidate that lies in the degree that converges to π3: η[2].

However, because of the attaching map in CP 2
1 , we have an Atiyah-Hirzebruch

differential

1[4]→ η[2].

Therefore, π3(CP 3
1 ) = 0.

For the second claim, we first show that the composition

S5 � � // P 6
5

// CP 3
1
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maps through S2. This follows from the fact that π5(CP 3
1 ) = Z/2, generated

by ν[2]. In fact, because of the attaching maps in CP 3
1 , we have the Atiyah-

Hirzebruch differentials

1[6]→2ν[2],

2[6]→4ν[2],

η[4]→η2[2],

which leave ν[2] as the only nontrivial element in the Atiyah-Hirzebruch E∞-

page that converges to π5(CP 3
1 ).

Next, we consider the following commutative diagram of cofiber sequences:

S5
2ν[2]
// CP 2

1
� � // CP 3

1
// // S6.

S5 2 //

OO

S5 � � //

OO

P 6
5

OO

// // S6

OO

Since the composition

S5 � � // P 6
5

// CP 3
1

// // S6

is trivial, it maps through the quotient P 6
5 /S

5 = S6. Since the map P 6
5 → CP 3

1

induces an isomorphism on H6, so does S6 99K S6. Therefore, we can choose

it to be the identity map. To make the left square commute, we must identify

the map S5 → CP 2
1 as ν[2] modulo the indeterminacy 2ν[2]. Therefore, the

composition

S5 � � // CP 2
1

// CP 3
1

is nontrivial, and detected by ν[2] in the Atiyah-Hirzebruch spectral sequence

of CP 3
1 . �

Proof of Theorem 5.14. We show that there is an attaching map ν2 in X21.

Firstly, we have a quotient map

P 6
−2 → CP 3

−1,

which is induced by the quotient map RP 22
14 → CP 11

7 on the space level and

James periodicity. It maps through Σ−16 ‹X, since π−1(CP 3
−1) = 0. In fact, in

the Atiyah-Hirzebruch spectral sequence of CP 3
−1, we have a differential

1[0]→ η[−2],
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which kills the only nontrivial element η[−2] in the E1-page:

S−1 � � // P 6
−2

// //

����

Σ−16 ‹X
zzzz

CP 3
−1.

Secondly, by Theorem 5.16, we have the following commutative diagram:

P 6
5

((

S5oo

��

ν

!!
Y

OOOO

� � // P 6
1

// //

��

CP 3
1

��

S2_?
oo

ν}}
S−1 id // S−1,

where the map ν : S2 → S−1 is due to the nontrivial Sq4 on H−2(CP 3
−1).

Therefore, in the cofiber of the composition

Y �
� // P 6

1
// S−1,

we have ν2 as an attaching map. Since this cofiber is Σ−15X22, this proves the

attaching map ν2 in X21. �

6. Two lemmas on Atiyah-Hirzebruch differentials

In this section, we establish two general lemmas regarding the relationship

of 3-fold Toda brackets and differentials in the Atiyah-Hirzebruch spectral

sequences of certain three and four cell complexes. As examples, we use these

lemmas to prove Propositions 6.3 and 6.4, whose statements will be used in

Section 8.

We recall some facts from the construction of the Atiyah-Hirzebruch spec-

tral sequence. Let X be a complex with at most one cell in each dimension.

Let Xn denote its n-skeleton. Not to be confused with the notation we use

in the rest of this paper, the n-skeleton notation only applies in the next four

pages.

We have the following facts about the Atiyah-Hirzebruch spectral sequence

of X:

(1) The E1-page is

Es,t1 = πt(X
s/Xs−1).

As used in the previous two sections, we denote any element in the E1-page

to be α[s], where α is an element in the stable homotopy groups of spheres
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and s suggests its Atiyah-Hirzebruch filtration. We will abuse the notation

and write the same symbol α[s] for an element in π∗(X).

(2) The Er-page is

Es,tr =
Im(πt(X

s/Xs−r)→ πt(X
s/Xs−1))

Im(πt+1(Xs+r−1/Xs)→ πt(Xs/Xs−1))
,

where the top map is induced by the quotient map

Xs/Xs−r � Xs/Xs−1,

and the bottom map is induced by the attaching map in the cofiber se-

quence

Xs/Xs−1 � � // Xs+r−1/Xs−1 // // Xs+r−1/Xs // ΣXs/Xs−1.

(3) The differential

dr : Es,tr → Es−r,t−1
r

is defined as the following. Let α̃ be a class in πt(X
s/Xs−r), such that

it maps to α[s] ∈ Es,tr under the projection to the top cell: Xs/Xs−r �
Xs/Xs−1. We define dr(α[s]) to be the composition of α̃ with the attaching

map Xs/Xs−r → ΣXs−r/Xs−r−1:

St
α̃ // Xs/Xs−r // ΣXs−r/Xs−r−1.

One can check that this is well defined.

(4) Suppose we have a nontrivial differential in the Atiyah-Hirzebruch spectral

sequence of X:

ds1−s2(α[s1]) = β[s2],

where α ∈ π∗(Xs1/Xs1−1) and β ∈ π∗(Xs2/Xs2−1). This implies that, in

the Atiyah-Hirzebruch spectral sequence of Xs1−1, the element β[s2] is a

permanent cycle. Furthermore, under the attaching map Ss1−1 → Xs1−1,

the image of α[s1] is detected by β[s2].

We have the following lemma to compute differentials in the Atiyah-

Hirzebruch spectral sequence of three cell complexes:

Lemma 6.1. Let T be a three cell complex with cells in dimensions t1, t2, t3,

where t3 < t2 < t1. Suppose we have cofiber sequences

Σt3Cγ �
� i1 // T

q1 // // St1
a1 // Σt3+1Cγ,

St3 �
� i2 // T

q2 // // Σt2Cβ
a2 // ΣSt3 ,

where Cβ is the cofiber of β ∈ πt1−t2−1, Cγ is the cofiber of γ ∈ πt2−t3−1 and

β, γ are nontrivial classes such that β ·γ = 0. In other words, the cell diagram
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of T is the following :

t1

β

t2

γ

t3

Suppose the class α ∈ πt0 satisfies the condition α ·β = 0 in πt0+t1−t2−1. Then

we have an Atiyah-Hirzebruch differential

dt1−t3(α[t1]) ⊆ 〈α, β, γ〉[t3].

If, moreover, α ·πt1−t3−1 ⊆ γ ·πt0+t1−t2 in πt0+t1−t3−1, then we have an Atiyah-

Hirzebruch differential

dt1−t3(α[t1]) = 〈α, β, γ〉[t3].

Here the indeterminacy of 〈α, β, γ〉[t3] is zero in the Et1−t3-page.

Furthermore, in the latter case, if 0 ∈ 〈α, β, γ〉, then α[t1] is a permanent

cycle in the Atiyah-Hirzebruch spectral sequence of T .

Proof. Following the condition α · β = 0, α[t1] survives in the Atiyah-

Hirzebruch spectral sequence of Σt2Cβ. In fact, this follows from the long

exact sequence of homotopy groups associated to the cofiber sequence

St2 �
� // Σt2Cβ // // St1 .

By naturality of the Atiyah-Hirzebruch spectral sequence induced by the quo-

tient map T � Σt2Cβ, we have the differential in the Atiyah-Hirzebruch spec-

tral sequence of T :

dt1−t2(α[t1]) = 0.

Now consider any class in πt0+t1(Σt2Cβ) that is detected by α[t1]. We

abuse the notation to denote such a class by α[t1]. By the definition of the

Toda bracket 〈α, β, γ〉, the class a2∗(α[t1]) is an element in 〈α, β, γ〉[t3]:

α //

β
γ //

St0+t1 // Σt2Cβ
a2 // ΣSt3 .

The indeterminacy of this Toda bracket is α · πt1−t3−1 + γ · πt0+t1−t2 . From

the construction of the Atiyah-Hirzebruch spectral sequence, a2∗(α[t1]) is also
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a representative for dt1−t3(α[t1]). The indeterminacy of the target of this dif-

ferential is the image of

dt2−t3 : πt0+t1−t2+t3+1(St2)→ πt0+t1(ΣSt3),

which is γ · πt0+t1−t2 , since it is induced by multiplication by γ map. Hence

the first claim.

If α·πt1−t3−1⊆γ·πt0+t1−t2 in πt0+t1−t3−1, then dt1−t3(α[t1]) and 〈α, β, γ〉[t3]

have a common element with the same indeterminacy. Hence the second state-

ment.

The third statement follows directly from the second one because the

Et1−t3+1-page is the E∞-page for the Atiyah-Hirzebruch spectral sequence of T .

�

Lemma 6.2. Let U be a four cell complex with cells in dimensions t1, t2,

t3, t4, where t4 < t3 < t2 < t1. Suppose we have cofiber sequences

St3 ∨ St4 �
� i3 // U

q3// // Σt2Cβ
a3 // ΣSt3 ∨ ΣSt4

V �
� i4 // U

q4 // // St1
a4 // ΣV

St3 ∨ St4 �
� i5 // V

q5 // // St2
a5 // ΣSt3 ∨ ΣSt4 ,

where Cβ is the cofiber of β ∈ πt1−t2−1, the map a5 : St2 → ΣSt3 ∨ ΣSt4

is defined component-wise by multiplication by γ ∈ πt2−t3−1 and δ ∈ πt2−t4−1

maps, and β, γ, δ are nontrivial classes such that β · γ = 0, β · δ = 0. In other

words, the cell diagram of U is the following :

t1

β

t2

γ

δt3

t4

Suppose the class α ∈ πt0 satisfies the following conditions :

(1) α · β = 0 in πt0+t1−t2−1;

(2) α · πt1−t3−1 ⊆ γ · πt0+t1−t2 in πt0+t1−t3−1;

(3) 0 ∈ 〈α, β, γ〉 in πt0+t1−t3−1.
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We then have an Atiyah-Hirzebruch differential

dt1−t4(α[t1]) ⊆ 〈α, β, δ〉[t4].

Furthermore, if the following two conditions are satisfied :

(4) α · πt1−t4−1 = 0 in πt0+t1−t4−1;

(5) δ · πt0+t1−t2 = 0 in πt0+t1−t4−1,

then we have an Atiyah-Hirzebruch differential

dt1−t4(α[t1]) = 〈α, β, δ〉[t4].

Moreover, in the latter case, if 0 ∈ 〈α, β, δ〉, then α[t1] is a permanent cycle in

the Atiyah-Hirzebruch spectral sequence of U .

Proof. We consider the following two cofiber sequences:

St3 �
� // U

p3 // // T ′

St4 �
� // U

p4 // // T ′′.

Both three cell complexes T ′ and T ′′ (with the following cell diagrams) satisfy

the assumptions in Lemma 6.1:

t1

β

t1

β

t2

δ

t2

γ

t3

t4

T ′ T ′′

By Lemma 6.1, in the Atiyah-Hirzebruch spectral sequence of T ′′, we have a

differential

dt1−t3(α[t1]) = 〈α, β, γ〉[t3] = 0.

The last equality follows from condition (3). Using the naturality for the

quotient map p′′ : U � T ′′, we pull back a differential in the Atiyah-Hirzebruch

spectral sequence of U :

dt1−t3(α[t1]) = 0.
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By Lemma 6.1, in the Atiyah-Hirzebruch spectral sequence of T ′, we have a

differential

dt1−t4(α[t1]) ⊆ 〈α, β, δ〉[t4].

Using the naturality of the quotient map p3 : U � T ′, we pull it back to get a

differential in the Atiyah-Hirzebruch spectral sequence of U :

dt1−t4(α[t1]) ⊆ 〈α, β, δ〉[t4].

The second and third statements follow directly from the first one, since the

Toda bracket 〈α, β, δ〉 has zero indeterminacy under conditions (4) and (5), and

the Et1−t4+1-page is the E∞-page for the Atiyah-Hirzebruch spectral sequence

of U . �

Now we apply Lemma 6.2 to the complex X22.

In π39, consider the three homotopy classes α = ση5, α′ ∈ {h5c0} such

that 2 · α′ = 0, σ · α′ = 0, and α′′ = σ{d1}. Here we use the notation {a}
to denote the set of homotopy classes that are detected by a, where a is a

surviving element in the E∞-page of the Adams spectral sequence. One can

choose α′ = 〈θ4, 2, ε〉. Moss’s theorem tells us α′ ∈ {h5c0}. We have

2 · α′ = 2〈θ4, 2, ε〉 = 〈2, θ4, 2〉ε = ηθ4ε = 0.

The last equation follows from filtration reasons. From the proof of Lemma 6.5,

we also have σ ·α′ = 0. Note also that there are indeterminacies in the notation

{d1} and η5, but for our purpose, any choices work. The reader should compare

with Isaksen’s computations in [20], [19].

Proposition 6.3. In the Atiyah-Hirzebruch spectral sequence of X22, we

have the following d8 differentials :

d8(α[22]) = 0,

d8(α′[22]) = ηφ[14],

d8(α′′[22]) ⊆ η2π44[14],

where φ ∈ π45 is detected by h5d0, such that η · φ ∈ 〈α′, 2, ν2〉.
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Proof. The complex X22 satisfies the conditions in Lemma 6.2, with β =

2 ∈ π0, γ = η ∈ π1 and δ = ν2 ∈ π6:

22

2

21

η

ν219

14

We verify that the classes α and α′ satisfy conditions (1) through (5), and α′′

satisfy conditions (1) through (3) in Lemma 6.2.

(1) α · 2 = 0 in π39. This follows from 2 · η5 = 0.

α′ · 2 = 0 in π39. This follows from our definition of α′.

α′′ · 2 = 0 in π39. This follows from 2 · {d1} = 0.

(2) α · π2 ⊆ η · π40 in π41.

α′ · π2 ⊆ η · π40 in π41.

α′′ · π2 ⊆ η · π40 in π41.

These follow from the fact that π2 is generated by η2.

(3) 0 ∈ 〈α, 2, η〉 in π41.

0 ∈ 〈α′, 2, η〉 in π41.

0 ∈ 〈α′′, 2, η〉 in π41.

These follow from the fact that the Cokernel of J in π41 is contained in

the image of η : π40 → π41. In fact, suppose, for example, 〈α, 2, η〉 does

not contain 0. It therefore must contain an element in the image of J .

Therefore, mapping this Toda bracket to the K(1)-local sphere gives a

contradiction, since the class α maps to 0. The cases α′ and α′′ work the

same way.

(4) α · π7 = 0 in π46.

α′ · π7 = 0 in π46.

These follow from the fact that π7 is generated by σ and the proof of

Lemma 6.5.

(5) ν2 · π40 = 0 in π46. This follows from ν · π43 = 0 for filtration reasons.

For the targets of these differentials, we apply Lemma 6.2 by computing the

following Toda brackets:

〈α, 2, ν2〉, 〈α′, 2, ν2〉, 〈α′′, 2, ν2〉.

For the element α = ση5, we have

〈σ · η5, 2, ν
2〉 ⊇ σ〈η5, 2, ν

2〉 = η5〈2, ν2, σ〉 = η5{0, σ2} = 0.
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Note that the last equation holds because in the proof of Lemma 6.5 we have

σ2η5 = 0. Therefore, by Lemma 6.2, we have the Atiyah-Hirzebruch differential

d8(α[22]) = 0.

For the element α′ ∈ {h5c0}, we have

〈α′, 2, ν2〉 = 〈α′, 2, 〈η, ν, η〉〉
⊇ 〈α′, 2, η, ν〉 · η
⊆ {h5d0} · η,

where the last inequality follows from the following Massey product in Ext,

and Moss’s theorem [35, Th. 1.2]:

〈h5c0, h0, h1, h2〉 = h5〈c0, h0, h1, h2〉 = h5d0.

That is, there exists a class φ in {h5d0} in π45 such that η · φ ∈ 〈α′, 2, ν2〉.
Therefore, by Lemma 6.2, we have the Atiyah-Hirzebruch differential

d8(α′[22]) = ηφ[14].

For the element α′′ = σ{d1}, we have

〈σ · {d1}, 2, ν2〉 ⊇ σ〈{d1}, 2, ν2〉 ⊆ σ · π39 ⊆ η2π44.

The indeterminacy of the Toda bracket 〈σ · {d1}, 2, ν2〉 is

σ{d1} · π7 + ν2 · π40 = σ{d1} · π7 ⊆ σ · π39 ⊆ η2π44.

Therefore, we have

〈σ · {d1}, 2, ν2〉 ⊆ η2π44.

By Lemma 6.2, we have the Atiyah-Hirzebruch differential

d8(α′′[22]) ⊆ η2π44[14]. �

We also apply Lemma 6.2 to the complex X20/S19. (By Lemma 4.4 and

Remark 5.8, we have S19 as an HF2-subcomplex of X20.)

In π41, we consider the homotopy class α′′′ = σ{h0h2h5}. Note that the

notation {h0h2h5} has indeterminacy. Since h0h2h5 does not support any

hidden η-extension in the E∞-page of the Adams spectral sequence of S0,

we choose a class in {h0h2h5} such that its η-multiple is zero. The class

α′′′ = σ{h0h2h5} is therefore unique.

Proposition 6.4. In the Atiyah-Hirzebruch spectral sequence of X20/S19,

the element α′′′[20] is a permanent cycle.
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Proof. The complex X20/S19 satisfies the conditions in Lemma 6.2, with

β′ = η ∈ π1, γ′ = 2 ∈ π0 and δ′ = ν ∈ π3:

20

η

18

2

ν17

14

We verify that α′′′ = σ{h0h2h5} ∈ π41 satisfies conditions (1) through (5) in

Lemma 6.2.

(1) σ{h0h2h5} · 2 = 0 in π41. This follows from 2 · π41 = 0.

(2) σ{h0h2h5} · π2 ⊆ 2 · π43 in π43. This follows from the fact that π2 is

generated by η2 and that

η2 · π41 = {0, 4{P 5h2}} ⊆ 2 · π43.

(3) 0 ∈ 〈σ{h0h2h5}, η, 2〉 in π43. This follows from σ · π36 = 0 in π43. In fact,

since we chose the element in {h0h2h5} such that its η-multiple is zero, we

have

〈σ · {h0h2h5}, η, 2〉⊇σ〈{h0h2h5}, η, 2〉⊆σ · π36 = 0.

(4) σ{h0h2h5} · π5 = 0 in π46. This follows from π5 = 0.

(5) ν · π43 = 0 in π46.

We further verify that 0 ∈ 〈σ{h0h2h5}, η, ν〉 in π46. Since we chose the element

in {h0h2h5} such that its η-multiple is zero, we have

〈σ ·{h0h2h5}, η, ν〉⊇σ〈{h0h2h5}, η, ν〉= {h0h2h5}·〈η, ν, σ〉⊆ {h0h2h5}·π12 = 0.

The last equation follows from the fact that π12 = 0. Therefore, by Lemma 6.2,

the element α′′′[20] = σ{h0h2h5}[20] is a permanent cycle in the Atiyah-

Hirzebruch spectral sequence of X20/S19. �

In the rest of this section, we prove the following relation in the stable

homotopy groups of spheres, which was used in Propositions 6.3 and 6.4:

Lemma 6.5. We have

σ · π39 ⊆ η2π44 = {0, η2{g2}}.

Moreover, there is at most one nontrivial σ-extension from π39 to π46; namely,

σ2{d1} = η2{g2}.
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Proof. The group π39 is generated by classes that are detected by P 2h2
0i,

u, h2t, h3d1, h5c0 and h1h3h5 in the Adams E∞-page. To prove this lemma,

we check that for each element in the Adams E∞-page, σ annihilates one class

it detects, with the possible exception of h3d1. For the element h3d1, we show

that there is a possible σ-extension from h3d1 to N , and it is equivalent to an

η-extension from h1g2 to N . It is now known that this nontrivial σ-extension

does in fact exist, but it is irrelevant to the proofs in this paper.

(1) For P 2h2
0i, we have σ · {P 2h2

0i} = 0 for filtration reasons.

(2) For u, suppose σ · {u} 6= 0. The only possibility is σ · {u} = {d0l} for

filtration reasons. However, this cannot happen, since both {u} and {d0l}
are detected by tmf, and σ = 0 in π∗tmf: mapping this relation to π∗tmf

gives a contradiction. Therefore, σ · {u} = 0.

(3) For h2t, one class that it detects is ν{t}. It follows from ν · σ = 0 that

σ · {h2t} = 0.

(4) For h3d1, note that there is a relation in Ext: h3d1 = h1e1. Following

Bruner’s differential [10, Th. 4.1]

d3(e1) = h1t = h2
2n,

we have a Massey product in the Adams E4-page

〈h2n, h2, h1〉 = h1e1.

By Moss’s theorem [35, Th. 1.2], we have that the Toda bracket 〈ν{n}, ν, η〉
is detected by h1e1 = h3d1. Therefore,

σ · 〈ν{n}, ν, η〉 = 〈σ, ν{n}, ν〉 · η.

By Bruner’s differential and Moss’s theorem, we have that the Toda bracket

〈σ, ν{n}, ν〉 is detected by

h1g2 = h3e1 = 〈h3, h2n, h2〉.

Since the only element with higher filtration than h1g2 that supports an

η-extension is w, to show that

σ · {h3d1} = η2{g2},

we only need to show that

σ · 〈ν{n}, ν, η〉 6= {w} · η.

Suppose the opposite is true. Multiplying the equation by η gives a con-

tradiction, since h3d1 does not support hidden η-extension while d0l does.

Therefore, we have

σ · {h3d1} = η2{g2}.
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(5) For h5c0, by Moss’s theorem, α′ = 〈θ4, 2, ε〉 is detected by h5c0. We have

〈θ4, 2, ε〉 · σ = θ4 · 〈2, ε, σ〉 = θ4 · 0 = 0.

Therefore, we have the class α′ = 〈θ4, 2, ε〉 in {h5c0} such that σ · α′ = 0.

(6) For h1h3h5, it detects α = ση5. Since ν · η5 = 0, we have

σ · ση5 = 〈ν, σ, ν〉η5 = ν〈σ, ν, η5〉 ⊆ ν · π43 = 0.

Therefore, we have the class α = ση5 in {h1h3h5} such that σ · α = 0.

In sum, we have σ · π39 ⊆ η2π44 = {0, η2{g2}}. �

7. The cofiber of η

In this section, we establish Step 1 by proving the following theorem:

Theorem 7.1. In the Adams spectral sequence of Σ14Cη, we have a d4

differential in the 61-stem :

d4(h3
4[16]) = B1[14].

Proof. The cofiber sequence

S15 η // S14 i // Σ14Cη
p // S16

gives us a short exact sequence on cohomology

0 // H∗(S16)
p∗ // H∗(Σ14Cη)

i∗ // H∗(S14) // 0

and therefore a long exact sequence of Ext groups

Exts−1,t−1(S15)
h1 // Exts,t(S14)

i] // Exts,t(Σ14Cη)
p] // Exts,t(S16).

From this long exact sequence, in Table 1 we have the Adams E2-page of Σ14Cη

in the 60 and 61 stems for s ≤ 7.

Firstly, since there is an η-extension from h3
4 to B1 in S0, the class B1[14]

in Ext(Σ14Cη) detects zero in π60(Σ14Cη), and therefore it must be killed by

s\t− s 60 61

7 B1[14] h2
0h5d0[16]

6 h2
0g2[16] h0h2g2[14]

h0h5d0[16]

5 h0g2[16] h2g2[14]

h1g2[16]

4 h0h
3
4[16]

3 h3
4[16]

Table 1. The Adams E2-page of Σ14Cη in the 60 and 61 stems

for s ≤ 7.
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some element. There are four candidates: h3
4[16] in filtration 3, h0h

3
4[16] in

filtration 4, and h2g2[14], h1g2[16] in filtration 5.

Secondly, the element h3
4[16] in Ext(Σ14Cη) cannot survive. Suppose it

did. We would then have q](h
3
4[16]) = h3

4[16], where the image survives in

Ext(S16). However, the homotopy class detected by h3
4[16] in Ext(S16) maps

nontrivially to a class in π60(ΣS14) because of the same η-extension. This

contradicts the exactness of the long exact sequence of homotopy groups.

Thirdly, the element h2g2[14] is a permanent cycle and therefore cannot

kill B1[14]. In fact, the element h2g2[14] is a permanent cycle in Ext(S14). The

image i](h2g2[14]) = h2g2[14] must also be a permanent cycle.

At last, the kernel of the map

η : π45 −→ π46

is Z/8 ⊕ Z/2, generated by an order 8 element detected by h0h
3
4 and η{g2}.

Since h0h
3
4 and h1g2 have filtration 4 and 5, we must have two more surviving

cycles in π61(Σ14Cη) with filtration strictly smaller than 6 besides h2g2[14].

The only possibility is h0h
3
4[16] and h1g2[16], since we know h3

4[16] cannot

survive.

Therefore, the only possibility to kill B1[14] is h3
4[16]. �

Corollary 7.2. The elements h0h
3
4[16], h2g2[14] and h1g2[16] survive in

the Adams spectral sequence of Σ14Cη.

Proof. This follows directly from the proof of Theorem 7.1 and filtration

reasons. �

8. The Adams spectral sequence of ‹X
In this section, based on Theorem 7.1, we prove Theorem 8.1 in Step 2.

Theorem 8.1. In the Adams spectral sequence of ‹X , we have the differ-

ential

d4(h3
4[16]) = B1[14].

The proof of Theorem 8.1 is summarized as in Table 2. Here the element

h1h3h5[22] is defined to be the image of h1h3h5[22] in Ext(X22). In fact,

the group Ext3,64(X22) = Z/2 is generated by h1h3h5[22], as we will show in

Lemma 8.8. Each • represents a nontrivial element in its bidegree. But these

elements are irrelevant to our purpose.

Proof. Firstly, as we will show in Lemma 8.2, the Adams E2-page of ‹X in

the 60 and 61 stems for s ≤ 7 is as claimed in Table 2. In particular, there are

ten elements in Adams filtration 4 and 5. Secondly, by Lemmas 8.3, 8.4, 8.5,

8.7, 8.8 and 8.10 later in this section, the element B1[14] in Adams filtration

7 cannot be killed by any d2 or d3 differentials from these 10 elements. In
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s\t− s 60 61 status proof HF2-subquotients used

7 B1[14] •
• •

6 h2
0f1[20] •
• •
• •

5 • h2g2[14] permanent cycle Lemma 8.3 Σ14Cη

• h1g2[16] permanent cycle Lemma 8.3 Σ14Cη

h1f1[20] permanent cycle Lemma 8.10 X20

h1h5c0[21] permanent cycle Lemma 8.7 X21

h3d1[22] permanent cycle Lemma 8.8 X22 and ”X22

4 • h0h
3
4[16]

g2[17] permanent cycle Lemma 8.4 S17

f1[21] d2(f1[21]) = h2
0f1[20] Lemma 8.5 P 21

19

h2
1h3h5[21] permanent cycle Lemma 8.7 X21

h5c0[22] permanent cycle Lemma 8.8 X22 and ”X22

3 • h3
4[16] d4(h3

4[16]) = B1[14]

h1h3h5[22] permanent cycle Lemma 8.8 X22 and ”X22

Table 2. The Adams E2-page of ‹X in the 60 and 61 stems for

s ≤ 7.

fact, one of these 10 elements in Adams filtration 4 supports a d2 differential,

and the rest are permanent cycles. Therefore, the element B1[14] survives to

the E4-page of the Adams spectral sequence of ‹X. Theorem 8.1 follows from

naturality of the Adams spectral sequences and Theorem 7.1. �

Lemma 8.2. The Adams E2-page of ‹X in the 60 and 61 stem for s ≤ 7

is as claimed in Table 2.

Proof. Because of the cell structure of ‹X, there exists a cofiber sequence

S14 i // ‹X q // P 22
16

a // ΣS14.

This cofiber sequence gives us a short exact sequence on cohomology

0 // H∗(P 22
16 )

q∗ // H∗(‹X)
i∗ // H∗(S14) // 0

and therefore a long exact sequence on Ext groups

Exts,t(S14)
i] // Exts,t(‹X)

q] // Exts,t(P 22
16 )

δ // Exts+1,t+1(ΣS14).

Note that the Adams filtration of the attaching map a : P 22
16 → ΣS14

is 1. In fact, in its cofiber ‹X, the 16-cell is attached to the 14-cell by η, which

has the Adams filtration 1. Therefore, the boundary map in the long exact

sequence on Ext groups raises the Adams filtration by 1.

In Section 6 of [52], we explained how to obtain the Adams E2-page of

Pn+k
n from our Curtis table of P∞1 . In particular, we have the Adams E2-page

of P 22
16 in the 60 and 61 stem for s ≤ 7.

To compute Ext(‹X) from the long exact sequence on Ext groups, we also

need to compute the boundary homomorphism

δ : Exts,t(P 22
16 )→ Exts+1,t+1(ΣS14).
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In fact, in the 61 stem for s ≤ 5, there is only one element h5d0[16] (with

the right choices of other elements) that maps nontrivially: δ(h5d0[16]) =

h1h5d0[14]. This follows from the naturality of the boundary homomorphism

induced by the inclusion map Σ14Cη → ‹X, and the fact that

Exts,s+46(S0) = 0 for s ≤ 5,

Ext6,6+46(S0) = Z/2, generated by h1h5d0,

Exts,t(S14)
i] //

��

Exts,t(Σ14Cη)
q] //

��

Exts,t(S16) //

��

Exts+1,t+1(ΣS14)

��
Exts,t(S14)

i] // Exts,t(‹X)
q] // Exts,t(P 22

16 )
δ // Exts+1,t+1(ΣS14).

Note that the boundary homomorphism δ corresponds to differentials in

the algebraic Atiyah-Hirzebruch spectral sequence of ‹X. One can check, using

the naturality of the algebraic Atiyah-Hirzebruch spectral sequence for the

quotient map P 22
14 � ‹X, that the other elements (with the right choices) map

to zero under the boundary homomorphism δ.

This completes the proof. �

The following lemma is a consequence of Corollary 7.2 and naturality of

the Adams spectral sequence.

Lemma 8.3. In the Adams spectral sequence of ‹X , the elements h2g2[14],

h1g2[16] and h0h
3
4[16] are permanent cycles.

Proof. By Corollary 7.2, the elements h2g2[14], h1g2[16] and h0h
3
4[16] are

surviving cycles in the Adams spectral sequence of Σ14Cη. In particular, they

are permanent cycles. Since Σ14Cη is the 16-skeleton of ‹X, by naturality for

the map

Σ14Cη �
� // ‹X,

these elements are also permanent cycles in the Adams spectral sequence

of ‹X. �

Lemma 8.4. In the Adams spectral sequence of ‹X , the element g2[17] is

a permanent cycle.

Proof. By Lemma 5.3, S17 is an HF2-subcomplex of ‹X. Since g2 is a

permanent cycle in the Adams spectral sequence of S0, by the naturality for

the inclusion map, it is also a permanent cycle in the Adams spectral sequence

of ‹X. �

Lemma 8.5. In the Adams spectral sequence of ‹X , we have a d2 differential

d2(f1[21]) = h2
0f1[20].
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To prove Lemma 8.5, we need to prove the following lemma:

Lemma 8.6. We have a quotient map q : P 21
19 � S20. Moreover, we have

q](f1[21]) = h0c2[20], where q] : Ext(P 21
19 ) → Ext(S20) is the induced map on

the Adams E2-page.

Proof. By James periodicity, the quotient map q : P 21
19 � S20 maps

through P 21
20 :

P 21
19

q1 // // P 21
20

q2 // // S20.

The cell diagram of P 21
19 is the following:

21

η20

2

19

In Ext(P 21
20 ), we define the element f1[21] to be the image of f1[21] in Ext(S21)

under the inclusion map i : S21 ↪→ P 21
20 , i.e., f1[21] = i](f1[21]):

Ext(S21)

i]
��

Ext(P 21
19 )

q1] // Ext(P 21
20 )

q2] // Ext(S20)

f1[21] � // f1[21]

+h0c2[20]
� // h0c2[20].

By naturality of the algebraic Atiyah-Hirzebruch spectral sequence, we have

q2](f1[21]) = 0. Therefore, in Ext(P 21
20 ), the element f1[21] + h0c2[20] maps to

h0c2[20] in Ext(S20), i.e.,

q2](f1[21] + h0c2[20]) = h0c2[20].

Now we consider the cofiber sequence associated to the map q1:

S19 � � // P 21
19

q1 // // P 21
20 = S21 ∨ S20 // ΣS19.

Both elements f1[21] and h0c2[20] map to h1f1[19] in Ext(ΣS19). In fact, it

follows from the fact that the 21-cell is attached to the 19-cell by η, and the 20-

cell is attached to the 19-cell by 2. Note also that there is a relation h2
0c2 = h1f1

in Ext. Therefore, the sum f1[21] +h0c2[20] maps to 0 in Ext(ΣS19) and must
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come from Ext(P 21
19 ) by exactness. By naturality of the algebraic Atiyah-

Hirzebruch spectral sequence, it must come from f1[21], i.e.,

q1](f1[21]) = f1[21] + h0c2[20].

Combining with

q2](f1[21] + h0c2[20]) = h0c2[20],

we have

q](f1[21]) = h0c2[20]. �

Now we present the proof of Lemma 8.5.

Proof. In the Adams spectral sequence of S0, we have a differential

d2(h0c2) = h2
0f1.

Now consider the following commutative diagram:‹X q3 // // P 22
19

q4 // // S20

P 21
19

?�
i

OO

q // // S20,

where q3 is obtained from ‹X by quotienting out its 18-skeleton, q4 is a quotient

map that follows essentially from Theorem 4.7 and James periodicity, and i is

an inclusion map. By Lemma 8.6, the d2 differential in S20,

d2(h0c2[20]) = h2
0f1[20],

can be pulled back to get a d2 differential in P 21
19 :

d2(f1[21]) = h2
0f1[20].

This differential can be further pushed forward by i and then pulled back by

q3 to get the d2 differential in ‹X:

d2(f1[21]) = h2
0f1[20].

Note that in Ext(‹X), elements of lower Atiyah-Hirzebruch filtrations, i.e.,

h2g2[14] and h1g2[16], have already been shown to survive by Lemma 8.3. �

Lemma 8.7. The elements h1h5c0[21] and h2
1h3h5[21] are permanent cy-

cles in Ext(‹X).

Proof. We consider the HF2-subcomplex X21. Since there are only three

cells in X21, the computation of the Adams E2-page of X21 in the 61 stem

for s ≤ 5 is straightforward by using the algebraic Atiyah-Hirzebruch spectral

sequence.
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s\61− stem of X21 S21

5 h1h5c0[21] h1h5c0[21]

h2g2[14] •
4 h2

1h3h5[21] h2
1h3h5[21]

f1[21]

Table 3. The Adams E2-page of X21 and S21 in the 61 stem

for s ≤ 5.

By Theorem 5.14, the HF2-subcomplex X21 fits into a cofiber sequence:

X21 q21 // // S21
(η,ν2)

// S20 ∨ S15

21

η

ν2

// // 21
η

))

ν2

""

19 20

14 15

Here q21 is the quotient map. We therefore have a long exact sequence of

homotopy groups. Suppose that α ∈ π61(S21) and that α lies in the kernel of

the map

(η, ν2) : π61(S21) −→ π61(S20)⊕ π61(S15).

Then α must satisfy the following conditions:

η · α = 0,

ν2 · α = 0.

We verify that the elements h1h5c0[21] and h2
1h3h5[21] each detect a class that

satisfies the above condition. In fact, we have that

0 ∈ η · {h2
1h3h5}, 0 ∈ η · {h1h5c0}, and ν · π40(S0) = 0.

Therefore, by exactness of homotopy groups, in π61(X21), there exist classes

that map nontrivially to π61(S21). Furthermore, these classes are in Adams

filtration at most 5. By naturality of the algebraic Atiyah-Hirzebruch spectral

sequence, the classes detected by h2g2[14] map trivially to π61(S21). It follows

that h1h5c0[21] and h2
1h3h5[21] survive in the Adams spectral sequence of X21.

In particular, they are permanent cycles. Since X21 is an HF2-subcomplex

of ‹X, both elements are permanent cycles in the Adams spectral sequence

of ‹X. �
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s\61− stem of X22 ‘X22 S22

5 h3d1[22] h3d1[22] h3d1[22]

h1h5c0[21] h1h5c0[21]

h2g2[14] h2g2[14]

h1g2[16]

4 h5c0[22] h5c0[22] h5c0[22]

h2
1h3h5[21] h2

1h3h5[21]

h0h
3
4[16]

3 h1h3h5[22] h1h3h5[22] h1h3h5[22]

h3
4[16]

Table 4. The Adams E2-page of X22,‘X22 and S22 in the 61

stem for s ≤ 5.

Lemma 8.8. The elements h3d1[22], h5c0[22] and h1h3h5[22] are perma-

nent cycles in the Adams spectral sequence of ‹X .

Proof. For the element h1h3h5[22], we consider the HF2-subcomplex X22,

since it is defined by the image of h1h3h5[22] in Ext(X22). For the elements

h3d1[22] and h5c0[22], we use both of the HF2-subcomplexes X22 and ‘X22. The

reason we use different HF2-subcomplexes here is explained in Remark 8.9.

Using the algebraic Atiyah-Hirzebruch spectral sequences and their natu-

rality for the maps

X22 � � //‘X22 �
� // ‹X,

we compute the Adams E2-page of X22 and ‘X22 in the 61 stem for s ≤ 5 as

in Table 4.

By Definition 5.6, the complex X22 fits into a cofiber sequence

X22 q // // S22 a // ΣX21

22

2

// // 22
2 // 22

η

ν221

η

ν2

20

19 15

14
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Here q is the quotient map and a is the suspension of the attaching map of the

22-cell inX22. We have a long exact sequence of homotopy groups associated to

this cofiber sequence. Suppose α[22] is an element in π61(S22). Suppose further

that α[22] supports a differential in the Atiyah-Hirzebruch spectral sequence

of X22. By the construction of the Atiyah-Hirzebruch spectral sequence, the

target of the differential that α[22] supports detects ∆(α[22]) in the homotopy

groups of lower skeleton, where the map

∆ : π61(S22) −→ π61(ΣX21)

is the boundary homomorphism in the long exact sequence of homotopy groups.

For the element h1h3h5[22], we consider the homotopy class α = ση5 ∈ π39,

which is detected by h1h3h5 in the E∞-page of the Adams spectral sequence of

S0. By Proposition 6.3, the element α[22] is a permanent cycle in the Atiyah-

Hirzebruch spectral sequence of X22. Therefore, by exactness of the long exact

sequence of homotopy groups, there exists a homotopy class in π61(X22) that

has Adams filtration at most 3. This implies the element h1h3h5[22] survives

in Ext(X22), since it is the only element with Adams filtration at most 3.

In particular, it is a permanent cycle. Therefore, its image in Ext(‹X), i.e.,

h1h3h5[22], is also a permanent cycle.

By Definition 5.5, the complex ‘X22 fits into a cofiber sequence‘X22
q′ // // S22 a′ // Σ‘X21

22

2

// // 22
2 // 22

η

ν2

21

η

ν2

20

19 17

η

16

η

15

14

Here q′ is the quotient map and a′ is the suspension of the attaching map of the

22-cell in ‘X22. We have a long exact sequence of homotopy groups associated

to this cofiber sequence. Suppose α′[22] is an element in π61(S22).
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Suppose further that α′[22] supports a differential in the Atiyah-Hirzebruch

spectral sequence of ‘X22. By the construction of the Atiyah-Hirzebruch spec-

tral sequence, we have the target of the differential that α′[22] supports detects

∆′(α′[22]) in the homotopy groups of lower skeleton, where the map

∆′ : π61(S22) −→ π61(Σ‘X21)

is the boundary homomorphism in the long exact sequence of homotopy groups.

For the element h5c0[22], we consider a homotopy class α′ in {h5c0} ∈ π39,

such that 2 ·α′ = 0. Such a class exists, since there is no 2-extension from h5c0

in the E∞-page of the Adams spectral sequence of S0. By Proposition 6.3, we

have a differential in the Atiyah-Hirzebruch spectral sequence of X22:

d8(α′[22]) = ηφ[14],

where φ ∈ π45 is detected by h5d0, such that η · φ ∈ 〈α′, 2, ν2〉.
We map this differential to the Atiyah-Hirzebruch spectral sequence of‘X22. Since the 16-skeleton of ‘X22 is Σ14Cη, we have a differential in the

Atiyah-Hirzebruch spectral sequence of ‘X22:

d2(φ[16]) = ηφ[14].

This implies the following differential:

d8(α′[22]) = 0.

That is, α′[22] is a permanent cycle in the Atiyah-Hirzebruch spectral sequence

of ‘X22. Therefore, by exactness of the long exact sequence of homotopy groups,

there exists a homotopy class in π61(‘X22) that has Adams filtration at most 4.

By naturality of the Adams spectral sequence for the quotient map ‘X22 � S22,

the class that detects α′[22] in Ext(‘X22) must map nontrivially to Ext(S22):

Ext(‘X22) //

��

Ext(S22)

��
π∗(
‘X22) // π∗(S

22).

Since the element h1h3h5[22] is already accounted for, by filtration arguments,

the only possibility is that h5c0[22] detects α′[22]. In particular, the element

h5c0[22] is a permanent cycle in the Adams spectral sequence of ‘X22. There-

fore, its image in Ext(‹X) is also a permanent cycle.

For the element h3d1[22], we consider the homotopy class α′′ = σ{d1} ∈
π39, which is detected by h3d1 in the E∞-page of the Adams spectral sequence

of S0. Note that the notation {d1} has indeterminacy, but for our purpose,
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any class in the set {d1} works. By Proposition 6.3, we have a differential in

the Atiyah-Hirzebruch spectral sequence of X22:

d8(α′′[22]) ⊆ η2π44[14].

We map this differential to the Atiyah-Hirzebruch spectral sequence of ‘X22.

Since the 16-skeleton of ‘X22 is Σ14Cη, we have some d2 differentials in the

Atiyah-Hirzebruch spectral sequence of ‘X22 that kill η2π44[14]. This implies

the following differential:

d8(α′′[22]) = 0.

That is, α′′[22] is a permanent cycle in the Atiyah-Hirzebruch spectral sequence

of ‘X22. Therefore, by exactness of the long exact sequence of homotopy groups,

there exists a homotopy class in π61(‘X22) that has Adams filtration at most 5.

By naturality of the Adams spectral sequence for the quotient map ‘X22 �

S22, the class that detects σ{d1}[22] in Ext(‘X22) must map nontrivially to

Ext(S22). Since the elements h1h3h5[22] and h5c0[22] are already accounted

for, by filtration arguments, the only possibility is h3d1[22]. In particular, the

element h3d1[22] is a permanent cycle in the Adams spectral sequence of ‘X22.

Therefore, its image in Ext(‹X) is also a permanent cycle. �

Remark 8.9. For the element h5c0[22], if we use the HF2-subcomplex X22

instead of ‘X22, it would support an Adams d2 differential that kills h1h5d0[14].

With the 16-cell, h1h5d0[14] is killed by h5d0[16] in the Curtis table and there-

fore is not present in the Adams E2-page of ‘X22.

Lemma 8.10. The element h1f1[20] is a permanent cycle in the Adams

spectral sequence of ‹X .

Proof. We consider the HF2-subcomplex X20. Using the algebraic Atiyah-

Hirzebruch spectral sequence, we compute the Adams E2-page of X20 in the

61 stem for s ≤ 5. This computation is straightforward: all differentials in this

range follow by the multiplication by two attaching maps.

s\61− stem of X20 S20

5 h1f1[20] h1f1[20]

h2g2[14]

4 g2[17] •
3 •

Table 5. The Adams E2-page of X20 and S20 in the 61 stem

for s ≤ 5.
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The complex X20 fits into a cofiber sequence

X20 q′′′ // // S20 a′′′ // Σ(S19 ∨X18)

20

2

η

// // 20
2 //

η

))

20

19 19

2

ν

18

2

ν

18

17

15

14

Here q′′′ is the quotient map, X18 is the 18-skeleton of X20 and a′′′ is suspension

of the attaching map of the 20-cell in X20. We have a long exact sequence of

homotopy groups associated to this cofiber sequence. Suppose α′′′[20] is an

element in π61(S20). Suppose further that α′′′[20] supports a differential in

the Atiyah-Hirzebruch spectral sequence of X20. By the construction of the

Atiyah-Hirzebruch spectral sequence, the target of the differential that α′′′[20]

supports detects ∆′′′(α′′′[20]) in the homotopy groups of lower skeleton, where

the map

∆′′′ : π61(S22) −→ π61(ΣX21)

is the boundary homomorphism in the long exact sequence of homotopy groups.

By Lemma 4.4 and Remark 5.8, we have S19 as an HF2-subcomplex of

X20. We consider its cofiber X20/S19:
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20

η

18

2

ν17

14

X20/S19

For the element h1f1[20], we consider the homotopy class α′′′ = σ{h0h2h5}
∈ π41. Because of Lemma 11.4, h1f1 detects σ{h0h2h5} in the Adams E∞-

page of S0. By Proposition 6.4, the element α′′′[20] is a permanent cycle in

the Atiyah-Hirzebruch spectral sequence of X20/S19.

In the Atiyah-Hirzebruch spectral sequence of X20, we have the differential

d1(α′′′[20]) = 0

since the attaching map from the 20-cell to the 19-cell is multiplication by 2

and

2 · α′′′ ∈ 2 · π41 = 0.

Using the fact that the 19-cell of the 19-skeleton of X20 splits off, and the

naturality of the Atiyah-Hirzebruch spectral sequences for the quotient map

X20 � X20/S19, the element α′′′[20] survives in the Atiyah-Hirzebruch spec-

tral sequence of X20. Therefore, by exactness of the long exact sequence of

homotopy groups, there exists a homotopy class in π61(X20) that has Adams

filtration at most 5. By naturality of the Adams spectral sequence for the

quotient map X20 � S20, the class that detects α′′′[20] in Ext(X20) must map

nontrivially to Ext(S20).

Ext(X20) //

��

Ext(S20)

��
π∗(X

20) // π∗(S
20).

By filtration arguments, the only possibility is h1f1[20]. In particular, the

element h1f1[20] is a permanent cycle in the Adams spectral sequence of X20.

Therefore, its image in Ext(‹X) is also a permanent cycle. �
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9. The Adams spectral sequence of X

In this section, we establish Steps 3 and 4 by proving Theorems 9.1 and

9.2. Combining them together, we have Corollary 9.3.

Theorem 9.1. In the Adams spectral sequence of X , we have the differ-

ential

d4(h3
4[16]) = B1[14].

The following theorem is a consequence of Lemma 8.8:

Theorem 9.2. In the Adams spectral sequence of X , the chosen element

h1h3h5[22] is a permanent cycle. Here h1h3h5[22] is defined to be the image of

h1h3h5[22] in Ext(X22).

Proof. Since the map X22 ↪→ X maps through ‹X, we have that h1h3h5[22]

in Ext(‹X) maps to h1h3h5[22] in Ext(X):

Ext3,61+3(X22) // Ext3,61+3(‹X) // Ext3,61+3(X)

h1h3h5[22] � // h1h3h5[22] � // h1h3h5[22].

By Lemma 8.8, h1h3h5[22] is a permanent cycle in Ext(‹X). Therefore, by

naturality of the Adams spectral sequences, h1h3h5[22] is also a permanent

cycle in Ext(X). �

From Theorems 9.1 and 9.2, we have the following corollary:

Corollary 9.3. In the Adams spectral sequence of X , we have the dif-

ferential
d4(h1h3h5[22] + h3

4[16]) = B1[14].

In the rest of this section, we prove Theorem 9.1. The idea is to push the

d4 differential in the Adams spectral sequence of ‹X into that of X and check

that the element B1[14] is not killed by an Adams d2 or d3 differential.

Proof. Recall from Remark 5.11 that the Adams E2-page of X splits as

follows:
Ext(X) = Ext(‹X)⊕ Ext(S23).

Therefore, by Lemma 8.2, we have the Adams E2-page of X in the 60 and 61

stems for s ≤ 7 in Table 6.

Note that by naturality of the Adams spectral sequences for the inclusion

map ‹X ↪→ X, and the proof of the Theorem 8.1, no •’s in Adams filtration 4

and 5 can kill B1[14]. Therefore, to prove Theorem 9.1, we only need to show
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s\t− s 60 61

7 B1[14] •
• •
h1t[23] •
h2

0x[23]

6 • •
• •
• •
h0x[23] •

•
5 • •

• •
x[23] •

•
•
h3

0h3h5[23]

4 • •
•
•
•
•
e1[23]

h2
0h3h5[23]

3 • h3
4[16]

• h1h3h5[22]

h0h3h5[23]

2 h3h5[23]
Table 6. The Adams E2-page of X in the 60 and 61 stems for

s ≤ 7.

that

d2(h3
0h3h5[23]) 6= B1[14],

d3(h2
0h3h5[23]) 6= B1[14],

d3(e1[23]) 6= B1[14].

For the elements h2
0h3h5[23] and h3

0h3h5[23], we will show that

d2(h3h5[23]) = 0,

d3(h3h5[23]) = 0,
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s\t− s 60 61

5 x[23] h3
0h3h5[23]

•
4 e1[23]

h2
0h3h5[23]

3 • h0h3h5[23]

2 h3h5[23]

Table 7. The Adams E2-page of X23 in the 60 and 61 stems for

s ≤ 5.

which by Leibniz’s rule implies that

d2(h3
0h3h5[23]) = h3

0 · d2(h3h5[23]) = 0,

d3(h2
0h3h5[23]) = h2

0 · d3(h3h5[23]) = 0.

We consider the HF2-subcomplex X23 in Definition 5.10. Recall that X23 con-

sists of two cells in dimension 14 and 23. Since there is no primary Steenrod

operation connecting them, we have

Ext(X23) = Ext(S14)⊕ Ext(S23).

Therefore, we have the Adams spectral sequence of X23 in the 60 and 61

stems for s ≤ 5 in Table 7. In the Adams spectral sequence of X23, we have

d2(h3h5[23]) = 0, since the target lies in the zero group. If d3(h3h5[23]) 6= 0,

then we must have that d3(h3h5[23]) = x[23], since that is the only possibility.

By mapping through the quotient map X23 � S23, this differential would im-

ply that d3(h3h5[23]) = x[23] in the Adams spectral sequence of S23. However,

in S0, we have that d3(h3h5) = 0. Contradiction! Therefore, we must have

the differential d3(h3h5[23]) = 0 in the Adams spectral sequence of X23, and

therefore also in that of X.

For the element e1[23], suppose we have d3(e1[23]) = B1[14] in the Adams

spectral sequence of X. By naturality for the quotient map X � S23, we have

d3(e1[23]) = 0 in the Adams spectral sequence of S23, since the target B1[14]

maps to zero in the E2-page by naturality of the algebraic Atiyah-Hirzebruch

spectral sequences. However, this contradicts Bruner’s differential [10, Th. 4.1]

in S0:

d3(e1) = h1t.

Therefore, we must have d3(e1[23]) 6= B1[14], which completes the proof. �

10. The pull back

In this section, we prove Step 5; based on Corollary 9.3, we prove the

following theorem:
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s\t− s 60 61

7 •[3] •
•[5] •
•[21] •
•[23] •
•[23] •

•
6 G[6] •

•[20] •
•[22] •
•[23] •

•
5 •

•
•
•
•
•

4 • •
•
•

3 • •
h1h3h5[22]

Table 8. The Adams E2-page of P 23
1 in the 60 and 61 stems for

s ≤ 7.

Theorem 10.1. In the Adams spectral sequence of P 23
1 , we have a d3

differential

d3(h1h3h5[22]) = G[6].

Proof. We have the Adams E2-page of P 23
1 from the Curtis table; see

Table 8.

We will show in Lemma 10.3 that

f](h1h3h5[22]) = h1h3h5[22] + h3
4[16],

where f] : Ext(P 23
1 ) → Ext(X) is induced by the composition of the two

quotient maps f1 : P 23
1 � P 23

14 , f2 : P 23
14 � X. By Corollary 9.3, we have the

differential

d4(h1h3h5[22] + h3
4[16]) = B1[14]
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in the Adams spectral sequence of X. Therefore, by naturality of the Adams

spectral sequence, the element h1h3h5[22] in Ext(P 23
1 ) must support a nontriv-

ial d2, d3 or d4 differential:

Ext(P 23
1 )

f] // Ext(X)

B1[14]

•

h1h3h5[22]

dr, 2≤r≤4

OO

� // h1h3h5[22]

+h3
4[16]

d4

OO

From the table of the Adams E2-page of P 23
1 , we have the following three

possibilities:

(1) it supports a nontrivial d3 or d4 differential that kills one of the elements

•[i] with 20 ≤ i ≤ 23;

(2) it supports a nontrivial d4 differential that kills one of the elements •[i]
with i = 3, 5;

(3) it supports a nontrivial d3 differential that kills G[6].

For (1), since these target elements map nontrivially to Ext(X), this would

contradict Theorem 9.1. For (2), from the Curtis table, these two elements

exist in Ext(Pn1 ) for all n ≥ 5. In particular, they exist in Ext(P 13
1 ) and map

trivially to Ext(P 23
14 ) in the following long exact sequence:

· · · // Ext(P 13
1 ) // Ext(P 23

1 ) // Ext(P 23
14 ) // · · · ,

and hence trivially to Ext(X). Since they have the same filtration as B1[14],

this would contradict Theorem 9.1.

Therefore, (3) is the only possibility. �

Remark 10.2. The reason we use P 23
1 instead of P 22

1 is that, in the bidegree

(s, t − s) = (5, 60) of the Curtis table, the element h5f0[11] is killed by a

•[23]. Therefore, in Ext(P 22
1 ), the element h5f0[11] is present, and it leaves a

possibility of a nontrivial Adams d2 differential. We add the 23-cell to make

this go away.

We now prove Lemma 10.3.

Lemma 10.3. We have

f](h1h3h5[22]) = h1h3h5[22] + h3
4[16],



556 GUOZHEN WANG and ZHOULI XU

where f] : Ext(P 23
1 ) → Ext(X) is the homomorphism induced by the composi-

tion of the two quotient maps

f1 : P 23
1 � P 23

14 , f2 : P 23
14 � X.

Proof. By naturality of the algebraic Atiyah-Hirzebruch spectral sequences,

we have

f1](h1h3h5[22]) = h1h3h5[22].

We only need to show that

f2](h1h3h5[22]) = h1h3h5[22] + h3
4[16]

Ext(X22)

i]
��

Ext(P∞1 )
f1] // Ext(P 23

14 )
f2] // Ext(X)

h1h3h5[22] � // h1h3h5[22] � // h1h3h5[22]

+h3
4[16] .

Consider the cofiber sequence that defines X:

S15 � � // P 23
14

f2 // // X // ΣS15.

This gives a long exact sequence of Ext groups:

· · · // Ext(S15) // Ext(P 23
14 )

f2] // // Ext(X)
∆2 // Ext(ΣS15) // · · · .

We only need to show that the boundary map ∆2 satisfies

∆2(h1h3h5[22] + h3
4[16]) = 0.

In fact, by exactness, the element h1h3h5[22]+h3
4[16] must come from Ext(P 23

14 ).

By naturality of the algebraic Atiyah-Hirzebruch spectral sequence, it must

come from h1h3h5[22]; i.e., we must have

f2](h1h3h5[22]) = h1h3h5[22] + h3
4[16],

which completes the proof.

To show ∆2(h1h3h5[22] +h3
4[16]) = 0, we consider an HF2-subcomplex W

of X. Since X22 is an HF2-subcomplex of X, we define W to be the homotopy

pull back of X22 along the quotient map f2 : P 23
14 � X. By Lemma 4.4,

we have (W, j) as an HF2-subcomplex of P 23
14 in the following commutative
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diagram of cofiber sequences:

S15 � � // W // //� _

j
��

X22 a1 //� _

i
��

ΣS15

S15 � � // P 23
14

f2 // // X
a2 // ΣS15.

As an illustration, the cell diagram of W is the following:

22

2

21

η

ν2

19

ν

15

14

We will show in Lemma 10.4 that

∆1(h1h3h5[22]) = h0h
3
4[15],

where ∆1 is the boundary map of Ext groups associated to the cofiber sequence

definingW . Therefore, following the commutative diagram of cofiber sequences

and the definition of the element h1h3h5[22], we have

∆2(h1h3h5[22]) = h0h
3
4[15].

The fact that the 16-cell in P 23
14 is attached to the 15-cell by 2 gives us

∆2(h3
4[16]) = h0h

3
4[15].

Therefore, we have

∆2(h1h3h5[22] + h3
4[16]) = 0,

as claimed. �

Lemma 10.4. ∆1(h1h3h5[22]) = h0h
3
4[15].

Proof. We use the Lambda complex (see Section 7.1 of [40]) to compute

the E2-page of the Adams spectral sequence in a functorial way. Recall from

[40] that for any spectrum Y , we can construct a differential graded module
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H∗(Y )⊗ Λ∗,∗ over the Lambda algebra Λ∗,∗. Differentials in this complex are

generated by

d(x) = Σi≥1Sq
i
∗(x)⊗ λi−1

for x ∈ H∗(Y ), where Sqi∗ is the transpose of Sqi.

In our case, we abuse notation to denote the unique generator of Hi(Y )

by ei, for any HF2-subquotient of X.

By naturality of the Steenrod operations, we have nontrivial Sq4 and Sq8

in the cohomology of W :

H15(W )
Sq4 6=0 // H19(W ), H14(W )

Sq8 6=0 // H22(W ).

H15(P 23
14 )

Sq4 6=0//

j∗ ∼=

OO

H19(P 23
14 )

j∗ ∼=

OO

H14(P 23
14 )

Sq8 6=0//

j∗ ∼=

OO

H22(P 23
14 )

j∗ ∼=

OO

Moreover, in the cohomology of W , we have Sq1Sq2Sq4 6= 0 on H15. Dually,

we have the following nontrivial operations:

Sq1
∗(e22) = e21,

Sq3
∗(e22) = e19,

Sq7
∗(e22) = e15,

Sq8
∗(e22) = e14.

By naturality, we have the following nontrivial operations in H∗(X
22):

Sq1
∗(e22) = e21,

Sq3
∗(e22) = e19,

Sq8
∗(e22) = e14.

We claim that in H∗(X
22)⊗ Λ∗,∗ the cycle

x = e22 ⊗ λ1λ7λ31 + e14 ⊗ λ13λ19λ15

represents the class h1h3h5[22] in Ext(X22).

In fact, we can check directly that x is a cycle:

d(e22 ⊗ λ1λ7λ31) = e21 ⊗ λ0λ1λ7λ31 + e19 ⊗ λ2λ1λ7λ31 + e14 ⊗ λ7λ1λ7λ31

= e14 ⊗ λ7λ1λ7λ31

= e14 ⊗ (λ13λ15λ11λ7 + λ11λ17λ11λ7 + λ7λ13λ11λ15),

d(e14 ⊗ λ13λ19λ15) = e14 ⊗ d(λ13λ19λ15)

= e14 ⊗ (λ13λ15λ11λ7 + λ11λ17λ11λ7 + λ7λ13λ11λ15).

We compute

λ1λ7λ31 = λ21λ11λ7 + λ13λ11λ15
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and check the Curtis table in [49] to see that Ext3,3+39 = Z/2, generated by an

element with the leading term λ21λ11λ7. Since Ext3,3+39 = Z/2 is generated

by h1h3h5, we conclude that x represents the class h1h3h5[22] in Ext(X22).

However, in H∗(W )⊗ Λ∗,∗ the element

x = e22 ⊗ λ1λ7λ31 + e14 ⊗ λ13λ19λ15

is not a cycle anymore: there is one more term in d(x) due to the extra non-

trivial operation

Sq7
∗(e22) = e15.

In fact, we have that

d(x) = d(e22 ⊗ λ1λ7λ31 + e14 ⊗ λ13λ19λ15)

= e21 ⊗ λ0λ1λ7λ31 + e19 ⊗ λ2λ1λ7λ31 + e15 ⊗ λ6λ1λ7λ31

+ e14 ⊗ λ7λ1λ7λ31 + e14 ⊗ d(λ13λ19λ15)

= e15 ⊗ λ6λ1λ7λ31

= e15 ⊗ λ14λ13λ11λ7.

Therefore, by the definition of the boundary homomorphism ∆1 : Ext(X22)→
Ext(ΣS15), we have

∆1(x) = e15 ⊗ λ14λ13λ11λ7

H∗(S
15)⊗ Λ∗,∗ // H∗(W )⊗ Λ∗,∗ // H∗(X

22)⊗ Λ∗,∗

x � //

d
��

x

e15 ⊗ λ14λ13λ11λ7
� // e15 ⊗ λ14λ13λ11λ7.

We check the Curtis table in [49] to see that Ext4,4+45 = Z/2, generated

by an element with the leading term λ14λ13λ11λ7. Since Ext4,4+45 = Z/2 is

generated by h0h
3
4, we conclude that e15 ⊗ λ14λ13λ11λ7 represents the class

h0h
3
4[15] in Ext(ΣS15). �

Remark 10.5. One can think of the boundary homomorphism in Lemma

10.4 as an algebraic attaching map, and therefore its computation corresponds

to a 4-fold Massey product. In Ext(S0), we have the strictly defined 4-fold

Massey product

h0h
3
4 = 〈h2, h1, h0, h1h3h5〉
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with zero indeterminacy. It is straightforward to check this by a Lambda

algebra computation:

〈h2 , h1 , h0 , h1h3〉
λ3 λ1 λ0 λ5λ3

λ5 λ2 ∗
λ6 ∗

Here ∗ means the products are zero in the Lambda algebra. Note that the

leading term of h0h
2
3 is λ6λ5λ3 from the Curtis table for S0. Therefore,

h0h
2
3 = 〈h2, h1, h0, h1h3〉.

Then it follows from a relation in Ext: h0h
3
4 = h0h

2
3h5.

11. A homotopy relation

In this section, we prove a relation in the homotopy groups of spheres.

This relation will lead to an Adams differential that kills the element gz in

the 61-stem. We will explain in Remark 11.2 which element supports the

differential that kills gz. But to prove π61 = 0, all we need is that gz is gone.

We will use certain relations in Ext in the proofs; see [11] for these relations.

Theorem 11.1. We have the homotopy relation ηκ3 = 0 in π61. There-

fore, the element gz must be killed by some Adams differential.

Using several lemmas that will be proved later in this section, we present

the proof of Theorem 11.1.

Proof. We first prove the second claim. By [6, Cor. 3.4.2], the permanent

cycle z in the 41-stem detects the homotopy class ηκ2. It follows that the

element gz detects ηκ3, since g detects κ. Therefore, if ηκ3 = 0, we must have

gz killed by some Adams differential.

Now we prove the relation ηκ3 = 0. We have a 4-fold Toda bracket for κ

[33, pp. 43–44]:

κ ∈ 〈κ, 2, η, ν〉 with indeterminacy even multiples of κ.

The indeterminacy will be killed after multiplying by η. We will prove in

Lemma 11.3 that

〈ηκ2, κ, 2〉 = 0 in π56.
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Therefore,

ηκ3 = ηκ2〈κ, 2, η, ν〉

⊆ 〈〈ηκ2, κ, 2〉, η, ν〉
= 〈0, η, ν〉
= ν · π58

= 0.

The last equation is stated as Lemma 11.7, which we will prove later in this

section. Therefore, we have the homotopy relation

ηκ3 = 0 in π61. �

Remark 11.2. Alternatively, we can show that h1X1 must support an

Adams differential, and

d4(h1X1) = gz

is the only possibility. The idea is to consider the Massey product 〈g2, d2
0, h1〉 =

h1W1 + g2r in the Adams E4-page and to conclude that h1W1 must support

a nontrivial differential as g2r does (see Lemma 3.3.49 of [20]), since the sum

is a permanent cycle by Moss’s Theorem. Suppose that h1X1 is a permanent

cycle. We have that

h1W1 = Ph1X1

= X1〈h1, h
3
0h3, h0〉

= 〈h1X1, h
3
0h3, h0〉

is also a permanent cycle by Moss’s Theorem. We therefore have a contradic-

tion.

We first prove Lemma 11.3.

Lemma 11.3. We have a Toda bracket 〈ηκ2, κ, 2〉 = 0 in π56.

Proof. By [20], [19],

π55
∼= Z/16 and is generated by an element ρ55 in Im J.

Therefore, we have the relation

ηκ2κ = 0 in π55.

This follows from the fact that both κ and κ map trivially to the K(1)-local

sphere. In fact, suppose that ηκ2κ is some multiple of ρ55. Then mapping the

relation to the K(1)-local sphere tells us the multiple must be zero. Therefore,

this Toda bracket is defined.

By [20], [19],

π56
∼= Z/2 and is generated by ηρ55 in Im J.
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Therefore, we have the relation

〈ηκ2, κ, 2〉 = 0.

This follows similarly by mapping the Toda bracket to the K(1)-local sphere.

�

To prove Lemma 11.7, we need the following three lemmas:

Lemma 11.4. The product σ ·{h0h2h5} is nontrivial in π41 and is detected

by h1f1.

Proof. By [28], we have the following two Adams differentials:

d3(h2h5) = h1d1 and d2(h0c2) = h1h3d1.

Note that we have a relation h3d1 = h1e1 in Ext. Therefore, we have a Massey

product in the Adams E4-page

〈d1, h1, h0〉 = h0h2h5

and a Massey product in the Adams E3-page

〈h3d1, h1, h0〉 = h2
0c2 = h1f1.

Note that the second equation is a relation in Ext. Then by Moss’s Theorem

[35, Th. 1.2], we have the following Toda brackets:

〈{d1}, η, 2〉 contains an element that is detected by h0h2h5,

〈σ{d1}, η, 2〉 contains an element that is detected by h1f1.

Since

σ〈{d1}, η, 2〉 ⊆ 〈σ{d1}, η, 2〉,
the product σ · {h0h2h5} is nontrivial and is detected by h1f1. �

Lemma 11.5. We have the relation 〈{t}, η, ν〉 ⊆ σ{h0h2h5} in π41.

Proof. By [10, Th. 4.1] we have Bruner’s differential

d3(e1) = h1t.

Therefore, we have a Massey product in the Adams E4-page

〈t, h1, h2〉 = h2e1 = h1f1.

The second equation is a relation in Ext. Therefore, by Moss’s Theorem [35],

we have the following Toda bracket:

〈{t}, η, ν〉 is detected by h1f1.

Note that the Toda bracket 〈{t}, η, ν〉 has no indeterminacy.
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Combining with Lemma 11.4, both σ{h0h2h5} and 〈{t}, η, ν〉 are detected

by h1f1. But in the same column of the E∞-page of the Adams spectral se-

quence, there are several elements with higher filtration than h1f1. Therefore,

to prove this lemma, we need to show that their difference is actually zero. We

prove this by multiplying by η. First note that

η · σ{h0h2h5} = 0.

In fact, η{h0h2h5} contains nonzero classes ηκκ = ν{q} and η2{P 4h1}. Both

classes are annihilated by σ. Next note that

〈{t}, η, ν〉η = {t}〈η, ν, η〉 = {t}ν2 = 0.

For the last equation, by filtration arguments, the only other possibility is

that {t}ν2 = κ3. (For reader’s convenience, note that κ3 = η2κ2.) However,

mapping this relation to π∗(tmf) gives a contradiction.

Since all elements of higher filtration than h1f1 in the cokernel of J support

nonzero η-extensions, this proves the lemma. �

Lemma 11.6. We have a Toda bracket 〈κ, {t}, η〉 = {h1Q2} in π58.

Proof. By [20, Table 20], [19], we have Isaksen’s differential

d3(Q2) = gt.

Therefore, combining with Bruner’s differential [10, Th. 4.1] d3(e1) = h1t, we

have a Massey product in the Adams E4-page

〈g, t, h1〉 = h1Q2.

Note that ge1 = 0 in Ext. Therefore, the lemma follows from Moss’s Theorem

[35, Th. 1.2]. Both sides of 〈κ, {t}, η〉 = {h1Q2} have the same indeterminacy

that lies in the image of J. �

Now we prove Lemma 11.7.

Lemma 11.7. ν · π58 = 0.

Proof. By [20], [19],

π58 is Z/2⊕ Z/2, and generated by {h1Q2} and η{P 7h1}.

Since by Lemma 11.5,

〈{t}, η, ν〉 ⊆ σ{h0h2h5} in π41

and by Lemma 11.6,

〈κ, {t}, η〉 = {h1Q2} in π58,
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we have that

ν · {h1Q2} = 〈κ, {t}, η〉ν
= κ〈{t}, η, ν〉
⊆ κσ{h0h2h5} = 0.

The last equation follows from the relation that κσ = 0. Therefore, we have

that

ν · π58 = 0. �

12. Another homotopy relation and

the Adams differential d5(A′) = h1B21

In this section, we prove another relation in the homotopy groups of

spheres. This relation will lead to an Adams differential, which is the only

possibility to kill the element h1B21 in the 60-stem.

Theorem 12.1. We have the relation ηκθ4.5 = 0 in π60. Here θ4.5 is a

homotopy class in π45 defined by Isaksen in Section 1.7 of [20], with an extra

condition that it maps to zero in π45(tmf). This implies the Adams differential

d5(A′) = h1B21.

In Isaksen’s definition, θ4.5 is a homotopy class detected by h3
4 in the 45-

stem, with indeterminacy containing even multiples of itself and the element

{w}. Our definition of θ4.5 is a refinement of Isaksen’s. Since {w} has a strictly

higher Adams filtration than θ4.5, and is detected by tmf, the indeterminacy

of our θ4.5 does not contain the element {w}.
Using several lemmas that will be proved later in this section, we present

the proof of Theorem 12.1.

Proof. We first prove the second claim. By [5, Th. 3.1(i)], the permanent

cycle B1 detects the homotopy class ηθ4.5. We have the following relation

in Ext:

h1B21 = d0B1.

Since d0 detects κ, the permanent cycle h1B21 = d0B1 detects the homotopy

class ηκθ4.5. Therefore, if ηκθ4.5 = 0, we must have h1B21 killed by some

Adams differential. By Theorem 3.1, we have that

d3(D3) = B3, d3(h1D3) = h1B3.

This leaves the element A′ to be the only possibility to kill h1B21 as the source.

Therefore, we have the Adams d5 differential d5(A′) = h1B21.

Now we prove the relation ηκθ4.5 = 0. Recall that there is a strictly

defined 4-fold Toda bracket for κ ∈ π14 with zero indeterminacy:

κ = 〈ε, ν, η, 2〉.
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It follows that

ηκ = η〈ε, ν, η, 2〉 ∈ 〈ηε, ν, η, 2〉

and that

ηκθ4.5 ∈ θ4.5〈ηε, ν, η, 2〉.

We will show in Lemma 12.6 that there is a strictly defined 4-fold Toda bracket

in π15:

ρ15 ∈ 〈{Ph1}, ν, η, 2〉 with indeterminacy even multiples of ρ15.

We will show in Lemma 12.7 that

ρ15θ4.5 = 0 in π60.

Thus

0 = ρ15θ4.5 = θ4.5〈{Ph1}, ν, η, 2〉.

We will show in Lemma 12.5 that

θ4.5(ηε+ {Ph1}) = 0

and in Lemma 12.9 that

〈θ4.5, {Ph1}+ ηε, ν〉 = 0 with zero indeterminacy in π58.

Therefore,

ηκθ4.5 = ηκθ4.5 + ρ15θ4.5

∈ θ4.5〈ηε, ν, η, 2〉+ θ4.5〈{Ph1}, ν, η, 2〉
= θ4.5〈{Ph1}+ ηε, ν, η, 2〉
⊆ 〈〈θ4.5, {Ph1}+ ηε, ν〉, η, 2〉
= 〈0, η, 2〉

= 2 · π60 = {0, 2κ3}.

Note that the three Toda brackets

〈ηε, ν, η, 2〉, 〈{Ph1}, ν, η, 2〉, 〈{Ph1}+ ηε, ν, η, 2〉

have the same indeterminacy: 2 · π15 = even multiples of ρ15, which is annihi-

lated by θ4.5.

To prove that ηκθ4.5 = 0, we only need to show that

ηκθ4.5 6= 2κ3.

Note that 2κ3 is detected by tmf, while θ4.5 is chosen not to be detected by

tmf. Suppose we have the relation

ηκθ4.5 = 2κ3.
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Then mapping this relation into tmf gives us 2κ3 = 0, which contradicts the

fact that 2κ3 is detected in π∗(tmf). Therefore, we must have that

ηκθ4.5 = 0. �

Now we present the proofs of Lemmas 12.5, 12.6, 12.7, 12.9, and a few

other lemmas that will be needed for the proofs.

Lemma 12.2. In the Adams E2-page, we have a Massey product

h1x
′ = 〈h2

0g2, h0, Ph1〉.

Proof. In Proposition 4.19 of [49], Tangora showed that we have a May d6

differential

d6(Y ) = h3
0g2.

Here we follow Isaksen’s notation [20] for names of the elements in the May

spectral sequence. Then combining with the fact that h1x
′ = Y Ph1 in the

May E6-page, this lemma follows from May’s convergence theorem [30]. �

Lemma 12.3. We have the relation

{Ph1} · {h5d0} = 0 in π54.

Proof. First note that the Toda bracket

〈2, θ4, κ〉 is detected by h5d0.

This follows from the Adams d2 differential d2(h5) = h0h
2
4 and Moss’s theorem.

Note that to apply the Moss’s theorem here, we need to use the fact that

θ4κ = 0, which is obtained by filtration reasons.

We compute the product {Ph1}〈2, θ4, κ〉 next:

{Ph1}〈2, θ4, κ〉 = 〈{Ph1}, 2, θ4〉κ
⊆ 〈κ{Ph1}, 2, θ4〉

= 〈η3κ, 2, θ4〉

⊇ η2κ〈η, 2, θ4〉

= η3〈2, θ4, κ〉 ⊆ η3π51 = 0.

In other words, both {Ph1}〈2, θ4, κ〉 and 0 are contained in the same Toda

bracket

〈η3κ, 2, θ4〉.
Therefore, their difference must be contained in the indeterminacy of this Toda

bracket, which is

η3κ · π31 + π24 · θ4.

It is clear that η3κ · π31 ⊆ η3π51 = 0. Recall that

π24
∼= Z/2⊕ Z/2 and is generated by ηση4 and ηρ23 in the ImJ.
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Multiplying by θ4, both products are zero. This is due to the fact that ηη4θ4 =

0 (see Lemma 4.1 in [5]) and filtration reasons. Therefore, we have achieved

that

{Ph1}〈2, θ4, κ〉 = 0.

Then, from the fact that 2{Ph1} = 0 and filtration reasons, the product

of {Ph1} and all elements in the E∞-page of higher filtration than h5d0 are

zero. Therefore, combining with the fact that the Toda bracket

〈2, θ4, κ〉 is detected by h5d0,

we have the homotopy relation that

{Ph1} · {h5d0} = 0 in π54. �

Lemma 12.4. The permanent cycle h1x
′ in the 54-stem detects the homo-

topy class θ4.5{Ph1}.

Proof. By Lemma 12.2 and Moss’s theorem, we have that

h1x
′ detects an element in the Toda bracket 〈σ2θ4, 2, {Ph1}〉.

Recall that Barratt, Mahowald and Tangora [6] showed that

h2
0g2 detects σ2θ4.

We have the relation that

θ4〈σ2, 2, {Ph1}〉 ⊆ 〈σ2θ4, 2, {Ph1}〉.

Since also

θ4〈σ2, 2, {Ph1}〉 ⊆ θ4 · π24 = 0,

which we showed in the proof of Lemma 12.3, we have that

0 ∈ 〈σ2θ4, 2, {Ph1}〉.

Note that one can also show directly that 〈σ2, 2, {Ph1}〉 = 0.

Recall that Isaksen [20] showed that h1x
′ is a surviving permanent cycle,

and it detects both ν3θ4.5 and equally ηεθ4.5. Therefore, h1x
′ must detect a

nontrivial homotopy class in the indeterminacy of the Toda bracket

〈σ2θ4, 2, {Ph1}〉.

The indeterminacy of this Toda bracket is

σ2θ4 · π10 + π45 · {Ph1}.

First note that

π10
∼= Z/2 and is generated by η{Ph1}.
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Since ησ2 = 0, we must have that

σ2θ4 · π10 = 0.

Next note that 2{Ph1} = 0, and the generators of π45 can be chosen to be the

following:

θ4.5 ∈ {h3
4}, η{g2}, {h5d0}, {w}.

We have that

{w} · {Ph1} = 0 for filtration reasons.

We also have that

{Ph1} · η{g2} ⊆ 〈η, 2, 8σ〉η{g2}
= η〈2, 8σ, {g2}〉η

= η2〈2, 8σ, {g2}〉

⊆ η2π52 = 0.

Note that here we use the fact that 8σ{g2} = 0. Then combining with

Lemma 12.3 the fact that

{Ph1} · {h5d0} = 0,

the only possibility is that

h1x
′ detects the homotopy class θ4.5{Ph1}. �

Lemma 12.5. In π54, we have a relation θ4.5(ηε+ {Ph1}) = 0.

Proof. The element d0g
2 is the only element in the 54-stem of the E∞-

page with higher filtration than h1x
′. It detects the homotopy class κκ2,

which is also detected in the Hurewicz image of tmf. Since θ4.5 is chosen not

to be detected in the Hurewicz image of tmf, and h1x
′ detects both ηεθ4.5 and

{Ph1}θ4.5, we must have a relation

θ4.5(ηε+ {Ph1}) = 0. �

Lemma 12.6. We have a strictly defined 4-fold Toda bracket

ρ15 ∈ 〈{Ph1}, ν, η, 2〉 in π15,

with indeterminacy 2π15 given by even multiples of ρ15, where ρ15 is a generator

of the Im J in π15.

Proof. We first check that this 4-fold Toda bracket is strictly defined. It

is clear that

〈ν, η, 2〉 ⊆ π5 = 0.

In the Adams E2-page, we have that

〈Ph1, h2, h1〉 = Ph2
2 = h2

0d0.
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The element h2
0d0 is killed by the Adams d3 differential

d3(h2
0h4) = h2

0d0.

Therefore,

0 ∈ 〈{Ph1}, ν, η〉.
It is straightforward to check the indeterminacy of this 3-fold Toda bracket is

zero. Therefore, this 4-fold Toda bracket is strictly defined.

We next check the indeterminacy of this 4-fold Toda bracket. The inde-

terminacy is contained in the union of the following:

〈{Ph1}, ν, π2〉, 〈{Ph1}, π5, 2〉, 〈π13, η, 2〉.

Note that π5 = 0, π12 = 0, π13 = 0, π2 is generated by η2 and π6 is generated

by ν2. We have

〈{Ph1}, ν, η2〉 ⊇ 〈{Ph1}, ν, η〉η = 0.

{Ph1} · ν2 ∈ ν · π12 = 0.

Therefore, the indeterminacy is 2π15.

Now we multiply this 4-fold Toda bracket by η2:

〈{Ph1}, ν, η, 2〉η2 = {Ph1}〈ν, η, 2, η2〉 = {Ph1}ε.

The 4-fold Toda bracket ε = 〈ν, η, 2, η2〉 is strictly defined with zero indeter-

minacy. The homotopy class {Ph1}ε is detected by the surviving cycle Ph1c0.

We have a nontrivial extension:

η2ρ15 ∈ {Ph1c0}.

Therefore, we must have that the 4-fold Toda bracket

〈{Ph1}, ν, η, 2〉 contains ρ15 or ρ15 + ηκ.

To eliminate the second possibility, we multiply this 4-fold Toda bracket

by κ. Note that

κ{Ph1} ⊆ π29 = 0,

〈κ, {Ph1}, ν〉 = 0 with indeterminacy {0, νθ4} in π33.

In fact, in the Adams E2-page, we have the Massey product

〈g, Ph1, h2〉 = 0 in Adams filtration 9.

The homotopy classes that survive in π33 with filtration higher than 9 are

detected by the K(1)-local sphere. Since the class κ maps trivially to the

K(1)-local sphere, we must have that

〈κ, {Ph1}, ν〉 contains 0.
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Then it is straightforward to check the indeterminacy is

κ · π13 + π30 · ν = {0, νθ4}.

Now we have that

κ〈{Ph1}, ν, η, 2〉 ⊆ 〈〈κ, {Ph1}, ν〉, η, 2〉
= 〈{0, νθ4}, η, 2〉
= the union of 〈0, η, 2〉 and 〈νθ4, η, 2〉
= 2 · π35.

Note that 2 · π35 is detected in the K(1)-local sphere. Since the class κ maps

trivially to the K(1)-local sphere, we have that

κ〈{Ph1}, ν, η, 2〉 = 0.

On the other hand, it is clear that

ηκκ 6= 0 and is detected by h1d0g

and that

ρ15κ ∈ 〈8, 2σ, σ〉κ = 8〈2σ, σ, κ〉 ⊆ 8π35 = 0.

Here by Moss’s theorem, the relation

ρ15 ∈ 〈8, 2σ, σ〉

follows from the Adams differential d2(h4) = h0h
2
3 and the Massey product in

the E3 page

〈h3
0, h0h3, h3〉 = h3

0h4 with zero indeterminacy.

Therefore, the 4-fold Toda bracket

〈{Ph1}, ν, η, 2〉 contains ρ15. �

Lemma 12.7. We have the relation ρ15θ4.5 = 0 in π60.

Proof. We first claim that

ρ15θ4 = 8θ4.5.

In fact, they are both detected by the surviving cycle h2
0h5d0 (see Tangora [47]).

However, there is one more element w in higher filtration in the E∞-page, so

the two classes might differ by that. Since

η2θ4 = 0, and η2{w} 6= 0,

their difference is not {w} and hence must be zero. Note that one can also

show this by mapping the relation into tmf.
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Then we have that

ρ15θ4.5 ⊆ 〈8, 2σ, σ〉θ4.5

⊆ 〈8θ4.5, 2σ, σ〉
= 〈ρ15θ4, 2σ, σ〉
= 0 with zero indeterminacy.

The last equation is proved by the second author as Lemma 2.4 in [54]. �

Lemma 12.8. We have a Toda bracket in π20:

〈{Ph1}+ ηε, ν, σ〉 = 0 with zero indeterminacy.

Proof. We consider the two brackets 〈{Ph1}, ν, σ〉 and 〈ηε, ν, σ〉 one-by-

one. For the first bracket, in the Adams E2-page we have the Massey product

〈Ph1, h2, h3〉 = 0

with zero indeterminacy in Adams filtration 6. Since there is no surviving class

in Adams filtration 7 or higher, it contains zero. For filtration reasons and the

fact that π13 = 0, the indeterminacy of the first bracket is

{Ph1} · π11 + π13 · σ = 0.

Therefore,

〈{Ph1}, ν, σ〉 = 0 with zero indeterminacy.

For the second bracket, we have that

〈ηε, ν, σ〉 ⊇ ε〈η, ν, σ〉 ⊆ ε · π12 = 0.

Therefore, it contains 0. Again, by filtration reasons and the fact that π13 = 0,

the indeterminacy of the second bracket is

ηε · π11 + π13 · σ = 0.

Therefore,

〈ηε, ν, σ〉 = 0 with zero indeterminacy.

Summing these two relations, we have that

〈{Ph1}+ ηε, ν, σ〉 = 0 with zero indeterminacy. �

Lemma 12.9. We have a Toda bracket in π58:

〈θ4.5, {Ph1}+ ηε, ν〉 = 0 with zero indeterminacy.

Proof. First, by Lemma 12.5, we have the relation

θ4.5 · ({Ph1}+ ηε) = 0.

Therefore, this Toda bracket is defined.

Recall that

the cokernel of J in π58 is Z/2 and is generated by {h1Q2}.
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The indeterminacy equals

θ4.5 · π13 + π55 · ν = 0.

The relation π55 · ν = 0 follows from filtration reasons. As a side remark, one

can actually prove that

{h1Q2} is indecomposable.

This can be shown by the Adams-Novikov filtration of this element. See Isaksen

[20] for details.

In [20], Isaksen showed that the permanent cycle h1h3Q2 cannot be killed

by r1. The only other candidate to kill h1h3Q2 is h3
1h6, which is obviously a

permanent cycle: it detects η2η6. Therefore,

h1h3Q2 is a surviving cycle, and detects σ{h1Q2}.

By Lemma 12.8, we have that

〈θ4.5, {Ph1}+ ηε, ν〉σ = θ4.5〈{Ph1}+ ηε, ν, σ〉 = 0.

Therefore,

〈θ4.5, {Ph1}+ ηε, ν〉 does not contain {h1Q2},
and hence it is 0 with zero indeterminacy. �

13. Appendix I

The theory of cell diagrams is very helpful when thinking of finite CW

spectra. We use them as illustration purpose in Section 5. In this section, we

recall the definition of cell diagrams from [5]. We also include several examples.

Definition 13.1. Let Z be a finite CW spectrum. Then a cell diagram for

Z consists of nodes and edges. The nodes are in one-to-one correspondence

with a chosen basis of the mod 2 homology of Z and may be labeled with

symbols to indicate the dimension. When two nodes are joined by an edge,

then it is possible to form an HF2-subquotient

Z ′/Z ′′ = Sn ^f e
m,

m

f

n

which is the cofiber of f with certain suspension. Here f , the attaching map,

is an element in the stable homotopy groups of spheres. For simplicity, we do

not draw an edge if the corresponding f is null.

Suppose that we have two nodes labeled n and m with n < m and that

there is no edge joining them. Then there are two possibilities.
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The first one is that there are an integer k, a sequence of nodes labeled

ni, 0 ≤ i ≤ k, with n = n0 < n1 < · · · < nk = m, and edges joining the

nodes ni to the nodes ni+1. In this case we do not assert that there is an

HF2-subquotient of the form above; this does not imply that there is no such

HF2-subquotient.

The second possibility is that there is no such sequence as in the first

case. In this case, there exists an HF2-subquotient that is a wedge of spheres

Sn ∨ Sm.

Remark 13.2. In [5]’s original definition, they use subquotients instead of

HF2-subquotients.

Example 13.3. Let f be the composite of the following two maps:

S2 η2 // S0 i // Cη,

where the second map i is the inclusion of the bottom cell. Consider the cofiber

of f : Cf , which is a three cell complex with the following cell diagram:

3

2

η

0

It is clear that the top cell of Cf splits off, since η2 can be divided by η. So

we do not have to draw any attaching map from the cell in dimension 3 to the

one in dimension 0. Note that the cofiber of η2 is in fact an HF2-subcomplex

of Cf . One could think this as the indeterminacy of cell diagrams associated

to a given CW spectrum.

Example 13.4. Let X1 = P 4
1 . The cell diagram of X1 is the following:

4

2

η 3

2

2

1



574 GUOZHEN WANG and ZHOULI XU

As a comparison, let X2 = C2∧Cη, where C2 and Cη are the cofibers of

2 and η. Then the cell diagram of X2 is the following:

4

2

η 3

η2

2

1

We give a more interesting example.

Example 13.5. Consider the suspension spectrum of CP 3. It consists of

three cells: one each in dimensions 2, 4 and 6. It is shown in [2] by Adams that

the secondary cohomology operation Ψ, which is associated to the relation

Sq4Sq1 + Sq2Sq1Sq2 + Sq1Sq4 = 0,

is nonzero on this spectrum. In other words, there exists an attaching map

between the cells in dimension 2 and 6, which is detected by h0h2 in the 3-stem

of the Adams E∞-page. Note that h0h2 detects two homotopy classes: 2ν, 6ν.

Their difference is 4ν = η3, which is divisible by η. Therefore, we have its cell

diagram as the following:

6

2ν 4

η

2

14. Appendix II

This section is about intuition. We summarize and explain the major ideas

of how we think of the “road map” of the proof of the differential d3(D3) = B3,

especially of Step 4. The “zigzag” part of the explanation is crucial if one wants

to generalize this method to other Adams differentials.

We try to prove an Adams d3 differential in P∞1 :

d3(h1h3h5[22]) = G[6].

The element G supports a differential [20], [19] in the Adams spectral

sequence of S0:

d3(G) = Ph5d0.
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From the computation of the transfer map, we have that

Ph5d0[6] maps to B21.

It is shown in [20] that d3(B3) 6= B21. Therefore, the only possibility is that

G[6] supports a d2 differential in P 6
1 .

Checking the bidegree gives us the only element there: h5i[5]. This argument

can be summarized in the following diagram:

Ext(S6) Ext(P 6
1 )oo // Ext(P∞1 ) // Ext(S0)

Ph5d0[6] Ph5d0[6]�oo � // Ph5d0[6] � // B21

h5i[5]

G[6]

d3

OO

G[6]

d2

OO

�oo � // G[6] � // B3.

Remark 14.1. The above argument implies that in the Adams spectral

sequence of P 2
1 , we have a differential

d2(G[2]) = h5i[1].

This differential in the mod 2 Moore spectrum is not obtained by a zigzag.

The Curtis table shows that

h5i[5] is killed by B1[14].

Note that the element B1 in Ext(S0) is a surviving cycle.

This zigzag suggests that if the element G[6] were going to survive in the

Adams spectral sequence of P 23
1 , then it would jump the Adams filtration by 1

to the element B1[14] in the Adams spectral sequence of P 23
14 . This is the first

half of the intuition of Step 4: we reduce the Adams d3 differential in P 23
1 to

an Adams d4 differential in P 23
14 .

The second half of the intuition is related to the source element h1h3h5[22].

The Massey product h0h
3
4 = 〈h2, h1, h0, h1h3h5〉 and the nonzero Steenrod

operation Sq1Sq2Sq4 on the 15 dimensional class in H∗(P 23
14 ) suggest that we

should have a differential

h1h3h5[22] kills h0h
3
4[15]

in the Curtis table of P∞1 . However, the element h0h
3
4[15] is killed by h3

4[16]

in the Curtis table because P 16
15 is a suspension of the mod 2 Moore spectrum.
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Therefore, if we remove the 15-cell in P 23
14 , we can “separate” the two elements

h1h3h5[22] and h3
4[16]. To do this, we take the cofiber of the inclusion of the

15-cell to get the spectrum X, and we reduce the Adams d4 differential in P 23
14

to an Adams d4 differential in X.

It is therefore clear that the η-extension from h3
4 to B1 gives us the d4

differential in X, since the 16-cell is attached to the 14-cell by η.
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